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Abstract— Multi-Policy Decision Making (MPDM) has been
shown to be an effective method for single-agent navigation
tasks. In this paper, we extend MDPM to long-horizon multi-
robot planning tasks with uncertain communication. We con-
strain each team member to choose the best of several simple
policies through forward simulation in a decentralized fashion.
We demonstrate this algorithm on both a coverage task as
well as a challenging adversarial target search scenario, with
uncertain communication for both. We also show that our
algorithm can generalize to scenarios it was not tuned for.

I. INTRODUCTION

This paper presents a planning algorithm for multi-robot
teams with unreliable communications. When planning over
long time horizons is necessary, the computational com-
plexity of many methods (e.g. POMDP solvers) becomes
intractable. On the other hand, the simplifying assumption
of constant reliable communication is often violated by real-
world scenarios outside laboratory settings. We extend Multi-
Policy Decision Making (MPDM) [1] to the decentralized
case in order to solve this problem. This allows us to select
each robot’s policy based on deep forward simulations of a
set of simple policies.

Solving multi-robot planning problems under communica-
tions uncertainty is important for applications such as search
and rescue. A team of robots can search an area faster than a
single robot and they can perform search in areas which are
too dangerous for humans to explore. Since search and rescue
is often necessary in areas where there is limited time to set
up or repair communications infrastructure, it is important to
solve the problem without the assumption of communications
being available at all times.

Our method, Decentralized Multi-Policy Decision Making
(D-MPDM), is an extension to the single-robot planning
of MPDM in which the robot’s policy is selected from a
set of simple policies through a short-term forward simu-
lation. In D-MPDM each robot separately performs selec-
tion of a simple policy through a deep forward simulation
which includes the policy choices of the other robots and
their communications. No communication or synchronization
is involved in the planning process so that the system
will continue operating, albeit with reduced coordination,
when communication is unavailable. When communication is
available, the robots broadcast their current state, implicitly
coordinating their policy choices.

The authors are with the Computer Science and Engineering De-
partment, University of Michigan, Ann Arbor, MI 48104, USA.
{mkrogius,acshikh,ebolson}@umich.edu

Fig. 1. The robots plan in a decentralized fashion using forward simulations
that include future communication between the robots. This is possible
because we restrict the robots to choose from a set of simple policies that
control their behavior and communications.

We demonstrate the performance of D-MPDM across
two different tasks: coverage and adversarial search. The
coverage task is a proxy for search and rescue while the
adversarial search poses an interesting planning challenge
since it requires tighter coordination between the agents.
We test D-MPDM at different levels of communications
availability to ensure that we have achieved robustness.

The use of handcrafted policies in D-MPDM contrasts
with the usual approach of handcrafted value functions in
many other optimization algorithms. This allows D-MPDM
to search very deep at the cost of not being able to optimize
precisely over a short term sequence of actions. In our
evaluation we compare against a baseline using a handcrafted
heuristic and we show that D-MPDM is able to outperform
it in most scenarios.

The contributions of this work include:
• The D-MPDM algorithm, which coordinates the actions

of the team of robots in a decentralized manner, with
graceful performance degradation when communica-
tions drop out.

• Evaluation of D-MPDM on two different tasks and four
environments.

• In order to avoid bias while evaluating the performance
of our algorithm, we split the environments into training
and testing sets, which to the best of our knowledge is
novel in this domain.

II. RELATED WORK

The first task we will evaluate our method with is adver-
sarial search. For a survey of adversarial search algorithms



see the work of Chung [2], which overviews both the ap-
proaches as well as their field testing. The authors found that
robot reliability and communication failures were obstacles
to larger scale testing. Kolling [3] presents a method for
arranging teams of robots in line formations in order to
search an area represented as an occupancy grid. This method
provides guaranteed capture on occupancy grids, but does
not address the problem of communication. Hollinger [4]
presents an online algorithm for generating search plans
which guarantee capture of the target, assuming sufficient
communication between agents. Our method does not offer
the same guarantee, but also does not require a minimum
level of communication or a minimum number of searchers.
To overcome these limitations and permit larger-scale field
testing, we have designed D-MPDM to be decentralized and
robust to communications dropout.

Our second task is the coverage problem. A recent survey
from Amigoni [5] categorizes algorithms by the degree of
communications needed. Our algorithm falls into the least-
restrictive category, since it makes no assumption that any
communication at all will necessarily be available. Zlot [6]
used a market economy to control the coverage task, with
tasks being auctioned to the agent most willing to perform
them. This approach only indirectly optimizes the objective
function, whereas D-MPDM directly optimizes it. Baxter [7]
uses a potential field based method to perform the task in a
purely reactive manner. Similarly in D-MPDM, our agents
switch between a set of reactive policies. Brass [8] has the
robots explore the graph in a depth-first fashion, commu-
nicating which nodes have been explored by marking the
environment. This appears to still constitute a minimum level
of required communication that may not always be available
depending on the environment. Matignon [9] formalizes the
problem as a Dec-POMDP and solves it by splitting the
problem into a solution for when the agents are close enough
to interact and a solution for when the robots are far enough
apart that they do not need to coordinate. Compared to D-
MPDM this approach is small scale and focused mostly on
low level motion planning. Salman [10] uses the principle
of ergodicity to derive control laws for a multi-agent team
for the related problem of ongoing coverage where the
agents must return to already visited states periodically. Their
method contrasts with D-MPDM in that the simple policies
of D-MPDM handle the low-level control laws so that the
planning effort is focused on the higher-level objective.

Other researchers have also demonstrated methods that can
handle a variety of tasks. An early approach [11] formalized
the problem as a Dec-POMDP. This allows the algorithm to
optimize the semantics of the communication channel, how-
ever the computational complexity of this approach limits it
to small environments. Best [12] uses a probabilistic form
of monte-carlo tree search, which they demonstrate on the
problems of team orienteering and active object recognition
with some limits on communication. This approach is also
computationally heavy, although it does not have the same
problems with scaling to larger environments as the DEC-
POMDP approach. In contrast, our method is both scalable
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Fig. 2. Visualization of forward monte-carlo rollouts of one robot. The
trajectories of each policy are shown in different colors while the width
corresponds to the number of times that edge was traversed by that policy
in the simulation. Each robot performs these rollouts as the ego-robot to
make its own policy decision. The depth of the rollouts here is limited to
10 in order to produce a simpler visualization.

and has the additional advantage of being able to reason
about the effects of future communication.

Our approach is based on MPDM, which was introduced
by Cunningham [1] for single-agent autonomous driving.
Mehta [13] showed that MPDM could also be applied to a
single-agent social navigation task. We build on these works
to extend MPDM to the multi-agent domain.

III. METHODS

A. Decentralized MPDM

We consider the problem of planning for a team of robots
R in an environment represented by a graph where nodes
correspond to physical locations and edges to the paths
between them. Each robot is located at some node and
can then move to an adjacent node each timestep. The
robots communicate over unreliable links such that each
communication link has some probability pcomms, known to
the robots ahead of time, of functioning at any timestep. The
team of robots must act together in order to minimize the
time to achieve some task-specific goal, Tgoal.

In D-MPDM we add the restriction that each agent must
follow one of a set of handcrafted simple policies, P ≡
{p1, p2, ..., pn}, as in MPDM [1]. This reduces the planning
problem from finding the optimal of all possible policies,
to picking the best policy from a fixed set, an approach that
sacrifices theoretical optimality for tractability. We want each
robot r to choose the best policy prbest, such that:

prbest = argmin
pr∈P

E
pr
[Tgoal|~br, { ˆstate(ps)|s ∈ R, s 6= r}] (1)

where the expectation is over trajectories resulting from this
robot’s choice of the policy pr given this robot’s belief
about the world, ~br as well as its belief about the states



of its teammates, { ˆstate(ps)|s ∈ R, s 6= r}. In practice we
approximate this expectation and evaluate it through Monte
Carlo sampling as described below.

To avoid introducing a global consensus problem where
the robots all choose and agree on their policies in lock-step,
we make several simplifications. First, the currently planning
robot, or ego-agent, assumes that all robots which have
recently communicated with it will choose the same policy
as itself. The other robots should hold a similar belief about
the world state so this should result in implicit coordination
when there is sufficient communication between the robots.
Second, the ego-agent assumes that robots which have not
recently communicated with it will choose a policy uniformly
at random. With these relaxations, we obtain a system that
continues operating even if communication fails entirely.

Given the above assumptions, each robot evaluates the
expectation of a policy pi by assigning that policy to itself
as well as robots that have recently communicated with it
and by sampling a policy choice for the non-communicating
agents. The ego-agent then runs a forward simulation and
calculates the number of timesteps until completion of the
goal. Since the simulation involves many random elements
we repeat this process of sampling policy choices and
running forward simulations multiple times for each potential
ego-robot policy, pi. D-MPDM then chooses and executes
the policy with minimal Tgoal averaged over all samples.
Figure 2 illustrates the trajectories produced by each policy
in this forward simulation.

Since the robots have limited sensing and communication,
each robot maintains a belief about the state of the world,
which we sample from in order to run the forward simula-
tions described above. We represent the robot’s knowledge
as a belief over the possible world states. Since this domain
is discrete, it is possible to compute the belief at the next
timestep from the belief at the current timestep, given a
model of the environment. We run the environment model
each timestep to know how the belief should propagate.
This belief distribution represents some task specific quantity.
For the coverage task, the belief distribution represents the
probability that each node has not been visited, which is one
until it has been visited by an agent, and zero afterwards. For
the adversarial search task, the belief distribution represents
the probability that the adversary is currently at each node,
so for this task the belief distribution has dynamics defined
by the model of the adversary.

We do not use consensus or synchronization in the com-
munication of these task beliefs so that D-MPDM will be
tolerant to poor and intermittent communications. Every
timestep each robot will attempt to broadcast their current
belief. When the ego-robot receives a communication, it will
fuse the other robot’s task belief with its own belief. For
application to the coverage and adversarial search tasks, we
follow Hollinger [14] in fusing the belief of the agents about
the environment using the minimum rule, i.e. the belief value
bj associated with each node j is set to the minimum bj value
of the ego-robot and each other communicating robot. Some
simple policies also have additional state, such as using the

Algorithm 1: D-MPDM Main loop.

Function EstimateValue (policy)
avg time = 0
for i = 1..width do

/* ForwardSimulate returns the amount

of time it took to complete the task

given the sampled initial

conditions. */

avg time = avg time +
ForwardSimulate(policy,
SampleInitialConditions())

end
avg time = avg time / width
return -avg time

while task is incomplete do
best policy = max(policies,

key(policy)=EstimateValue(policy))
execute policy for one timestep
broadcast current state
receive and fuse states from teammates

end

robot’s prior position to prevent backtracking. The robots
will also communicate these policy specific states so that
the robots can more accurately simulate each other.

When teammates fail to communicate, we must also main-
tain some distribution over their possible locations, policy-
specific states, and task-specific belief about the world. We
model these non-communicating teammates with a particle
filter. This filter is initialized at the last known location
of the teammate, with a uniform distribution over simple
policies. This consists of 10 particles for the Hallway Patrol
policy, and one particle for each of the other policies. At
each timestep, each of the particles in the filter is updated
according to its associated simple policy, assuming the robot
has not communicated with any teammates. When a robot
teammate does manage to communicate, the particle filter
used by the ego-robot to represent that teammate is no longer
needed, but may be reinitialized later. This allows us to
consider a limited set of realistic positions and beliefs for
each non-communicating agent.

In each forward simulation we simulate the ego-agent,
teammates (with sampled positions/policies if they are not
communicating), evader (for the adversarial search task), as
well as communications availability. We run 50 simulations
for each choice of policy, sampling over teammate state and
our belief about the world. The forward simulation is run
until either the goal is achieved or until the depth exceeds
the maximum depth. For any simulation that exceeds this
maximum depth we assume that the goal is accomplished
on the next timestep.

B. Simple Policies

An MPDM system relies on a good selection of simple
policies. Here we present the three simple policies used in



Fig. 3. Column 1: Visualizations of the different maps used for evaluation. The first two maps, Square and Beyster, were used for development and
testing of the algorithm and are thus designated “Train”. We used the performance on these environments as feedback while we designed the policies and
choose parameters. The next two maps, Office and Museum, are designated “Test” since no changes were made to the algorithm, policies, or parameters
based on the results on these maps, with the exception of reducing the depth of the baseline’s search from 50 to 20 in order for it to finish in a feasible
time frame. The maximum depth parameter for D-MPDM is set to 150 and the number of simulations per policy (width) is set to 50. Column 2: The
performance of the Hallway Patrol, Belief Gobbling, Seeker, DFS, and D-MPDM (Ours) algorithms on the four maps for the task of coverage. Column
3: The performance of the Hallway Patrol, Belief Gobbling, Seeker, DFS, and D-MPDM (Ours) algorithms on the four maps for the task of adversarial
search. D-MPDM outperforms the baseline on all maps except for the Museum map adversarial search.



this system for both tasks.
1) Hallway Patrol: This policy proceeds down corri-

dors and makes random choices at intersections without
backtracking (unless it reaches a dead end). This policy
should result in reasonably efficient exploration even in poor
communication conditions.

2) Belief Gobbling: This policy chooses the action which
takes it to the neighboring node with the maximum amount of
belief. This can be thought of as essentially a greedy policy.
This policy will communicate and fuse its belief state with its
teammates, when communications are available. This allows
for some degree of coordination since if one robot proceeds
down a dead end, a nearby agent using belief gobbling will
not follow it down that corridor since the belief behind the
first agent will be small.

3) Seeker: This policy computes a target node and then
plans the shortest path to that node. The target is selected by
the equation:

target = argmax
j

bj
d(i, j)

(2)

where i is the current location/graph node, j ranges over
all nodes, bj is the ego-robot’s task belief either that node j
is not yet covered or that it contains the evader, and d(i, j)
is the path length through the graph between i and j. This
rule for target selection is similar to the rule for optimal
search from Matula [15], although the proofs pertaining to
optimality do not extend from that work to this more complex
case. Because it plans the shortest path to the target, this
policy can still efficiently explore when nearby nodes have
insignificant belief compared to those farther away. This
policy also attempts to reduce unproductive synchronization
by choosing a random action when it knows it is at the same
location as another agent.

C. Task Types

In this work we would like to demonstrate that our
multi-agent planning algorithm is capable of generalizing
across tasks, environments, and levels of communication
availability. To this end we have two tasks to test in the
simulation environment.

The first is a coverage task. The goal of this task is to
visit every state in as few timesteps as possible. In order
to be efficient at this task, the agents must spread out as
well as avoid leaving behind isolated unvisited nodes. The
robots are unable to sense directly whether a state has
previously been visited by a teammate and so must rely
purely on communication of the belief in order to compute
this information.

The second task is an adversarial search. The goal is
to capture an adversary who is mildly adversarial, moving
away from the robots when they get within two steps of the
adversary. The adversary has the advantage that it knows
where all the robots are. The robots have the disadvantage
of not being able to sense the adversary at a distance. The
only feedback they receive is whether or not they have
captured the adversary yet. To succeed at this task, the robots

must execute pincer movements where the adversary ends
up trapped between multiple advancing robots. The robots
should also try to make their belief about the location of the
adversary more informative, by planning actions to group up
large amounts of belief.

D. Baseline

Since we could not find another work proposing a general-
purpose multi robot algorithm which allows for imperfect
communication, we define our own baseline. In our baseline,
each agent performs a limited-depth tree search over the
game tree to find the best plan. Agents share plans, and
other agents’ plans are assumed fixed when the ego-agent
is performing its tree search to generate its own plan.

This form of best-response planning can lead to oscilla-
tion, because when all the robots are synchronously comput-
ing their new plans, they can all change their plans every
turn between two sets of plans. This does not happen in the
real world since the process of planning and communicating
is asynchronous. To mitigate this failure mode we have
implemented cycle detection. If an agent has received enough
communications to know that it has returned to the location
it was at two timesteps ago and that all other robots have
returned to their locations from two timesteps ago, then it
will choose a random action. In addition, if two robots are at
the same location then they will both choose random actions.
In this way we can mitigate the issue of synchronization, but
we suspect that this does not completely remove all negative
effects. Planning in the joint action space may be necessary
in order to achieve truly optimal plans.

The depth of the tree search is selected such that the
algorithm runs at a reasonable (< 1s per timestep) speed
for both graphs and task types. In practice this means a
maximum depth of 50 timesteps for the training graphs,
and a much lower 20 timesteps for the test graphs due to
their higher average node degree. This demonstrates that
an approach like D-MPDM is necessary to compute longer-
horizon plans.

IV. RESULTS

A. Simulation Results

In order to achieve statistical significance across a wide
range of scenarios, we have tested the performance of D-
MPDM and our baseline in simulation. We have simulated
results for two task types, four graphs, and five communica-
tion levels in Figure 3.

We have labeled the Square and Beyster maps as “Train”
since these maps were used for development and tuning of
our algorithm through the policies and parameters we chose.
We only ran D-MPDM on the “Test” maps once we had
finished making changes to the algorithm. We did this in
order to test the generalization performance of our system
to new maps. The “Test” maps here are also qualitatively
different than the “Train” maps, as the “Test” maps are both
substantially larger.

In Figure 3 we can see the performance of the algorithms
for the “Train” maps. Our method (D-MPDM) is the best
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Fig. 4. Performance vs compute tradeoffs for the DFS baseline and D-
MPDM. Each datapoint in a series is at a different depth. For DFS, the
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from 30 to 150 in steps of 30. The width of D-MPDM refers to the number
of forward simulations per simple policy, which should capture the variance
of D-MPDM’s estimates of each policy’s value. This data was collected for
the coverage task on the Office map at a communication level of 0.2.

performing algorithm for both maps across all communica-
tion levels and both tasks. The performance of D-MPDM
matches and sometimes exceeds the performance of the
simple policies that it chooses between. This is due to the
replanning which allows D-MPDM to switch policies as
the task proceeds. D-MPDM also exceeds the performance
of the more computationally-expensive DFS baseline by a
significant amount.

On the test maps, D-MPDM has the best performance on
the coverage tasks. On the adversarial tasks, the performance
is typically either the best or the second best method over the
operating spectrum. Only the DFS-based search outperforms
it on one map, and only then when communications are
reasonably reliable.

In Figure 4 we sweep hyperparameters for D-MPDM and
DFS. We can see that for both algorithms there is a tradeoff
between compute time and performance. There is a much
steeper increase in compute time for DFS vs D-MPDM as
the search depth increases. This is as expected since DFS is
exploring a tree whereas D-MPDM is running a fixed number
of simulation runs.

In Figure 5 we can see which combinations of policies D-
MPDM chooses as a function of step number. Even though
the communication level here is 0.2, we can see that the three
agents are all choosing the same policy (all 3 choose Seeker)
a substantial amount of the time.

V. DISCUSSION

The goal of this paper was to develop a method that
generalizes well to new environments. At the same time,
any method being developed needs to be debugged and
have parameters tuned on a reasonable amount of data or
sample environments. In most machine learning work, this
is achieved through segregating the training and test datasets.
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To test how well our algorithm generalizes, we have followed
a similar idea and used separate “Test” and “Train” maps.
To the best of our knowledge this is novel for this problem
space. We made no changes to our algorithm to perform well
on “Test” maps, however we did reduce the search depth for
the DFS baseline on the “Test” maps from 50 to 20 in order
to make its compute requirements feasible. The performance
of D-MPDM on the “Test” maps supports our claim that
D-MPDM generalizes to new environments.

VI. CONCLUSION

In this paper we presented D-MPDM, a multi-agent
planning method that uses forward simulation to choose a
policy for each agent out of a set of simple policies. We
have shown that D-MPDM outperforms the baseline across
all communication levels (including zero communications),
environments (except for the Museum map), and task types.
We have used a set of “Train” and “Test” maps to show that
D-MPDM generalizes to never-before-seen environments
without needing additional policy or parameter changes.

We will make our source code available upon publication
of this paper.
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