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Abstract— Multi-Policy Decision Making (MPDM) is a plan-
ning framework in which an agent dynamically switches be-
tween a set of policies by predicting the performance of those
policies using forward simulation. But in virtually all MPDM
approaches, the set of policies are created by domain experts.

In this paper, we learn these policy sets off-line. We use an
evolutionary algorithm approach, which allows us to directly
optimize the performance of the policy set, rather than some
proxy objective.

We also propose the use of Terminal, an online strategy
game, as an evaluation domain for planning algorithms. Like
many real-world robotics problems, Terminal requires multi-
agent planning, coping with uncertainty, and practical limits
on computational complexity. We describe how we used our
approach to generate an agent which is ranked in the top 10
in a global online competition.

I. INTRODUCTION

A fundamental problem in robotics is that of deciding how
to move or act in the world. A common approach from
controls or reinforcement learning is to optimize a policy
function. This policy function maps from states to actions,
determining the robot’s action in all possible situations.

However, it is not clear that this sort of monolithic policy is
the right approach for a more complex environment. Instead
it may be better to split up the robot’s behavior into simpler
policies and switch between these policies when needed. For
example, for a robot navigation task, the robot could follow
the right-hand wall to travel along a corridor, and then switch
to a slow but safe navigation policy to pass through a narrow
door. Having multiple simpler policies allows generalization
of the robot’s behavior because it can mix and match its
existing set of policies to fit new situations.

Unlike learning a single policy, learning a set of policies
poses a unique challenge. Ideally each policy in the set
would encode a different behavior, with the overall set of
policies being mutually complementary. This can be difficult
to achieve if each policy is trained individually with the
same objective of increasing performance because there is
no signal to a policy that it should learn a policy that is
different from previously-learned policies.

Inspired by recent work on policy evolution, we propose
to evolve our multi-policy system. This removes any need to
specify objectives for the individual policies. Instead, we can
evaluate the fitness of each multi-policy agent as a whole,
correctly rewarding agents which have a set of mutually
complementary policies.
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Fig. 1. A game of Terminal between our agent (bottom/green) and an
opponent, online. The green objects are our agent’s units and the orange
ones belong to our opponent. Each turn, both players make their moves
simultaneously, playing multiple stationary and mobile units. The stationary
units remain on the board between turns, building up a defense over time
while the mobile units attempt to cross to the far side of the board to score on
the opponent. This game requires planning with a massive action space while
the simultaneous play adds the difficulties of planning under uncertainty and
multi-agent planning. All of this takes place under the additional constraint
of six cpu core-seconds per turn.

There are multiple different approaches to multi-policy
systems but we wanted to choose one which works well
in real robotics applications. For this paper, we will use
Multi-Policy Decision Making [1] and evolve the policies
used within it. MPDM works by, at every time step, running
forward simulations for every simple policy for a fixed
horizon. The simulations are then evaluated with a value
function, and the policy with the best value is then executed
for that timestep.

We evolve our MPDM agents using an efficient formula-
tion of regularized evolution [2] and tournament selection.
The relative fitness of two agents is evaluated through self-
play, meaning that only one match needs to be played per
new mutated agent.

While the ultimate goal is to show that this method will
be effective for robotic planning, since this is the first step in
developing this learning method, we have chosen a somewhat
simpler task to begin with. The task we use is a two-player



game called Terminal. It has the complexity of involving
interaction with another agent (since it is a two-player game).
In addition, both players make their moves simultaneously,
which distinguishes it from other games such as chess or go.
Finally, it also has limits on allowable compute of just six
seconds per turn on a single cpu core. It also has an active
community of people who develop algorithms to play the
game, allowing us to compare against a a wide selection of
systems created by domain experts.

The contributions of this work include:
• An efficient method for evolving agents for two-player

games through self-play.
• Initialization of the learning process with policy sets

scraped from games played online by other players.
• The introduction of Terminal as a testbed for planning

methods and the application of MPDM to this problem.
• A demonstration of the effectiveness of our approach

where our evolved agent achieved rank 10 in a global
online competition against other algorithms from com-
petitors around the world.

II. RELATED WORK

As our method combines policy learning, evolution, and
planning we will mention all these topics in our related
works.

A. Deep RL Policy Learning

Some of the most prominent works in policy learning
from the past few years come from the field of deep
reinforcement learning. The first example is AlphaGo [3]
which was the first algorithm to achieve superhuman per-
formance in the game of Go. Shortly thereafter, NFSP [4]
showed that reinforcement learning could be applied to
imperfect information games, achieving performance on par
with other top computer programs at Limit Texas Hold’em
poker. Finally, AlphaStar [5] achieved performance greater
than 99.8% of human players at the game of Starcraft II.
Based on the success of these methods we can assume
that Terminal should be tractable with deep reinforcement
learning. However, the game of Terminal has the additional
restriction that moves must be calculated in less than six
seconds on a single CPU core, which makes it unlikely that
solutions based on large neural nets could be competitive.

B. Options

Options are an idea with a long history in reinforcement
learning [6]. The idea is to learn multiple closed loop policies
and to use these policies to enable temporally extended
planning. This concept is similar to the idea of the simple
policies in an MPDM system, where in both cases the
policies are handcrafted. More recently, the option-critic
architecture [7] was proposed, which uses policy-gradient-
based optimization to learn a set of options from scratch.
They showed that this multi-policy approach can outperform
a single-policy approach using the DQN framework. Com-
pared to our method, the use of gradient-based optimization
allows for efficiently learning neural network based policies

from scratch. However, our method does have the theoretical
advantage that it is directly optimizing the performance of the
system as a whole, instead of optimizing a proxy objective
such as the performance of a single policy. In their following
work on option-critic [8] they show that adding an additional
term to the objective function representing a deliberation cost
is necessary in order to learn options that are useful for a
longer period of time.

C. Evolutionary Algorithms

The MAP-Elites [9] algorithm is an evolutionary algorithm
that has been used in robotics to allow a robot’s control
policy to adapt to damage [10]. Offline evolution is used to
create a set of policies and then an online trial and error
algorithm learns which policy to use when the robot is
damaged.

Evolutionary methods have been applied to learn a neural
net based policy for the Atari Learning Environment [11],
showing competitive performance with reinforcement learn-
ing methods. This work showed the authors that evolution
could be a competitive learning method in complex environ-
ments. In this work we apply evolution to a game which has
the additional complication of being a two-player instead of
single-player game. Another evolutionary approach evolves
the parameters of an agent while modelling the fitness
landscape with an N-tuple system [12] for a single-player
game. One approach similar to ours optimizes an agent for
the game of Hearthstone [13]. Like our method, this tackles
a two-player game using an evolutionary algorithm. Similar
to them, we play head to head games between agents in the
population in order to determine relative fitness, however we
play only one game between agents, trading off noise of the
fitness function for reduced compute cost per iteration.

D. Planning with Action Abstractions

A method called Puma [14] plans using macro-actions
instead of simple policies. The macro-actions are not hand-
crafted, instead they are generated using sub-goals of at-
taining immediate reward and gaining information. Another
method which uses online planning based on handcrafted
policies is Portfolio Online Evolution in Starcraft [15]. This
work uses an evolutionary algorithm in order to do online
planning for starcraft.

Our planning method uses MPDM, which was originally
introduced in the context of planning for self-driving vehi-
cles [1]. In that work, MPDM was used to plan the actions
of a car using a set of hand-crafted policies. Following
works [16], [17] have also used handcrafted policies, al-
though Mehta [18] has used online optimization of continu-
ous policy parameters. Keesmat [19] is the first use of an
evolutionary method alongside MPDM. They use a short
evolutionary run to learn the parameters of a social force
model used inside MPDM, as well as parameters relating to
the MPDM system as a whole such as replanning interval
and simulation horizon. Compared to this work we evolve
policies with many more parameters, and run the evolution



for much longer because we are trying to tackle a complex
two-player game.

III. METHODS

A. Evolution

Our evolutionary method is based on regularized evolu-
tion [2]. Every iteration, we select two agents at random out
of a population of at most 5000 agents. The relative fitness
of these two randomly chosen agents is then determined by
playing one game of Terminal between them. We mutate the
winner of this game and add this copy to the population. We
also save the winning algorithm to disk, for later evaluation.
Lastly, if the population has reached maximum size, we
remove the oldest agent in the population. This process is
then repeated as many times as desired, up to 4 million
iterations for the largest run. In practice, 96 iterations are
run in parallel, so that we can use all cores of the server the
code is running on.

Algorithm 1: Evolutionary Algorithm.
Given:

n iters // Maximum number of iterations

max size // Maximum population size

scraped policies // Initial policy sets

initialize population with scraped policies
for n iters do

agent1 = random choice(population)
agent2 = random choice(population)
winner = play match(agent1, agent2)
save winner to disk
new agent = mutate(winner)
population.push back(new agent)
if size(population) > max size then

population.pop front()
end

The most notable thing about this approach is that only
one game is played per iteration. This allows each iteration to
run quickly, at the cost of being a somewhat noisy evaluation
of fitness. This noise of the evaluation comes from the fact
that Terminal, being a simultaneous action game, has a rock
paper scissors quality to it where the overall better agent may
lose some matches where it is countered by the opponent’s
strategy.

This speedy evaluation allows our evolutionary runs to
proceed quickly and efficiently. The cost of the run to pro-
duce our final agent was under $50 and took approximately
2 days of compute time (using a c5a.24xlarge spot instance
on AWS).

B. Terminal

Terminal is a board game that is mostly played online by
algorithms designed by domain experts. The rules are more
complicated than chess or go so we will present a simplified
version here (full version [20]). Terminal is a game where,
each turn, both players make their moves simultaneously. A

player’s move consists of placing a number of stationary and
mobile units on their side of the board and then submitting
their turn. There are six different types of units that can be
placed, three stationary unit types and three mobile unit types
to be placed on a 28× 28 board. Once both players submit
their moves, the turn is then resolved through a number
of complex rules governing the behaviour of these units.
Mobile units will move across the board following rules
for pathing, as well as rules governing how and when they
will shoot at the opposing player’s units. If the mobile units
reach the opposite edge of the board then they will score.
The stationary units are used to influence the pathing of the
opposing player’s units, shoot at the opposing player’s units
when within range, and to shield the player’s mobile units.

Terminal has three complicating factors compared to
games such as chess or go. First, on each turn of the game,
both players make their moves simultaneously. Second, each
move consists of placing multiple (typically ∼10) units of
6 different types on a board which is larger than a chess or
go board. Third, calculating what happens after both players
submit their moves is a more involved, iterative computa-
tion, with calculations required for each unit’s pathing and
targeting at each timestep of the turn.

All of these added complexities of Terminal make it
less tractable to typical methods such as tree search. The
larger board plus the multiple actions per turn mean that the
action space is orders of magnitude larger than chess or go
(an estimate of a typical move’s action space is 3 × 1011

(see footnote1) whereas chess has an upper bound of valid
moves of 4× 103 (see footnote2)). The simultaneous actions
mean that the actions for both players must be considered
simultaneously, meaning that an action space of size 9×1022
would need to be searched if one were to use typical tree
search methods here. And the final difficulty for tree search
methods is that the amount of computation per turn is limited
to a maximum of six seconds on a single CPU core.

C. MPDM for Terminal

One must define a set of simple policies, an evaluation
function, and a maximum simulation depth in order to use
MPDM for any task. For this task we use a simulation
depth of one, i.e. we simulate one turn and then evaluate the
results. The evaluation function is a hand-designed nonlinear
combination of each player’s resources, and whether the
player wins on this turn. Since our defensive structure is
fixed, there are no terms in the evaluation function that are
based on the defensive layout of either player.

The simple policies are designed to be highly parame-
terized so that their performance can be improved through
evolution. To start, we factor each policy into a defence
policy and an attack policy. A defense policy’s parameters

1On a typical move the player can place 5 stationary pieces at at most
14 × 28 ÷ 2 locations. This gives an upper bound of (14 × 28 ÷ 2)5 =
3× 1011.

2As a simple upper bound, a chess move consists of taking a piece from
one position to another position on an 8 × 8 board. This gives an upper
bound of (8× 8)2 = 4096.



consist of a list of stationary units. These units will be built,
in order, every turn, with as many units being built as the
available cores will allow. Each set of policies that comprise
an MPDM agent share a common defensive strategy but vary
in terms of their attack. Note that different policy sets (within
the evolutionary population) can have different defensive
strategies. An attack policy’s parameters consist of up to two
locations to attack from, what types of units to attack with,
and how much of the available bits should be allocated to
each location. An attack policy will always attack using all
available bits. In addition, there is also a default attack policy
that does not attack at all.

MPDM chooses between these policies based on the result
of simulations. Every turn, MPDM forward simulates the
outcome for every simple policy and evaluates the outcome
using the evaluation function. Then, the policy with the best
evaluation is chosen and executed. During these simulations,
a default policy is assumed for the opponent. This policy con-
sists of the opponent building stationary units and scramblers
that it has built on the previous turn or two.

Algorithm 3: MPDM for Terminal
Given:

attack policies
defense policy
game // Represents the game state.

Function choosePolicy(game):
for attack policy ∈ attack policies do

sim = initialize simulation(game)
attack move = evaluate policy(attack policy,

sim)
defense move =

evaluate policy(defense policy, sim)
submit turn(sim, move)
simulate turn(sim)
value = calculate endstate value(sim)
if value > best value then

best value = value
best move = move

end
return best move

end

while game is not over do
best move = choosePolicy(game)
submit turn(game, best move)

end

D. Policy Scraping

We have used policy scraping to jump start the training
and reduce the number of iterations required to produce a
strong agent. We used policies scraped from games played
between other agents in the online competition. The scraping
algorithm works as follows. For a defense policy, we simply
put every stationary unit built into a list. For an attack policy,
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Fig. 2. Winrate of the final algorithm (100 policies), binned by oppo-
nent Elo. This shows all games played versus multiple versions of some
opponents, not just the final end of season opponents. The agent performs
quite well against lower or similarly rated opponents, but it cannot beat the
opponents rated over 2600 Elo.

every time the agent built mobile units we take the two
locations at which the most mobile units were built and
construct one of our attack policies with those parameters.

This form of policy scraping deliberately does not concern
itself with producing strong policies. The goal is to produce
policies which are close, in parameter space, to strong
policies. The evolutionary algorithm will handle the problem
of finding those nearby strong policies.

IV. RESULTS

We ran our evolutionary method using an MPDM agent
with 100 policies in order to produce our final agent. The
starting agents were sampled from the scraped policies and
evolved for 4 million iterations and took approximately 40
hours to complete on an AWS c5a.24xlarge spot instance.
After completing the run, we ran a single elimination tour-
nament between all agents that had managed to win at least
one match during the evolutionary process. The winner of
this competition was uploaded to the online competition.

Our agent came in at rank 10 out of 89 competitors for
the final end of season ratings for season 6 of terminal. This
competition includes a wide variety of agents designed by
domain experts, so this result can be viewed as a comparison
of our agent to a baseline of handcrafted agents.

The performance of our final agent vs different Elo levels
is shown in Figure 2. This contains all matches played, not
just the matches from the final end of season competition,
broken out by the opponent’s Elo rating. Our algorithm
handily beats all opponents under 2200 elo, does slightly
worse than 50% against agents between 2200 and 2600, and
does not beat agents with rating over 2600.

We ran an ablation study in order to determine the effect
of the number of policies as well as the effect of the use of
scraped policies. The runs for this study were half that of
the final run, i.e. 2 million iterations. In order to provide for



1 Policy 5 Policies 15 Policies 50 Policies 50 Policies - No scraped policies
1 Policy 0.00 -0.50 -0.53 -0.56 0.72

5 Policies 0.50 0.00 -0.37 -0.25 0.86
15 Policies 0.53 0.37 0.00 0.05 0.60
50 Policies 0.56 0.25 -0.05 0.00 0.71

50 Policies - No scraped policies -0.72 -0.86 -0.69 -0.71 0.00

TABLE I
The table shows the average score of each row’s parameter settings vs the column’s parameter setting. Score is defined as 1 for a win, 0 for a draw, -1

for a loss. The run without scraped policies is the weakest while the runs with 15 and 50 policies are the strongest.

Fig. 3. The self-play elo of agents generated during the longest training
run. The performance of the agents generated throughout the run is in
general quite noisy, which is to be expected from an evolutionary algorithm.
However, there is still gradual improvement being made as the best agents
come from near the end of the training run. The self-play elo was determined
by taking ∼2000 agents evenly sampled from throughout the training
process, playing games between them, and using a bayesian Elo [21]
approach to assign ratings.

a robust comparison between the different methods, the top
128 agents produced by each method were played against
the top 128 agents produced by all other methods. These top
128 agent are selected by taking all the agents from the final
7 rounds of the single-elimination tournament.

In our ablation study, Table I, in almost every case the
agent with more policies beats the agent with fewer policies,
although the 50 policy and 15 policy agents seem to be of
roughly equal strength. Additionally, the agents trained from
scratch are far weaker than even the single policy agent
trained from scraped policies. This shows that the use of
many (at least 15) policies and the use of scraped policies
for initialization are both important for the success of this
method.

The training curve, as seen in Figure 3, shows how the
performance of our agent grows over the course of the
training run. While there are a few policies from early in
the run that are high rated, the most highly rated policies
only occur well into the run, at around 2.8 million iterations
of training. While the training curve is noisy, it does show
that the performance improves over time, eventually levelling
off.

The self-play elo ratings for the training curve were gener-
ated first by sampling 1/1000th of the agents generated. Then
the agents played matches against other agents of similar
rating. Interleaved with this process, ratings were assigned to
the agents using a minorization-maximization algorithm [21]
in order to assign ratings in a bayesian fashion.

V. CONCLUSION

We have introduced Terminal as a testbed for robotic
planning. This game has a massive action space and its simul-
taneous turn nature brings elements of multi-agent planning
and planning under uncertainty. All of these challenges are
relevant for robotic planning.

Our approach to Terminal uses an evolutionary algorithm
to optimize our agent. We use a single self-play game to
determine the fitness of agents during this process. This
means that no external evaluation of the playing strength
of an agent is required.

We can learn not just a policy, but a policy set since our
learning method does not require differentiability. This is
what allows us to learn the parameters of an MPDM system
for Terminal and apply it in order to plan moves under strong
time constraints.

Our system achieves rank 10 in a global online competi-
tion against algorithms written by domain experts around the
world. This is a good result, but this also means that there
are at least 9 agents that our agent cannot beat. We challenge
the research community to attempt to produce an agent that
can achieve first place in this competition.
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