
Maximum Likelihood Tracking of a Personal Dead-Reckoning System

Surat Kwanmuang1 and Edwin Olson2

Abstract— We consider the problem of a human-following
robot in which a human is equipped with a low-fidelity
odometry sensor and a robot follows the human leader— often
lagging well behind and out of visual contact with the human.
The challenge is for the robot to determine the path taken by
the human, despite the relatively noisy odometry data available.
Such a system is useful in a “pack mule” application, where
the robot carries a heavy load for the human.

Our key idea is to equip the robot with sensors allowing it
to build a map, and to use observations of the environment
structure to constrain the path of the human. We propose
and evaluate several approaches: a particle filter method that
extends monte-carlo localization approaches, and a multi-
hypothesis maximum-likelihood approach based on stochastic
gradient descent optimization that efficiently clusters similar
trajectories. We demonstrate that our proposed approaches are
able to track human trajectories in several synthetic and real-
world datasets.

I. INTRODUCTION

The goal of this paper is to develop semi-autonomous
robots capable of following a human leader. In a typical
application like a “pack mule”, the primary challenge is
to track the position of the human leader. In this work,
we assume that the human leader may be well outside
sensor range but that the leader is equipped with a personal
dead-reckoning (PDR) device [1] that transmits odometry-
like measurements via radio. Supporting beyond line-of-sight
tracking allows the robot much more flexibility in following
the human. For example, if the human hops over a ditch that
is untraversable by the robot, the robot may need to find
an alternative path. With our beyond line-of-sight tracking
approach, the human is free to continue: it does not need
to wait for the robot. Other applications of a follower-
robot include robotic luggage valets, robots for tracking
first responders in a dangerous environment, and robots that
provide tactical support to a squad of infantry whose rapid
motions could make traditional tracking methods difficult.

This paper focuses on leaders equipped with personal
dead-reckoning devices. These devices, while quite noisy, are
not susceptible to GPS jamming and work in dark or foggy
conditions that would be challenging for optical tracking
methods.

The time between the moment the human leader starts
walking and the moment the robot starts following can be
anywhere from a few minutes to multiple hours. Once the

1Surat Kwanmuang is with the Department of Mechanical
Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
surat.k@chula.ac.th

2Edwin Olson is with the Computer Science and
Engineering Department, University of Michigan, Ann
Arbor, MI 48109, USA. ebolson@umich.edu ;

http://april.eecs.umich.edu

ground truth
odometry
SGD_ML

 ground truth
odometry
SGD_ML_Z

Fig. 1. Forest world results. This figure shows results for the algorithsm
proposed in this paper. On the left, SGD ML (blue) converges to the wrong
solution when the odometry noise is large, whereas SGD ML Z (right)
performs better and converges to the correct solution. Ground truth is plotted
in black, and odometry is in red.

leader starts walking, the PDR system onboard the leader
transmits the leader’s motion estimate to the robot. Once
the robot begins, it reconstructs the leader’s path by fusing
the PDR-derived motion estimates with data obtained by
the robot, including LIDAR and inertial measurements. The
robot’s observations of the environment are informative with
respect to the trajectory of the human by virtue of the fact
that the human cannot travel through obstacles. Thus, the
map constructed by the robot constrains the set of possible
trajectories taken by the human.

Our approach is based on a single-robot Simultaneous
Localization and Mapping (SLAM) algorithm [2], but with
the added complication that the goal is to estimate the
trajectory of the human— recovery of the robot’s trajectory
is merely a means to this end. A significant challenge is
that the robot’s observations only indirectly constrain the
trajectory of the human: trajectories that do not collide
with obstacles are virtually indistinguishable. Recovering the
leader’s trajectory is thus difficult due to the many local
minima and the complex non-linear relationship between
plausible leader trajectories and robot observations. The
central claim of this paper is that these difficulties can be
overcome in many cases.

Specifically, the contributions of this paper include:
• Several methods for estimating the leader’s trajectory:

one based on a particle filter and two others based
on maximum likelihood optimization using Stochastic
Gradient Descent (SGD)

• An extension to the maximum-likelihood methods al-
lowing for multiple hypotheses that has improved con-
vergence in the presence of local minima

• An evaluation involving both real and simulated data
that demonstrates the performance and tradeoffs of the
algorithms

II. PRIOR WORK
Current studies on leader-follower problems use GPS as

the primary method for the robot to follow the human [3].
By comparing the robot’s current GPS coordinates with the
human’s coordinates, the robot can follow the leader without
line-of-sight requirements. This approach, however, relies
on the availability of a GPS signals which are susceptible
to obstructions (including the “urban canyon” effect), are
generally too attenuated indoors to be used, and can be easily
jammed.

Another prevalent method is to use stereo vision on both
the leader and the robot [4]. In this scenario the leader sends
image features from their camera to the robot to store in
its database. The robot compares its current image features
with the database to estimate the relative position of the
human then tries to move to that position. This method is
sensitive to changes in appearance in the environment which
can occur if the robot is following at a great distance or if
the robot cannot follow the same path as the leader. It is also
bandwidth intensive.

The leader-follower problem can also be treated as a
multiple robot localization problem [5] in which both the
leader and the follower use their sensors to estimate the
location of the other. In this case, however, because the leader
is a person rather than a robot, mounting sensors such as a
laser scanner is not very practical.

Other researchers have used inertial measurement sensors
on human leaders [6], [7] and particle filters exploiting a
prior map. In this work, we eliminate the need for a prior
map.

III. BACKGROUND
A. Personal dead-reckoning system

The Personal Dead-Reckoning system (PDR) [1] was
developed to track the position of a human subject in real-
time. The system consists of an inertial measurement unit
(IMU) strapped on the side or embedded under the heel of the
subject’s boot. When the subject is walking, the PDR system
estimates current position and orientation of the system as
well as the uncertainty of the estimation. Yaw estimates are
derived from low-cost gyroscopes while translations can be
recovered by double-integrating acceleration measurements.
This double integration would ordinarily result in extremely
noisy estimates, however the PDR system exploits the fact
that the heel is momentarily stationary during each step. This
allows for continuous recalibration of the accelerometer.

B. Relative poses

The poses from the PDR system are formed by composing
the changes measured by inertial measurement sensors. Thus,
if we modify one pose, all following poses along the chain
are projectively affected.

We can define state variables as relative poses yi between
human poses xh

i�1 and xh
i . This variable is initialized to be a

function of odometry input y0 = f (o):

yi = [x̃i, ỹi, q̃i,]
T (1)

Therefore, a transformation T (yi) which transforms a pose
xh

i�1 to xh
i is given as:

xh
i =

2

4
x
y
q

3

5
h

i

= T (yi)⌦ xh
i�1 (2)

xh
i =

2

4
cos(qi�1)x̃i� sin(qi�1)ỹi + xi�1
sin(qi�1)x̃i + cos(qi�1)ỹi + yi�1

qi�1 + q̃i

3

5 (3)

Thus, the pose at time t can be calculated from a function:

xh
t = T (yt)⌦T (yt�1)⌦⌦T (y1)⌦ xh

0 (4)

Given all relative poses y0:n, the whole trajectory xh
0:n can

also be obtained in the same way xh
0:n = {xh

0,x
h
1,,x

h
n}.

IV. METHOD
In this section, we propose several methods for tracking a

human leader. First we describe our approach for determining
the likelihood of a candidate leader trajectory by proposing
the use of “human presence probability” function. We then
propose a particle filter algorithm for tracking which, while
itself a contribution of this paper, serves as a baseline method
for our other proposed methods.

Next, we propose an approach called “Stochastic Gradient
Descent for Maximum Likelihood tracking” (SGD ML) and
its variant (SGD ML Z). One limitation of SGD ML and
SGD ML Z is that they are only able to optimize poses to a
single local minima and thus are unable to consider multiple
trajectory hypotheses. We then show how these methods
can be extended to track multiple hypotheses, which greatly
improves the quality of the trajectory estimates.

A. Human presence probability

The key idea in this paper is that a map of the environment
can be used to evaluate the likelihood of candidate leader
trajectories. For example, one could imagine that every grid
cell in the map is labeled with a “weight” such that the
probability of any given trajectory is approximately equal to
the product of the weights of the cells through which the
trajectory passes. Cells marked as obstacles would receive a
weight of zero, since it is impossible for a human to pass
through a wall or other obstruction. In principle, cells along
“good” paths (sidewalks, perhaps) might have relatively high
weights, whereas difficult terrain might be assigned a small
positive weight.

We call such a map of “weights” a “human presence prob-
ability map”. Unfortunately, obtaining such a map is difficult.
For example, it could require collecting large amounts of em-
pirical data, or developing autonomous classification systems
for sidewalks and other terrain types. Worse, the behavior of
humans can vary dramatically: while most humans would
likely maintain a comfortable distance between themselves
and obstacles, a squad of infantrymen might deliberately
cling to any surface that provides cover.

Despite these challenges, we hypothesized that even a
simple means of computing a human presence probability
map would work in many cases. In particular, we propose

computing weights as a function of the distance to the nearest
obstacle:

p(x|mML) =

8
<

:

0 d < s
exp(�(d� l)2/2s2) s < d < l

1 d > l
(5)

where d is the distance to closest obstacle. We can precom-
pute this probability for each pose inside the map for a given
occupancy map using a distance transform and equation (5);
see Fig. 2. We use s = 0.25 m, l = 0.6 m and s = 0.1 m,
which leads to a function similar to that from an empirical
study of human behavior [8].

Fig. 2. Human presence probability maps. Top: the human presence
probability, p(x|m) as a function of distance to the closest obstacle, d. The
shaded area to the right is the obstacle. The curve shows the probability
of human presence at each distance from the closest obstacles. Bottom: An
occupancy map from a simulated corridor with a divider in the middle (left)
and the resulting human presence probability map (right).

B. Graphical model of maximum likelihood tracking

Our goal is to estimate the trajectory of the human given
both odometry data from the human and measurement data
acquired by the robot. That is, we want p(xh|u,z,o) where
xh is the human trajectory, u is the robot’s odometry input,
z is robot laser scanning measurement of an environment m
and o is PDR odometry input.

!
!
!

!
!

!
!
!

!
!
!
!
! !

!
!
!
!

!
!
!

 u0! u1!

 xr0! xr2! xr1!

 o1! o2!

 xh0! xh2! xh1!

 u2!

 z0! z1! z2!

 m!

xr robot’s position

u robot’s motion command

z robot’s measurement

m model/map of the world

xh human’s path

o PDR odometry

Fig. 3. A probabilistic graphical model of human/robot trajectory. The
top part of the graph shows the robot trajectory and its measurements of
the map. The bottom part are a path of the human and the PDR odometry
measurements of the path. The shaded variables are observed.

The posterior of the human trajectory p(xh|u,z,o) can be
written as:

p(xh|u,z,o) =
Z

p(xh,m|u,z,o)dm (6)

(Bayes’ rule) µ
Z

p(u,z,o|xh,m)p(xh,m)dm (7)

(Product rule) =
Z

p(o|xh,m,z,u)p(z,u|xh,m)p(xh,m)dm

(8)

We can apply conditional independence rule to the term
p(o|xh,m,z,u) and Bayes’ rule on the p(z,u|xh,m) term.

p(xh|u,z,o) µ
Z

p(o|xh)p(xh,m|z,u)dm (9)

(Product rule) =
Z

p(o|xh)p(xh|m,z,u)p(m|z,u)dm (10)

(Cond ind.) =
Z

p(o|xh)p(xh|m)p(m|z,u)dm (11)

As described in section IV-A, the human presence proba-
bility map mML is obtained from the map posterior p(m|z,u)
generated from the robot.

p(xh|u,z,o)⇡ p(o|xh)p(xh|mML) (12)

From the graphical model assumptions in Fig. 3, the
posterior p(xh|u,z,o) can be written as:

p(xh|u,z,o) = h ’ p(oi|xh
i�1,x

h
i)’ p(xh

i |mML) (13)

where h denotes a normalizer.

C. Particle filter tracking

We first implemented particle filter tracking (Monte Carlo
localization) [9]. MCL has been used widely in localization
problems due to the effortlessness of implementation and it
works well in many situations. MCL can also handle multi-
modal posteriors.

From Equation (13), using Bayes’s rule:

p(xh|u,z,o) µ ’ p(xh
i |xh

i�1,oi)’ p(xh
i |mML) (14)

We can use the particle filter and sample from a distribu-
tion p(xh

i |xh
i�1,oi). The weight of each particle becomes:

wi = p(xh
i |mML) ·wi�1 (15)

Although MCL works well in many scenarios, it can suffer
from particle depletion, a situation in which there are not
enough particles to accurately represent the distribution. This
particle depletion problem is depicted in Fig. 4. Increasing
the number of particles can delay the onset of particle
depletion, but with increasing computation cost.

V. MAXIMUM LIKELIHOOD TRACKING

To avoid particle depletion in the MCL algorithm, we
propose a new tracking algorithm using maximum-likelihood
estimation. Since maximum-likelihood tracking only keeps
track of one trajectory, it is very memory efficient compared
to a particle filter that has to keep track of all the particles.

Fig. 4. Particle depletion problem of monte-carlo localization. The human
walked from left to right. Blue dots are particles representing human poses.
(Right) Particles are all depleted while our maximum-likelihood algorithm
(SGD ML in red) is still able to track the human trajectory.

The closed-form solution of the posterior through induc-
tion is given as:

p(xh|u,z,o) = h p(xh
0)p(xh

0|mML)
n

’
i=1

[p(xh
i |mML)p(oi|xh

i�1,x
h
i)]

(16)

A cost function or a negative log likelihood of the posterior
can be calculated by taking the logarithm of the equation
(16):

� log(p(xh|u,z,o)) = const� log(p(xh
0))� log(p(xh

0|mML))�
n

Â
i=1

[log(p(xh
i |mML))+ log(p(oi|xi,xi))]

(17)

The human initial position xh
0 is assumed to be a Gaussian

distribution N(0,S0). Similarly, the PDR odometry prob-
ability p(oi|xi�1,xi) = p(oi|yi) is assumed to be Gaussian
N(y0

i ,Si) where y0 = f (o).

p(ui|xi�1,xi) = h exp
✓
�1

2
(yi� y0

i)
T S�1

i (yi� y0
i)

◆
(18)

By inspection, the initial pose p(xh
0) is a special case of

the above equation, where y0 = xh
0 and y0

0 = 0:

p(x0) = h exp
✓
�1

2
(y0�0)T S�1

0 (y0�0)
◆

(19)

We now define di ⌘ yi�y0
i . The cost of the PDR odometry

update becomes:

n

Â
i=0

log(p(oi|xh
i�1,x

h
i)) =�

1
2

n

Â
i=0

(yi� y0
i)

T S�1
i (yi� y0

i) (20)

=�1
2

dT S�1d (21)

where d = [d0,d1, ...,dn]
As for log(p(xh

i |mML)), the probability of the poses given
a map can be easily looked up in the pre-generated human
presence probability map (mapML), where xh

i is inside that
cell.

p(xh
i |mML)⇡ h(xh

i) = mapML(i, j) xh
i 2 cell(ith, jth) (22)

log(p(xh
i |mML)) = log(h(xh

i)) (23)

As a result, the negative log-likelihood of the posterior
and the cost function becomes:

J =� log(p(xh|u,z,o)) (24)

J =
n

Â
i=0

⇣
� log(h(xh

i))
⌘
+

1
2

dT S�1d + const (25)

Intuitively, we can see that the cost function is a function
of the deviation from the odometry dT S�1d and the probabil-
ity of the human can be presence at a given pose log(h(xh

i)).
If the pose deviates too far from the odometry measurement,
the cost will increase as a function of the information matrix
S�1. A pose that has high certainty (small S), will incur a
larger cost than the uncertain one.

If the human pose xh
i is close to obstacles and unlikely

to be present there, p(xh
i |mML) approaches zero, and a

substantial cost will be incurred compared to poses further
away from obstacles.

A. Stochastic gradient descent (SGD)

To find the poses that have lowest cost function, SGD can
be used as an optimization solver. SGD optimizes each pose
at a time to reach the cost minima. We use SGD due to its
robustness to local minima.

From Equation (25), the cost function for a single pose is:

Ji =� log(h(xh
i))+

1
2(n+1)

dT S�1d (26)

Using the chain rule, the gradient of the cost function for
a single pose is:

—Ji =�
1

h(xh
i)

· ∂h(xh
i)

∂xh
i

· ∂xh
i

∂y
· ∂y

∂d
+

1
n+1

dT S�1 (27)

The first term, h(xh
i) can be easily looked-up from the

human presence probability map as in equation (22). Next,
∂h(xh

i)/∂xh
i is the gradient of the map around xh

i . The term
∂xh

i /∂y can be calculated from the Jacobian matrix.

∂xh
i

∂y
=
h

∂xh
i

∂y0

∂xh
i

∂y1
...

∂xh
i

∂yn

i

2⇥3n
(28)

Lastly, since we define d ⌘ y� y0, the term ∂y/∂d = 1.
We can define the learning rate l which will dictate the

step size of the state correction. In addition, the state estimate
moves in the opposite direction of the gradient (27). As a
result, the state correction becomes:

d = l
✓

1
h(xh

i)
· ∂h(xh

i)

∂xh
i

· ∂xh
i

∂y
� 1

n+1
dT S�1

◆
(29)

We use a learning rate that is harmonically-decreasing l =
1/t, as in [10]. We found that if the initial learning rate l0
is too large, the state will move in large steps and is likely
to jump around the solution. The worst case scenario is that
it may jump and be trapped outside the convex area of the
cost function, and thus fail to converge. On the other hand,
smaller l0 will slow the convergence down and the solution
may not converge in a reasonable time.

In summary, the overview of the SGD ML method is
presented in the Algorithm 1.

Fig. 5. A simulation result of the single hypothesis SGD ML algorithm.
The blue line is the maximum likelihood trajectory solution at iteration 1
(top), 2 (middle) and 10 (bottom). The red path is the odometry input from
the PDR system. The black line is the ground truth. The solution quickly
converges close to convergent in iteration 2. (l0 = 1e�5)

Algorithm 1 SGD ML
1: y y0 {y is an initial set of odometry measurements}
2: l l0 {Initialize learning rate l0}
3: while y not converged do
4: select pose i at random
5: for each pose i do
6: x T (yi)⌦⌦T (y1)⌦ x0
7: h mapML(x) {defined in eq.(22)}
8: g gradient around x
9: J Jacobian ∂xh

i /∂y {eq. (28)}
10: d y� y0

11: Dy l
�
h�1 ·g · J� (n+1)�1dT S�1� {eq. (29)}

12: y y+Dy
13: end for
14: l l/(l +1)
15: end while
16: return y

One limitation of both particle filter and SGD ML is that,
without any information from the map, the optimization
result will be identical to the odometry path. This is because
we do not have any additional information other than the
odometry.

B. Zippering SGD ML (SGD ML Z)

SGD ML optimizes the whole trajectory at once. For
longer trajectories, this leads to a large search space for
the optimizer and may contain several local minima. This
problem can be seen in Fig. 1 when the odometry noise is
large, and SGD ML converges to the wrong solution.

We implement a “zippering” method to further improve
robustness to local minima. We start optimizing from the
first section of the trajectory and then incrementally move the
window forward like a zipper. By beginning optimization in
the best-known part of the trajectory, the optimization is more
likely to converge to the correct local minima. The process

then repeats and moves to the next section. We show that this
method is more likely to converge to the correct solution.

As a result, the SGD ML Z method improves the robust-
ness of the SGD ML. A more detailed discussion can be
found in the result section.

C. Multiple trajectory hypothesis tracking

Fig. 6. The simulated odometry input (green) leads to ambiguous solutions.
It leads to right in the middle of two corridors. Both top and bottom
trajectories converge into different local minima in the cost function.

In many situations, the odometry input from the PDR
system can lead to ambiguous trajectories. For exam-
ple,(considering the two identical corridors in Fig. 6) if the
PDR data is uncertain, the human could have taken either
path.

For this reason, the robot needs to track multiple hy-
potheses so it will not commit to the wrong solution when
there is a lot of ambiguity. To do this, we will repeat
the SGD ML with different odometry estimates consistent
with our odometry noise model, thus exploring other local
minima. Specifically, The SGD ML algorithm is extended
by adding two processes, described below.

1) Perturbation: The initial condition of the state variable
y which is normally equal to odometry input y0 is perturbed
to allow the maximum-likelihood solution to converge to
different local minima.

We repeatedly sample y from the distribution N(y0,S)
and perform optimization using SGD ML. Furthermore, we
perform this perturbation when the cost of the current trajec-
tory hypotheses are larger than a threshold indicating poor
likelihood. By sampling from the distribution N(y0,S), we
can make sure that our solutions are unbiased.

2) Merging Trajectories: We check that the cost function
J(y) between two trajectories (y1,y2) is convex or not by
using Eq.(30). If it is convex (indicating there is a local
minimum of the cost function between the two trajectories),
they are combined and and kept as a new hypothesis.

J(t · y1 +(1� t) · y2)6 t · J(y1)+(1� t) · J(y2);8t 2 [0,1]
(30)

First, the combination of two trajectories is simply the aver-
age of both. Finally, the combination is once again optimized
by SGD ML to find the maximum-likelihood solution of the
average.

By merging trajectories that are close together, we reduce
the number of trajectory hypotheses, thus, reducing the com-
putational complexity. The fine-scale detail of each merged
trajectory is lost; however, the route that the leader took is
much more interesting for the robot than the fine detail of
the paths.

The method is presented in Algorithm 2. Fig. 9 shows
the maximum-likelihood solution after both perturbation and
merging.

Algorithm 2 Multiple trajectory hypothesis SGD ML
1: n number of samples
2: s = {} {s is the sample set}
3: for loop n times do
4: sample y from N(y0,S)
5: yml SGD ML(y)
6: append yml in s
7: end for
8: smerged merge(s)
9: sre f ined = {}

10: for each y in smerged do
11: yml SGD ML(y)
12: append yml in sre f ined
13: end for
14: return sre f ined

VI. RESULTS
We evaluate the performance of both SGD ML and

SGD ML Z algorithms by testing them against particle filter
tracking as a baseline. First, we repeatedly simulate them in
a synthetically generated environment.

A. Forest world

The forest world is designed to have equally-spaced obsta-
cles (“trees”) spread over the map. This obstacle placement
has exponentially many possible paths between any two
points on the map. The map is also symmetrical in both
directions and ambiguous for the tracker. The routes between
starting and ending locations are randomly chosen. Further-
more, the simulated odometry measurement is corrupted with
noise and fed to all three algorithms.

ground truth
odometry
SGD_ML
SGD_ML_Z
PF

Fig. 7. (Left) A result from forest world experiment: the obstacles are
evenly placed to allow exponentially possible paths between randomly
selected start and end locations. The simulated odometry input (green) is
corrupted with noise. The black line is the ground truth. The blue and red
lines are SGD ML and particle filter output, respectively. (Right) The zoom-
in version of the rectangular area in left image.

One particular result is shown in Fig. 7, in which all three
algorithms are comparable. At the same time, however, the
SGD ML algorithm converges to the wrong solution in 25 of
100 runs. An example of this problem is in Fig. 1. Since the
SGD ML optimizes the whole trajectory at once, this also

means that the optimizer tries to optimize a larger search
space which may contains several local-minima. As a result,
it is possible that the optimization may converge to a different
local-minima. Meanwhile, particle filter and SGD ML Z do
not suffer this issue and converge to the correct solutions in
all runs.

Table I shows the root-mean-square error (RMSE) of the
solutions for each algorithm. The RMSE is computed by
averaging RMS error of all poses in the trajectory. The
SGD ML algorithm has smaller errors than the particle
filter baseline considering only those occasions on which
it performs correctly. Compared to the particle filter, it has
35% and 56% improvement in positioning and heading,
respectively. Lastly, the SGD ML Z performs better than
SGD ML (43% in positioning and 65% in heading) and
robustly converges to the correct solutions in all runs. Both
improvements over the particle filter are even larger in larger
odometry noise simulation.

On average, our SGD ML algorithm implemented in
MATLAB uses 5.6 times the CPU time of the particle filter
baseline. Meanwhile, SGL ML Z is 4 times slower than
SGD ML since it optimizes the trajectory repeatedly.

TABLE I
ROOT-MEAN-SQUARE ERROR (RMSE) COMPARISON BETWEEN

SGD ML, SGD ML Z AND PARTICLE FILTER (PF) FROM 100 WORLD

OF DOTS SIMULATION RUNS.

Heading odometry noise s=0.02 radians

Method Position RMS error (m) Angular RMS error (radian)
Average Maximum Average Maximum

PF 0.2146 0.3436 0.0532 0.0926
SGD ML* 0.1585 0.2869 0.0340 0.0768
SGD ML Z 0.1494 0.2657 0.0322 0.0725
*Note: SGD ML only converges correctly in 75 of 100 runs.

Heading odometry noise s=0.05 radians

Method Position RMS error (m) Angular RMS error (radian)
Average Maximum Average Maximum

PF 1.0743 2.5345 0.1472 0.3053
SGD ML* 0.2470 0.3813 0.0750 0.1348
SGD ML Z 0.2312 0.3787 0.0669 0.1382
*Note: SGD ML only converges correctly in 22 of 100 runs.

B. BBB building
We also test the SGD ML Z algorithm with real odometry

data from the PDR system. The subject walked inside a
typical office building. Due to the non-deterministic nature
of these algorithms, we repeatedly process each experiment 5
times for better understanding of the performance variation.

TABLE II
AVERAGE POSITION/ANGULAR ERROR OF BBB BUILDING EXPERIMENTS

Run
Avg. position error (m)

(95% CI)
Avg. angular error (radian)

(95% CI)
PF SGD ML Z PF SGD ML Z

1 2.250±0.637 1.233±0.560 0.277±0.032 0.070±0.015
2 2.412±0.653 1.026±0.352 0.267±0.022 0.188±0.010
3 1.278±0.213 0.623±0.298 0.365±0.025 0.014±0.006
4 1.241±0.311 0.907±0.181 0.365±0.073 0.205±0.005

Avg. 1.795±0.610 0.947±0.250 0.319±0.053 0.119±0.009

Fig. 8. An experiment of a subject walked inside a building (Run#3 in
the Table II). The map was generated using SLAM from a robot driven
around the building. The odometry input recorded from the PDR system
is in red and corrupted with noise. The output from SGD ML Z algorithm
(blue) shows an improvement in position estimation.

C. Multiple trajectory hypotheses

The multiple trajectory hypotheses version of SGD ML
was also tested in a synthetic map. The map consists of mul-
tiple gates that are designed to be ambiguous. The algorithm
performs correctly in sampling and merging trajectories to
achieve distinct maximum-likelihood solutions. Results from
the test can be seen in Fig. 9.

VII. CONCLUSIONS

In this paper, we showed how map data collected by a
robot can be used to improve the trajectory estimates of a hu-
man leader equipped with a Personal Dead-Reckoning (PDR)
system. We illustrated our approach with several algorithms.
We showed that the particle filter approach has the largest
margin of error and suffers from particle depletion. Our
approach based on maximum likelihood optimization using
stochastic gradient descent, SGD ML, performs well in low
noise settings, but is sensitive to large amounts of odometry
noise. The SGD ML Z significantly improves robustness by
exploiting an intuition based on “zippering”— imposing hard
constraints incrementally from the beginning of a trajectory,
allowing collisions to temporarily occur in later portions of
the trajectory.

We showed that additional robustness could be achieved
by extending the maximum-likelihood methods to track
multiple hypotheses. Like a particle filter, this allows the

Fig. 9. (Left) Maximum likelihood hypotheses with perturbed initial
condition (n = 300). (Right) Trajectories after merging. Reducing to 4 and
12 distinct maximum likelihood hypotheses.

algorithms to avoid pruning possibilities when the data is
ambiguous. However, unlike a particle filter and traditional
multi-hypothesis tracking systems, these hypotheses do not
represent a posterior distribution, but rather a population of
maximum likelihood hedges.

REFERENCES

[1] J. Borenstein, L. Ojeda, and S. Kwanmuang, “Heuristic reduction of
gyro drift for personnel tracking systems,” Journal of Navigation,
vol. 62, no. 1, pp. 41–58, 2009.

[2] E. Olson, J. Leonard, and S. Teller, “Fast iterative alignment of
pose graphs with poor initial estimates,” in Proceedings - IEEE
International Conference on Robotics and Automation, vol. 2006, no.
May. Orlando, FL: IEEE, 2006, pp. 2262–2269.

[3] N. Teck Chew, J. Ibanez-Guzman, S. Jian, G. Zhiming, W. Han, and
C. Chen, “Vehicle following with obstacle avoidance capabilities in
natural environments,” in Robotics and Automation, 2004. Proceed-
ings. ICRA ’04. 2004 IEEE International Conference on, vol. 5. New
Orleans, LA: IEEE, 2004, pp. 4283–4288.

[4] O. Naroditsky, Z. Zhu, A. Das, S. Samarasekera, T. Oskiper, and
R. Kumar, “Videotrek: A vision system for a tag-along robot,” in 2009
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition Workshops, CVPR Workshops 2009. Miami Beach, FL:
IEEE, 2009, pp. 1101–1108.

[5] D. Fox, W. Burgard, H. Kruppa, and S. Thrun, “A probabilistic ap-
proach to collaborative multi-robot localization,” Autonomous Robots,
vol. 8, no. 3, pp. 325–344, 2000.

[6] O. Woodman, “Pedestrian localisation for indoor environments,” Ph.D.
dissertation, University of Cambridge, 2010.

[7] S. Beauregard, “Infrastructureless Pedestrian Positioning,” Ph.D. dis-
sertation, University of Bremen, 2009.

[8] B. R. Fajen and W. H. Warren, “Behavioral dynamics of steering,
obstacle avoidance, and route selection,” Journal of experimental
psychology. Human perception and performance, vol. 29, no. 2, pp.
343–362, 2003.

[9] D. Fox, S. Thrun, W. Burgard, and F. Dellaert, “Particle filters for
mobile robot localization,” in Sequential Monte Carlo methods in
practice. Citeseer, 2001, pp. 401–428.

[10] H. Robbins and S. Monro, “A Stochastic Approximation Method,” The
Annals of Mathematical Statistics, vol. 22, no. 3, pp. 400–407, 1951.

