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Abstract— The detection of features from Light Detection and
Ranging (LIDAR) data is a fundamental component of feature-
based mapping and SLAM systems. Existing detectors tend to
exploit characteristics of specific environments: corners and lines
from indoor (rectilinear) environments, and trees from outdoor
environments. While these detectors work well in their intended
environments, their performance in different environments can
be very poor.

We describe a general purpose feature detector for LIDAR
data that is applicable to virtually any environment. Our meth-
ods adapt classic feature detection methods from the image
processing literature, specifically the multi-scale Kanade-Tomasi
corner detector. Our resulting method is capable of identifying
stable features at a variety of spatial scales and produces
uncertainty estimates for use in a state estimation algorithm. We
present results on standard datasets, including Victoria Park and
Intel Research Center (both 2D), and the MIT DARPA Urban
Challenge dataset (3D).

Index Terms— Robot navigation, SLAM, LIDARs, Feature
detection, Corner Detector

I. INTRODUCTION

The Simultaneous Localization and Mapping (SLAM) prob-

lem is at the heart of many robot applications, and many

approaches use laser range finders (LIDARs) due to their

ability to accurately measure both bearing and range to ob-

jects around the robot. In the SLAM context, there are two

basic approaches to mapping with LIDARs: feature extraction

and scan matching. The first method extracts features (also

called landmarks) from the LIDAR data; these features are

added to the state vector and loops are closed using data

association algorithms like Joint Compatibility Branch and

Bound (JCBB) [1]. The features used often depend on the

environment: in indoor settings, lines, corners and curves have

been used [2], [3], [4], [5], [6]. Outdoors, the hand-written tree

detector originally developed for the Victoria Park dataset [7],

has been used almost universally (see [8], [9], [10] for

representative examples). Naturally, tree detectors work poorly

in offices, and corner detectors work poorly in forests. The lack

of a general-purpose feature detector that works well in varied

environments has been an impediment to robust feature-based

systems.

The alternative LIDAR approach, scan matching, directly

matches point clouds. This approach dispenses entirely with

features and leads to map constraints that directly relate two

Fig. 1. Multi-scale feature extraction from LIDAR data. Our method
rasterizes LIDAR data and applies the Kanade-Tomasi corner detector to
identify stable and repeatable features. Top: the input image with overlaid
local maxima (prior to additional filtering). Circles indicate features, with the
radius equal to scale of the feature. Left: image pyramid of input. Right:
Corner response pyramid, where local maxima indicate a feature.

poses. Scan matching systems are much more adaptable:

their performance does not depend on the world containing

straight lines, corners, or trees. But scan matching has a

major disadvantage: it tends to create dense pose graphs that

significantly increase the computational cost of computing a

posterior map. For example, suppose that a particular object

is visible from a large number of poses. In a scan matching

approach, this will lead to constraints between each pair of

poses: the graph becomes fully connected and has O(N2)
edges. In contrast, a feature based approach would have an

edge from each pose to the landmark: just O(N) edges.

Conceptually, the pose graph resulting from a scan matcher

looks like a feature-based graph in which all the features

have been marginalized out. This marginalization creates many

edges which slows modern SLAM algorithms. In the case

of sparse Cholesky factorization, Dellaert showed that the

optimal variable reordering is not necessarily the one in

which features are marginalized out first [11]: the information

matrix can often be factored faster when there are landmarks.



Similarly, the family of stochastic gradient descent (SGD)

algorithms [12], [13] and Gauss-Seidel relaxation [14], [15]

have runtimes that are directly related to the number of edges.

The extra edges also frustrate sparse information-form filters,

such as SEIFs [16] and ESEIFs [17], [9].

Feature-based methods have an additional advantage:

searching over data associations is computationally less expen-

sive than searching over the space of rigid-body transforma-

tions: as the prior uncertainty increases, the computational cost

of scan matching grows. While scan matching algorithms with

large search windows (i.e., those that are robust to initialization

error) can be implemented efficiently [18], the computational

complexity of feature-based matching is nearly independent of

initialization error. And finally, feature-based methods tend to

work better outdoors, because they often reject ground strikes

that result when the robot pitches or rolls.

In short, feature-based methods would likely be preferable

to scan matching if they were able to offer the same robustness

and broad applicability to different environments.

In this paper, we describe a general-purpose feature de-

tection algorithm that generates highly-repeatable and stable

features in virtually any environment. Our approach builds

upon methods used in image processing, where the need for

robust feature detectors has driven the development of a wide

variety of approaches. In particular, we show how the Kanade-

Tomasi [19], a variant of the Harris corner detector [20] can

be applied to LIDAR data.

Our approach can be viewed as an alternative to the recent

work of Zlot and Bosse [21], which proposes a number of

heuristics for identifying stable keypoints in LIDAR data.

Their methods begin with clustering connected components

and then either 1) computing the centroids of each segment,

2) computing the curvature of each segment, or 3) iteratively

computing a locally-weighted mean position until it converges.

Our approach replaces these three mechanisms with a single

method. They additionally investigate descriptor algorithms,

which significantly simplify data association tasks. These

descriptor methods could also be applied to our detector.

The central contributions of this paper are:

• We propose a general-purpose feature detector for 2D and

3D LIDAR data by adapting the Kanade-Tomasi corner

detector.

• We show how to avoid false features due to missing data,

occlusion, and sensor noise.

• We present experimental evidence that our methods work

consistently in varied environments, while two traditional

approaches do not.

In the next section, we describe how we convert 2D and 3D

LIDAR data into images for feature detection. In Section III,

we discuss how uncertainty information—critical for SLAM

systems—can be obtained. In Section IV, we present experi-

mental evaluations of our methods versus standard methods.

II. RASTERIZATION OF LIDAR DATA

The core idea of our method is to convert LIDAR data

into an image that can then be processed by image processing

methods. This process must take into account the fundamental

differences between cameras and LIDARs.

A camera image samples the intensity of a scene at

(roughly) uniform angular intervals. Individual pixels have no

notion of range (and therefore of the shape of the surface

they represent), but the intensity of those pixels is assumed

to be approximately invariant to viewpoint and/or range. As

a consequence, the appearance of a feature is reasonably well

described by a set of pixel values.

LIDARs also sample the scene at uniform angular inter-

vals, but each sample corresponds to a range measurement.

Critically, unlike cameras, the value of each “range pixel”

is profoundly affected by the position and orientation of the

sensor. As a result, it becomes non-trivial to determine whether

two features encoded as a set of (angle,range) tuples match.

As a consequence of these differences, we have chosen to

rasterize LIDAR data by projecting the LIDAR points into a

2D Euclidean space. The resulting image roughly corresponds

to viewing the scene from above (see Fig. 2). This choice of

representation restores the invariance properties upon which

computer vision methods rely, though this choice also creates

new challenges. This section will describe how we approach

these challenges.

A. 2D Data

2D LIDAR data is rendered into an image by drawing the

data using a Gaussian kernel (see Fig. 2) using methods similar

to [18]. The variance of this kernel reflects both the range

uncertainty and the positional uncertainty that arises from

sparsely sampling a surface. Nearby points— ostensibly part

of the same physical object— are connected with a line, which

is also drawn with a Gaussian kernel.

The width of the Gaussian kernel is a function of the

LIDAR’s range noise σs, as well as the positional uncertainty

of each point arising from the distance between samples. In

other words, even if a sequence of three LIDAR points implies

the existence of a corner, the actual position of the corner

is masked by the spacing between the points. Assuming that

the LIDAR measures ranges at uniform angular spacings, the

spatial resolution of a measurement at range r is just r sin(∆θ),
where ∆θ is the angular resolution of the sensor (typically 1

degree for a SICK sensor). The width of the Gaussian kernel

(which changes for every measurement) reflects the sum of

these uncertainties:

σ
2
≈ σ

2
s +(r sin(∆θ))2 (1)

The Gaussian kernel has several practical advantages. At

short ranges, the range noise of the sensor can cause smooth

surfaces to appear rough. This, in turn, causes false feature

detections. The Gaussian kernel essentially smooths these

surfaces, preventing features from being detected.

There are two other issues that must be addressed:

• Missing data: often, the full shape of a contour is not

visible, which can lead to feature detections at the vis-

ibility boundary. In some cases, the absence of LIDAR

data is proof that a strong feature is present (Fig. 4a),



Fig. 2. Intel Research Center rasterization. This indoor dataset has many rectilinear features. Rendering is performed for each contour individually as
illustrated by the black rectangular outlines; this dramatically reduces computation time. Ellipses indicate 3σ uncertainty bounds for detected features. At the
occlusion boundaries of each contour, the conservatively extrapolated contour is readily visible.

Fig. 3. Victoria Park Rasterization. This figure shows rasterization for a 2D LIDAR scan from an outdoor, tree-filled environment. The same rendering
parameters were used for both the Intel and Victoria Park datasets.

while in other cases, it is possible that there isn’t a

strong feature at all (Fig. 4b). While we could attempt to

explicitly measure and threshold the angle of the hidden

corner, this process would add a number of hard-to-

tune parameters. (Estimating the angle of the observed

contour, for example, is sensitive to noise in the individual

range measurements). Our approach is to render the

most conservative (i.e., the smoothest) contour consistent

with the observed data. This conservative contour is then

passed to our system without additional modification.

• Occlusion: A foreground object can occlude portions of

a background object (see Fig. 4c) making it appear as

though the background object has an abrupt boundary.

Our approach is simply to suppress feature detections that

are close to these occlusion boundaries.

Fig. 4. Feature detection scenarios. The direction from which a surface
is viewed is critical to identifying sharp features. In case A, a sharp corner
must exist; in contrast, case B may not be a well-defined feature. Our method
addresses this issue by rendering the worst-case (most featureless) shape,
rather than attempting to threshold the angle of the hidden corner. In case
C, a foreground object’s shadow can cause a false boundary to appear on a
background object; this case is handled explicitly.

In the case of many 2D datasets, the majority of the rendered

image is empty. It is possible to significantly accelerate the

feature detection step by rendering each contour into separate,

smaller images. On datasets like Victoria Park, in which there

are large amounts of empty space, this technique provided an

average speed up of 31.8 times.

Rendering each contour separately also makes it much

easier to suppress errant feature detections caused by the

conservative surface extrapolations described above; since

each contour is rendered separately, there is no possibility that

the extrapolated surface will intersect another contour, creating

a feature.

Rasterization inevitably introduces additional quantization

noise. However, this quantization noise is modest in com-

parison to the range noise of sensors, and negligible in

comparison to the uncertainty arising from sampling effects.

In our experiments, for example, we used an image resolution

of 2 cm per pixel.

B. 3D Data

We also tested our method on 3D Velodyne data from

the MIT Urban Challenge Dataset [22]. Perhaps counter-

intuitively, 3D data is much easier to process than 2D data,

since it is often possible to see over obstacles, reducing the

severity of the missing data problem.

However, we cannot render images based according to just

the (x,y) location of the LIDAR samples the way we do with

2D data, since the Velodyne sensor obtains samples almost

everywhere. Our approach, instead, is to render each pixel

according to the range of heights collected for that pixel (see

Fig. 5). In other words, if three LIDAR samples are collected

in the area corresponding to a single (x,y) pixel with z =

1, 1.5, and 2.5, the maximum difference in height is 1.5.



Fig. 5. 3D Scan Rasterization. Left: a Velodyne scan with points colored according to Z height. Right: rasterized image with superimposed extracted features
and corresponding uncertainties. 3D LIDAR data was rasterized by considering the range of Z values in each cell of a polar grid.

This procedure effectively measures the visible height of the

objects around it and is invariant to viewpoint. However, this

procedure requires a fair number of LIDAR returns for each

pixel, which necessitates a coarser spatial resolution. We used

a polar grid with dimensions of 1 degree by 0.15 m.

Note that we assume that the robot can measure its pitch

and roll with respect to the gravity vector with reasonable

accuracy; the cost of such a sensor is inconsequential in

comparison to that of any laser scanner. When projecting

points, the pose of the vehicle is taken into account; as a

consequence, the resulting images are invariant to roll and

pitch.

III. FEATURE DETECTION

Once an image has been produced using the methods in

the previous section, the next task is to identify stable and

repeatable features. The Kanade-Tomasi corner detector [19] is

virtually identical to the Harris corner detector [20], with the

exception that the minimum eigenvalue of the structure tensor

is computed exactly, rather than approximated. We achieved

noticeably better results from the Kanade-Tomasi detector.

Importantly, the KT corner detector is rotationally invariant

when the image has been convolved with a circular filter.

Our images naturally meet this condition, since they are

constructed using Gaussian kernels.

Our system detects features at a variety of scales so that we

can exploit features that are both physically small and large.

To do this, we perform KT corner detection on each level of

a power-of-two image pyramid, extracting corners wherever

local maxima occur.

This feature-detection scheme is very similar to that used

by the SURF detector [23]. Our implementation down-samples

images using a σ = 1.0 Gaussian kernel of width 5. Corners

are additionally subjected to a threshold of 0.2. This design

parameter is fairly robust: the system works well on a variety

of datasets over a range of values.

While we want to detect features at multiple scales, we

do not want to match these features in a scale invariant

manner: unlike cameras, LIDARs directly observe the scale

of the objects in the environment. Thus, unlike camera-based

methods, the scale at which we detect an object is useful in

data association.

The positional uncertainty of features is of critical impor-

tance to SLAM applications. Fortunately, it has been shown

that the covariance matrix of a Harris Corner is simply

equal to the inverse of the structure tensor [24]. Our use of

variable-sized Gaussian kernels when rasterizing the LIDAR

data encodes the spatial uncertainty in the image, and this is

reflected in the structure tensor. All that remains to be done is

to scale the covariance matrix according to the square of the

resolution of the image (in meters per pixel).

The covariance estimates produced by our system can be

seen in Fig. 2 and Fig. 3 for 2D data, and in Fig. 5 for 3D

data. The ellipses correspond to 3σ confidence intervals. The

fact that principled covariance estimates can be easily derived

is one of the strengths of our method.

IV. RESULTS

In a SLAM context, repeatability (the consistency with

which a given landmark is observed) is critical. Each re-

observation of a landmark creates a “loop closure”, improving

the quality of the posterior map.

We measured the repeatability of our feature detector using

two well-known datasets: the Intel Research Center dataset

(indoor and rectilinear) and the Victoria park (outdoor with

clutter). For these datasets, we used posterior position esti-

mates produced by conventional SLAM methods; this “ground

truth” allowed us to test whether a particular landmark should

have been observed given the location of the robot. When

evaluating whether a landmark was correctly observed, we

used a simple nearest-neighbor gating rule: if a feature was

observed within a distance d1 of an existing landmark, the two

were associated. If the feature was more than d2 away from

the nearest landmark, a new landmark was created. Features

between d1 and d2 were discarded. On the Intel data set, we

used d1=0.1 m, and d2=0.3 m, and on the Victoria Park dataset,

we used d1=1.0 m, d2=3.0 m.

In addition to our proposed method, we provide two com-

parison methods (both of which used the same data association

procedure):



Corner Detector Tree Detector Proposed Method
Victoria Intel Victoria Intel Victoria Intel

Feature Detections 409 - 1585 31607 195 - 52545 + 6932 +
Number of instantiated landmarks 43 - 276 748 75 - 1939 + 1294 +
Number of re-observed landmarks 18 - 159 325 12 - 1089 + 777 +

Number of re-observations 201 - 807 24954 25 - 36281 + 4336 +

Fig. 6. Feature detection performance. Three detectors ran on two different datasets: Intel Research Center (indoor) and Victoria Park (outdoor). New features
were instantiated when a new detection was far away from any previous landmarks. A larger number of loop closures (re-observations) generally leads to better
maps. For each dataset, the best performing method is marked with a “+”, and the worst performing method is marked with a “-”. Our method outperforms
the other two methods even in the environments for which the specialized methods were designed.

Fig. 8. False Negative Rate. The plot shows the frequency with which a
landmark is not correctly detected as a function of how often the landmark is
detected. It illustrates that our method achieves very low false-negative rates.
There is also a clear trend: the more often a landmark is observed, the lower
the false positive rate. The very low false negative rates achieved would allow
systems to make use of negative information.

• Corner detector: Line segments are extracted from nearby

points using an agglomerative method. If the endpoints of

two lines lie within 1.2 m of each other, and the angle of

between the two lines is between 75 and 105 degrees, a

corner is reported. The particular method is adapted from

[5].

• Tree detector: The standard method of tracking features

in Victoria park is using a hand-written tree detector with

hand-tuned parameters [7]. We used this detector with no

additional modifications.

As shown in Fig. 7, the performance of the proposed method

is generally as good or better than the other detectors. In

contrast, while the performance of the tree detector is good

in the Victoria Park dataset, it is very poor indoors (where it

is in the “wrong” environment). Similarly, the performance of

the corner detector is good in the Intel dataset and poor in

Victoria Park. Our general-purpose method performs well in

both environments.

The false negative detection rate, as shown in Fig. 8, was

calculated according to following procedure: for every land-

mark that is detected within the field of view of a given LIDAR

scan, we attempt to match it to previously-known landmarks.

If it is successfully associated with an existing landmark, the

observation count o for that landmark is incremented. If a

landmark should have been detected, but was not (or was too

far away), the failure count f for that landmark is incremented.

We compute the false negative rate as f /( f + o). As shown

in Fig. 8, our detector is able to identify features which are

highly stable: they are observed many times with low false

negative rates. The figure also shows that some features are

detected but are observed less frequently and less consistently;

empirically, these seem to correspond to small and difficult-

to-observe features. Still, the graph illustrates that, in many

cases, the false negative rate is low enough to enable SLAM

algorithms to make use of negative information— to reject

loop closures when landmarks do not appear as expected.

V. CONCLUSION

We have described rasterization methods for 2D and 3D

laser scans that allows computer vision methods to be ap-

plied to LIDAR data. We demonstrate the general-purpose

applicability of the method on benchmark indoor and outdoor

datasets, where it matches or exceeds the performance of

specialized detectors. The method is also capable of producing

uncertainty estimates, a critical factor for SLAM applications.

In our future work, we plan to more deeply explore the

rasterization issues arising from 3D data and to apply these

methods to 3D data collected with a nodding LIDAR (rather

than a Velodyne). We also wish to determine whether image-

processing type feature descriptors, such as SIFT [25] or

SURF [23] could be adapted to LIDAR data. In this case, the

fundamental differences between cameras and LIDARs pose

significant challenges.
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[6] V. Nguyen, S. Gächter, A. Martinelli, N. Tomatis, and R. Siegwart, “A
comparison of line extraction algorithms using 2d range data for indoor
mobile robotics,” Auton. Robots, vol. 23, no. 2, pp. 97–111, 2007.

[7] J. E. Guivant, F. R. Masson, and E. M. Nebot, “Simultaneous localization
and map building using natural features and absolute information,”
Robotics and Autonomous Systems, vol. 40, no. 2-3, pp. 79–90, 2002.



Intel Research Center Victoria Park

Fig. 7. Repeatability. Top: histograms show the number of features according to the number of observations of each feature. Bottom: the location of detected
features is shown; the size of each marker represents the number of re-observations (large dots denote often-reobserved features). The proposed method
matches or exceeds the performance of the corner and tree detectors even in the environments for which those detectors were designed. While the performance
of the corner and tree detectors is very poor in the “wrong” environment, the proposed method is robust in both environments. Note: in the histogram for
Victoria Park, the peak at 150 observations is the result of the fact that it represents all values greater than or equal to 150.

[8] M. Montemerlo, “FastSLAM: A factored solution to the simultaneous lo-
calization and mapping problem with unknown data association,” Ph.D.
dissertation, Robotics Institute, Carnegie Mellon University, Pittsburgh,
PA, July 2003.

[9] M. R. Walter, R. M. Eustice, and J. J. Leonard, “Exactly sparse extended
information filters for feature-based SLAM,” Int. J. Rob. Res., vol. 26,
no. 4, pp. 335–359, 2007.

[10] Y. Liu and S. Thrun, “Results for outdoor-slam using sparse extended
information filters,” in in Proceedings of the IEEE International Con-

ference on Robotics and Automation (ICRA, 2002, pp. 1227–1233.

[11] F. Dellaert, “Square root SAM,” in Proceedings of Robotics: Science

and Systems (RSS), Cambridge, USA, June 2005.

[12] E. Olson, J. Leonard, and S. Teller, “Fast iterative optimization of
pose graphs with poor initial estimates,” in Proceedings of the IEEE

International Conference on Robotics and Automation (ICRA), 2006,
pp. 2262–2269.

[13] G. Grisetti, C. Stachniss, S. Grzonka, and W. Burgard, “A tree param-
eterization for efficiently computing maximum likelihood maps using
gradient descent,” in Proceedings of Robotics: Science and Systems

(RSS), Atlanta, GA, USA, 2007.

[14] T. Duckett, S. Marsland, and J. Shapiro, “Learning globally consistent
maps by relaxation,” in Proceedings of the IEEE International Confer-

ence on Robotics and Automation (ICRA), vol. 4, San Francisco, CA,
2000, pp. 3841–3846.

[15] U. Frese, P. Larsson, and T. Duckett, “A multilevel relaxation algorithm
for simultaneous localization and mapping,” IEEE Transactions on

Robotics, vol. 21, no. 2, pp. 196–207, April 2005.

[16] S. Thrun, Y. Liu, D. Koller, A. Ng, Z. Ghahramani, and H. Durrant-
Whyte, “Simultaneous localization and mapping with sparse extended
information filters,” Carnegie Mellon University, Pittsburgh, PA, Tech.
Rep., April 2003.

[17] R. Eustice, H. Singh, and J. Leonard, “Exactly sparse delayed-state

filters,” in Proceedings of the 2005 IEEE International Conference on

Robotics and Automation, Barcelona, Spain, April 2005, pp. 2428–2435.
[18] E. Olson, “Real-time correlative scan matching,” in Robotics and Au-

tomation, 2009. ICRA ’09. IEEE International Conference on, May
2009, pp. 4387–4393.

[19] C. Tomasi and T. Kanade, “Detection and tracking of point features,”
Tech. Report CMU-CS-91-132, Carnegie Mellon University, Tech. Rep.,
April 1991.

[20] C. Harris and M. Stephens., “A combined corner and edge detection,” in
Proceedings of The Fourth Alvey Vision Conference, 1988, pp. 147–151.

[21] R. Zlot and M. Bosse, “Place recognition using keypoint similarities in
2d lidar maps,” in ISER, 2008, pp. 363–372.

[22] J. Leonard, J. How, S. Teller, M. Berger, S. Campbell, G. Fiore,
L. Fletcher, E. Frazzoli, A. Huang, S. Karaman, O. Koch, Y. Kuwata,
D. Moore, E. Olson, S. Peters, J. Teo, R. Truax, M. Walter, D. Barrett,
A. Epstein, K. Maheloni, K. Moyer, T. Jones, R. Buckley, M. Antone,
R. Galejs, S. Krishnamurthy, and J. Williams., “A perception driven
autonomous urban vehicle,” Journal of Field Robotics, September 2008.

[23] H. Bay, T. Tuytelaars, and L. V. Gool, “Surf: Speeded up robust fea-
tures,” in 9th European Conference on Computer Vision, Graz Austria,
2006.

[24] U. Orguner and F. Gustafsson, “Statistical characteristics of harris corner
detector,” in Statistical Signal Processing, 2007. SSP ’07. IEEE/SP 14th

Workshop on, Aug. 2007, pp. 571–575.
[25] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”

International Journal of Computer Vision, vol. 60, no. 2, pp. 91–110,
November 2004.


