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Abstract— The detection of features from Light Detection and
Ranging (LIDAR) data is a fundamental component of feature-
based mapping and SLAM systems. Classical approaches are
often tied to specific environments, computationally expensive,
or do not extract precise features.

We describe a general purpose feature detector that is not
only efficient, but also applicable to virtually any environment.
Our method shares its mathematical foundation with feature
detectors from the computer vision community, where structure
tensor based methods have been successful. Our resulting
method is capable of identifying stable and repeatable features
at a variety of spatial scales, and produces uncertainty estimates
for use in a state estimation algorithm. We verify the proposed
method on standard datasets, including the Victoria Park
dataset and the Intel Research Center dataset.

Index Terms— Robot navigation, SLAM, LIDARs, Feature
detection, Corner Detector

I. INTRODUCTION

The Simultaneous Localization and Mapping (SLAM)

problem is generally regarded as the key problem in mobile

robotics, because locations and environmental information

are the two important factors to mobile robots. Laser Range

Finders (also known as LIDARs) are widely used in many

applications, because of their ability to accurately measure

both bearing and range to objects and their robustness to

environmental inference. In the SLAM field, there are mainly

two types of mapping approaches using LIDARs: pose-based

algorithms and feature-based algorithms. Conceptually, the

pose graph resulting from pose-to-pose matches (produced

by a LIDAR scan matcher, for example) resemble a feature-

based graph in which all the features have been marginalized

out. Unfortunately, this marginalization creates dense graphs

which slow modern SLAM algorithms.

For example, suppose that a particular object is visible

from a large number of poses. In a scan matching approach

(in which landmarks are not part of the state vector), this

will lead to constraints between each pair of poses: the graph

becomes fully connected and has O(N2) edges. In contrast,

a feature based approach has only O(N) edges.

In the case of sparse Cholesky factorization, Dellaert

showed that the optimal variable reordering is not necessarily

the one in which features are marginalized out first [1]:

the information matrix can often be factored faster when

there are landmarks. Similarly, the family of stochastic

gradient descent (SGD) algorithms [2], [3] and Gauss-Seidel

relaxation [4], [5] have runtimes that are directly related to

Fig. 1. Multi-scale normal structure tensors feature extraction. Red circles
indicate extracted features; size of circles indicates the scale of the feature.
Blue triangles denote robots; yellow lines denote current observations and
yellow points are accumulated observation points.

the number of edges. The extra edges also frustrate sparse

information filters, such as SEIFs [6] and ESEIFs [7], [8].

Additionally, data association in feature-based methods is

computationally efficient, because searching over landmarks

is less expensive than searching over the space of rigid-body

transformations. The cost of scan matching, for example,

can become prohibitively expensive when the prior uncer-

tainty is very large. While scan matching algorithms with

large search windows can be implemented efficiently [9],

the computational complexity of feature-based matching is

nearly independent of initialization error. Finally, feature-

based methods tend to work better outdoors because they

often reject ground strikes that result when the robot pitches

or rolls.

In short, feature-based methods would be preferable to

scan matching if they were able to offer the same flexibility

as scan-matching approaches.

Classical feature detectors exploit the characteristics of an

environment: in indoor settings, lines, corners and curves

have been used [10], [11], [12], [13], [14]. Outdoors, the

hand-tuned tree detector originally developed for the Victoria

Park dataset [15], has been used almost universally (see [16],

[8], [17] for representative examples). Naturally, tree detec-



Fig. 2. Challenges in feature extraction from LIDAR data. Gray shapes
denote obstacles and blue points denote observations. Three problems are
indicated with arrows.

tors work poorly in offices, and corner detectors work poorly

in forests. The lack of a general-purpose feature detector that

works well in varied environments has been an impediment

to robust feature-based systems.

Recent work has addressed this problem; Pedraza, et

al. [18] use B-Splines to represent unstructured environ-

ments. Their general-purpose method helps to improve the

applicability of feature-based methods to a wider variety of

environments. However, the segmentation of laser data, the

selection of control points, and the feature representation in

the data association process are still areas of active research.

Zlot and Bosse [19] propose a number of heuristics for

identifying stable keypoints in LIDAR data. Their methods

begin with clustering connected components and then either

1) computing the centroids of each segment, 2) computing

the curvature of each segment, or 3) iteratively computing

a locally-weighted mean position until it converges. They

also examined descriptors which aid data association. Li and

Olson proposed a detector that can be seen as replacing the

three mechanisms with a single method [20]. They convert

both 2D and 3D laser data into images and extract features

using the multi-scale Kanade-Tomasi corner detector. The

method is virtually applicable to any environment, but its

computation complexity is proportional to the size of the

converted image, and incorporates some processing steps

that, while effective, are difficult to analyze rigorously.

In this paper, we describe a general-purpose feature de-

tector that extracts repeatable and stable features in virtually

any environment. The central contributions of this paper are:

• We propose a general-purpose feature detector for LIDAR

data by computing the structure tensors of surface normals.

• We show how to quickly extract stable and repeatable

features in the presence of noise, discretization error and

missing data.

• We demonstrate that our method has better performance

in varied environments than earlier approaches.

We begin by describing the challenges in feature extraction

from LIDAR data, and then describe the proposed method

in detail. In Section III, we address the computational

complexity of the proposed method and evaluation metrics

for feature detectors. In Section IV, we present experimental

evaluations of our method versus earlier approaches.

II. STRUCTURE TENSOR OF NORMALS FEATURE

DETECTOR

A. Method Overview

Feature extraction from LIDAR data is difficult due to the

following challenges (see Fig. 2):

• Sensor noise. LIDAR data is inevitably contaminated

by noise. This noise, if not managed, can create false

positives.

• Discretization error. Sampling the world at a fixed an-

gular resolution causes distant parts of the world to be

sampled very coarsely. This range-dependent resolution

can make it difficult to recognize the same environment

from different ranges.

• Missing data. Occlusions and reflective objects result in

gaps in sensor data. A feature detector must be robust to

these gaps.

To address these challenges, our method combines three

steps:

• Pretreatment. We group raw observations into contours

and smooth points in each contour with a probabilistically

rigorous method. We then compute the surface normals

along the contours.

• Candidate detection. We slide a circular window around

the contours, computing the structure tensor of the surface

normals within the window. The minimum eigenvalue of

the structure tensor measures the feature strength; strong

features become feature candidates.

• Candidate suppression.. We reject feature candidates in

the vicinity of stronger candidates in order to reduce

feature-matching confusion.

The three steps in the proposed method are explained in

detail in following sub-sections.

B. Pretreatment

Like most LIDAR feature extractors, we begin by grouping

together points that likely belong to the same physical

surface. These “contours” are grown agglomeratively by

connecting nearby points that are within some threshold

distance. We process the area around each contour separately,

which eliminates wasted computation that would result from

searching empty areas. Processing them separately also elim-

inates false positives due to physically nearby but separate

surfaces.

The noise in LIDAR data is a major concern; left

unchecked, range noise would generate a large number of

false positives. We propose a principled probabilistic filter to

reduce noise. This step incorporates a prior on the smooth-

ness of the surface and computes the maximum likelihood

position of the noise given the prior and the noisy samples.

The cost associated with individual LIDAR points is derived

directly from the sensor’s noise model: moving the i− th

observation point away from its observed point by a vector δi

incurs a cost δ T
i Σ−1

i δi, where Σi is the covariance associated

with the observation.

The cost associated with surface smoothness is formulated

as a quadratic penalty on the angle between each line

segment. Let β be a parameter that reflects a prior on the

smoothness of surfaces and θi be the orientation of the

normal between point i− 1 and i. The total cost can then

be written:

χ2 = δ T
i Σ−1

i δi +β (θi −θi−1)
2 (1)



Fig. 3. Overview of the proposed method. Blue points are raw observations
and red points denote the smoothed counterparts; yellow lines denote
observation angles and colored short lines are composed of grids; small
gray ellipses denote observation uncertainties; red circles indicate extracted
features, while blue and gray circles denote feature candidates suppressed
for by strength comparison and distance comparison, respectively. Numbers
denote feature strengths and corresponding scales.

We solve this optimization problem using relaxation [4].

With this approach, we compute improved positions for each

point while fixing the positions of the points around it.

This process is repeated until the process converges, which

typically occurs within a few iterations. We have empirically

noted that the smoothing filter produces similar (and good)

results over a range of values of β (from 0.5 to 5).

The LIDAR component of the cost function can be simpli-

fied if we ignore the angular noise. We begin with the usual

LIDAR noise model [21]: Q ∼ N (µQ,ΣQ)

µQ =

[

0

0

]

, ΣQ =

[

σ2
r σrα

σrα σ2
α

]

σr and σα indicate the range and angle standard deviations,

respectively; σrα denotes the covariance between range and

angle. In comparison to the range noise, the angular noise

is typically negligible [13]. This allows us to approximate

Eqn (1) as ∆r2/σ2
r +β (θi − θi−1)

2, where ∆r indicates the

innovation on range. This simplification modestly accelerates

the relaxation optimization.

Once points have been filtered, we compute the orientation

of the surface normal along the lines connecting each point.

We rasterize these normal directions into a grid map, where

each cell in the gridmap stores an orientation. Bresenham’s

line algorithm [22] is used to efficiently identify the grid cells

that fall on the line between each pair of LIDAR points.

C. Candidate Detection

At this point in the method, we’ve generated a rasterized

image (or grid map). The cells in this grid map encode

the surface normal direction at each point along the LIDAR

contours. Grid cells that are not near a physical surface have

the zero vector written to them instead.

Our goal is now to identify parts of this grid map that

are repeatably, reliably, and accurately localizable. The key

idea of our algorithm is to compute the structure tensor

corresponding to local neighborhoods of this gridmap. The

structure tensor measures the “diversity” of the normal

directions in an area; areas with a variety of surface normals

have stronger structure tensors than areas where the normals

are more uniform (or where there are no surfaces at all).

Fig. 4. Explanation of the structure tensor based feature detection. Top:
Three representative shapes of corners with arrow indicating gradients.
Bottom: The corresponding responses in coordinates and the minimum
eigenvalues, λ2.

This method of building the structure tensors is similar

to that encountered in image processing, and in our earlier

LIDAR feature detection paper. In both of those cases,

the structure tensor is constructed from gradients computed

from the grid map image itself (which contains intensities).

In contrast, the grid map in this paper contains normals

(analogous to the gradients in the previous work) which have

been directly computed from the underlying laser data. As

we will demonstrate, this new approach extracts significantly

more stable features, in large part due to the fact that the

underlying normals are more accurate [23].

To compute the structure tensor in a neighborhood of

the gridmap, we enumerate the surface normals within the

region and compute the outer product. We use a circular

neighborhood in order to maximize the isotropic behavior

of the detector [24]. Let ni be a normal vector within the

circular neighborhood. The structure tensor is then:

A = ∑
i

[

n2
i,x ni,xni,y

ni,xni,y n2
i,y

]

(2)

The structure tensor can be understood intuitively as the

covariance matrix of the gradient directions (see Fig. 4).

Suppose each the endpoint of each normal (starting from

the origin) is plotted, and the sample covariance computed.

When the normals point in different directions, the covari-

ance matrix will be “fatter”; when the normals are distributed

in a more uniform way (or when there are no normals

nearby), the resulting covariance matrix is small.

The precise meaning of what it means for A to be “big”

or “small” is the subject of some debate. Harris advocated a

computationally inexpensive measure [25]:

C = |A|−κ ˙trace(A)2 (3)

Shi and Tomasi argue that it is better to use the smallest

eigenvalue of A as the corner strength function as [23]:

C = min(λ1,λ2) (4)

In the proposed method, we adopt the minimum eigen-

value as the indicator; our empirical experience indicates that

is more precise measure than Eqn. (3) [23].

Since useful navigational landmarks can be both large

(an irregularly shaped bush, perhaps) or small (a corner in

a building), it is important that a feature detector be able

to detect features over a range of scales. In the computer

vision community, the standard procedure is to compute a

image pyramid, in which the resolution of the image is

geometrically reduced and the detection process repeated at



every level. A disadvantage of this approach is that positional

precision of features detected at large scales is quite low

because the spatial resolution of the image has been reduced.

We take a different approach. We extract features at

different scales, but we do this by increasing the size of the

structure tensor window, rather than reducing the resolution

of the underlying grid map. The tensor window, regardless of

its size, is evaluated at every pixel, giving us full-resolution

position information for landmarks (even those extracted at

large scales).

Normalization of the structure tensor becomes an issue

when working across multiple scales. As the size of the struc-

ture tensor window increases, it naturally tends to contain

more surface normals. Without normalization, for example,

the best feature in the entire scene would be one that includes

the entire scene. To encourage features that are spatially

compact, we normalize the structure tensors by the diameter

of the window. We experimented with other normalization

factors (such as the area of the window, and the number of

normals within the window), but these were out-performed

by the diameter.

An interesting difference between computer vision and LI-

DAR methods is that vision methods must be scale invariant;

LIDAR, on the other hand, directly acquires scale infor-

mation. The scale information computed by our algorithm

can be used as a descriptor to help reduce false matches.

In other words, unlike computer vision, matches between

features should only be allowed when they are at the same

scale.

D. Candidate Suppression

As in computer vision feature detectors, an important step

is to suppress features of low saliency. A cluster of features

in close proximity are potentially confusing and ambiguous,

for example.

First, local maximum suppression is performed for each

scale: only points whose response is stronger than their

neighbors are selected. Second, features are suppressed

across scales:only features that are K times as strong as other

features located within the same window are retained. The

factor K, typically 2 in our experiments, inhibits features

that are similar to other very nearby features. In turn, this

improves data association performance.

Fig. 3 visually explains the proposed method. In the figure,

blue points are raw observations in one contour and red

points denote the smoothed counterparts; yellow lines denote

observation angles and colored short lines are composed of

grids; red circles indicate extracted features, while blue and

gray circles denote feature candidates suppressed for strength

and distance, respectively. Both features and candidates are

labeled with corresponding strengths and scales. Fig. 1 shows

extractions in both indoor and outdoor environments.

III. DISCUSSION

A. Uncertainty Estimation

Feature uncertainties are of critical importance to SLAM

applications. It has been previously shown that the covariance

of a structure tensor is proportional to the inverse of the

structure tensor matrix [26].

We evaluated the accuracy of the covariance estimates of

our features using real data from the Intel Research Center

and Victoria Park datasets. Using a ground-truthed dataset,

we were able to measure the error associated with every

feature detection. Collecting this data over thousands of

feature detections, we constructed a histogram of Mahalnobis

distances. As shown in Fig. 8, the distribution of Maha-

lanobis distances fits the expected Chi-squared distribution.

B. Computation Complexity

The proposed method has low computation complexity,

largely in part to our ability to prune the search to only a

small portion of the space around the robot. In particular, sig-

nificant speedups can be obtained by searching for features

only near contours.

We can also examine the asymptotic complexity of the

processing steps that comprise our method. The computation

complexity of the contour extraction is O(N logN) [13]. The

contour smoothing operation runs in O(N) per iteration;

typically, only a few iterations are required.

Computing normals and rasterizing the grid map requires

O(N +M/ε), where N is the number of points, M is the

perimeter formed by those points, and ε is the grid size. The

structure tensors require a potentially large amount of time;

for every pixel in the grid map, all pixels within a radius

must be tallied. The precise amount of time depends on the

range of scales, grid map resolution, etc. The computational

cost of candidate suppression similarly depends on the local

density of features; all pairs of nearby candidates must be

considered.

C. Repeatability Evaluation

In a SLAM context, repeatability (the consistency with

which a given landmark is observed) is critical. Each re-

observation of a landmark creates a “loop closure”, improv-

ing the quality of the posterior map.

Although there is a vast body of work on feature detection,

there is much less on the detector evaluation. Mohannah and

Mokhtarian [27] define the consistency of corner numbers as

CCN = 100×1.1|nw−no|, where no is the number of features

in an image and nw is the number in the warped counterpart.

Trajkovic and Hedley [28] define stability as the ratio of

strong matches over the total number of features. Schmid,

et al. [29] define the repeatability as the number of points

repeated between two images with respect to the total number

of detected points, as: ri(ε) =
Ri(ε)

min(n1,ni)
, Ri(ε) denotes the

number of repeated features, and n1, ni denote the number of

features detected in the common part of two images. Rosten

and Drummond [24] propose a similar method as Schmid

except they adopt a 3D surface model to compute where

detected features should appear.

These evaluation methods from the computer vision field

can not be directly applied on our method, because they

either need human labelled features [27] and a tracking

algorithm [28], or require adjusting the number of features to



Intel Research Center Victoria Park Dataset

Fig. 5. Repeatability Comparison. Top: histograms show the number of
features according to the number of observations of each feature. Bottom:
the location of detected features is shown; the size of each marker represents
the number of re-observations (large dots denote often-reobserved features).
Note: in the histogram for Victoria Park, the peak at 150 observations is the
result of the fact that it represents all values greater than or equal to 150.

perform comparison [29], [24]. Borrowing ideas from these

methods, we use the number of repeated observations and

the number of missed detections to evaluate our method.

For our evaluation, we run the proposed method in datasets

that contains ground-truthed robot poses. We define two

thresholds, ds and db, with ds < db. When a feature is

detected, we search for landmarks that it might match.

Suppose the closest known landmark is a distance d from

the detected feature; if d < ds, we treat the detection as a

re-observation of the existing landmark. If d > db, we treat

the feature as the first observation of a new landmark. For in-

termediate values, we discard the observation as ambiguous.

This simple scheme was selected precisely for its simplicity

and reproducability.

IV. RESULTS

A. Repeatability

We measure the repeatability of our feature detector on

two well-known datasets: the Intel Research Center dataset

(indoor and rectilinear) and the Victoria Park dataset (outdoor

with trees and clutter). These two datasets are generally

considered to be representative of indoor and outdoor envi-

ronments, respectively. For these datasets, we used posterior

position estimates produced by conventional SLAM meth-

ods; therefore, we can easily determine the number of times

that a feature should have been observed, and the number of

times that it was observed.

In the evaluation method discussed in the previous section,

there are two threshold, ds and db. In the Intel dataset, we

set ds = 0.15m and db = 0.3m, and in the Victoria dataset,

ds = 1.5m and db = 3m. In addition to the proposed feature

detector, we provide three comparison detectors (all of which

used the same data association procedure):

• Line/corner detector: Line segments are extracted from

nearby points using an agglomerative method. If the

Intel Research Center Victoria Park Dataset

Fig. 6. False Negative Rates Comparison. The plots show the frequency
with which a landmark is not correctly detected as a function of how often
the landmark is detected. It illustrates that our method achieves low false-
negative rates. There is also a clear trend: the more often a landmark is
observed, the lower the false positive rate. The very low false negative rates
achieved would allow systems to make use of negative information.

endpoints of two lines lie within 1.2 m of each other,

and the angle of between the two lines is between 75 and

105 degrees, a corner is reported. The particular method

is adapted from [13].

• Tree detector: The standard method of tracking features

in Victoria park is using a hand-tuned tree detector with

hand-tuned parameters [15]. We used this detector with no

additional modifications.

• Laser KT detector: A general-purpose feature detector for

LIDAR data with parameters suggested in [20].

As shown in Fig. 5, the performance of the proposed

method is generally as good or better than the other three

detectors. Although the proposed method extracts fewer

features than the Laser KT detector, it has better repeatability,

which indicates the proposed method is more robust to noise.

B. False Negative Rate

False negative rates defined as o/( f + o) are shown in

Fig. 6, where f denotes the number of re-observation times

and o denotes the number of missing times. As shown in

the figure, our detector is able to identify features which

are highly stable: they are observed many times with lower

false negative rates. The figure also shows that some features

are detected but are observed less frequently and less con-

sistently; empirically, these might result from the fact that

features do not have equal opportunities to be observed in

the two datasets.

C. Computation Complexity

The comparison to the four feature detectors in CPU time

are shown in Table 7. The experimental platform is a laptop

with a 2.53GHz CPU, and the programming language is Java.

As the data shows, the method runs in real-time.

V. CONCLUSION

We have described a feature detector for LIDAR data

that is capable of detecting stable and repeatable features

from virtually any environments. Our method builds upon

techniques originally developed for computer vision, but

adds a principled noise filtering step and a scale space

searching strategy that produces precise feature detections

even at large scales.



Corner Detector Tree Detector Laser KT Detector Proposed Method
Victoria Intel Victoria Intel Victoria Intel Victoria Intel

Total Number of Feature Detections 409 1819 31615 193 57545 8341 49920 7091
Total Time (ms) 566.02 2780.73 193.31 79.21 8150.13 40510.14 2250.13 9401.04

Max Single Step Time (ms) 5.15 10.21 1.72 0.68 100.02 289.22 17.11 48.21

Fig. 7. Comparison of four feature detection methods. The performance of two standard detection methods, our previous work, and our proposed work
are shown above. The proposed method detects a wealth of features in both environments, and is significantly faster than our previous method. As shown
in Fig 5, these feature detections are highly repeatable.

Intel Research Center Victoria Park Dataset

Fig. 8. Comparison between sample covariances and the averaged
covariance estimations. Up: red ellipses denote sample covariances and blue
ellipses denote averaged covariance estimations. The covariance estimations
are conservative in the sense that it slightly overestimate the uncertainty.
Bottom: fits χ2 distributions to Mahalanobis distances calculated with
estimated uncertainties. Red curves denote χ2 distributions and blue his-
tograms denote the distribution of Mahalanobis distances. The fitting shows
uncertainties estimated in our method are reasonable estimations to real
feature uncertainties.

We demonstrated the general-purpose applicability of the

method on benchmark indoor and outdoor datasets, where

it matches or exceeds the performance of earlier works. We

also showed that the method produces reasonable uncertainty

estimates, a critical factor for SLAM applications.
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