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Abstract Robots working collaboratively can share obser-
vations with others to improve team performance, but com-
munication bandwidth is limited. Recognizing this, an agent
must decide which observations to communicate to best
serve the team. Accurately estimating the value of a single
communication is expensive; finding an optimal combina-
tion of observations to put in the message is intractable.

In this paper, we present OCBC, an algorithm for
Optimizing Communication under Bandwidth Constraints.
OCBC uses forward simulation to evaluate communications
and applies a bandit-based combinatorial optimization algo-
rithm to select what to include in a message. We evaluate
OCBC'’s performance in a simulated multi-robot navigation
task. We show that OCBC achieves better task performance
than a state-of-the-art method while communicating up to
an order of magnitude less.

Keywords Communication Decision-Making - Multi-
Robot Systems

1 Introduction

Robots that collaborate on tasks can share information about
their environment, helping their teammates make better de-
cisions. When wireless bandwidth is limited, however, a
robot may not be able to communicate all its observations.
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How should a robot decide what to communicate when faced
with such a constraint?

Answering this question requires estimating the value of
a proposed communication. A direct approach is to predict
the effect of the message on team reward. However, such
a direct approach is intractable for many standard multi-
agent models. For example, deciding a Dec-MDP or Dec-
POMDP with communication is NEXP-complete (Pynadath
and Tambe 2002; Goldman and Zilberstein 2004). As a con-
sequence, most direct methods are limited to problems with
only a few agents, states, and actions (Roth et al 2005; Carlin
and Zilberstein 2009a,b).

This complexity motivated indirect methods of estimat-
ing communication value. For example, some methods mea-
sure the information content contained in a message and as-
sign high value to information-rich messages (Williamson
et al 2008, 2009). Others track the coherence of the ego-
agent’s internal models of its teammates and communicate
to keep the team’s beliefs consistent (Best et al 2018b; Wu
et al 2011; Roth et al 2005).

In this paper, we present a direct yet tractable method
for reasoning about communication actions. To enable
this tractability, we employ a specialized model of multi-
agent decision-making. This modified Dec-MDP model (c.f.
Becker et al 2004; Unhelkar and Shah 2016) makes assump-
tions that aid in tractability while maintaining fidelity to
real-world problems. It features a deterministic transition
function that is initially unknown to the agents, which cor-
responds to the unknown map in exploration-style robotics
tasks. Furthermore, the model is factored; that is, each agent
makes decisions independently. Factored problems occur
whenever agents collaborate while working on individual
sub-tasks.

These features of the model make it tractable for an
agent to evaluate a communication decision in terms of its
expected effect on reward. Because the model is factored,
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an agent can compute its action policy independently of
its teammates. Agents can use fast incremental algorithms
(e.g. Koenig and Likhachev 2005) to plan through the state-
action space since the transition function is deterministic.
Quick, independent planning allows an agent to quickly for-
ward simulate the behavior of its teammates. This leads to
a key insight of this paper: fast forward simulations make
it tractable to estimate the effect of a message on team re-
ward. Our first contribution then is a method that uses such
forward simulations to evaluate messages directly in reward
space.

Even once an agent has assigned a value to candidate
messages, it still needs a mechanism for making communi-
cation decisions. Most existing methods (e.g. Wu et al 2011;
Becker et al 2009; Unhelkar and Shah 2016) assume that
the content of a message is static and consists of, for ex-
ample, the agent’s entire observation history. They estimate
the value of this message, then weigh that value against a
fixed communication cost that is part of the problem’s re-
ward structure. Such an approach answers the question of
when the agent should communicate.

To respect practical bandwidth constraints, however, a
robot must reason about what to communicate, a problem
that has received little attention (Roth et al 2006). Consider
for example a scenario in which a robot makes observa-
tions more quickly than the network would support sharing
them. The robot then needs to decide which observations are
worthwhile to send.

Our second contribution addresses this challenge.
Namely, we apply a bandit-based combinatorial optimiza-
tion algorithm (Chen et al 2014) to select observations to
communicate. This algorithm estimates the expected reward
distribution associated with communicating each observa-
tion by repeatedly forward simulating the outcome of mes-
sages containing that observation. It uses these estimates to
build an approximately optimal message.

We call our complete method OCBC (Optimizing Com-
munication under Bandwidth Constraints). We evaluate the
performance of OCBC in a simulated multi-robot navigation
problem. We compare it to a state-of-the-art approach (Un-
helkar and Shah 2016) and show that OCBC achieves better
task performance with less communication.

2 Preliminaries
2.1 Model Formulation and Application

Consider the task of multiple robots navigating in an un-
known environment as illustrated in Figure 1. The robots all
move toward a goal destination, and they observe their envi-
ronment as they travel through it. The robots can share these
observations with their teammates to help them reach the
destination more quickly.

We will use this example task to explain our model for-
mulation.

Agent States

We denote the team of n agents as I = {1,...,n}. At each
time stepz € {1,...,T}, agent i is in state s;(¢) € S and takes
action ¢;() € A. In our example task, each robot’s state is its
current cell in the map, and its available actions are to move
in any one of the cardinal directions (i.e. A = {N,E,S,W})

Each agent has some goal state syo*" that it tries
to reach, and each agent knows the desired joint goal
state 9O = {570 . s0OA L Each agent i knows its
own state s; but cannot directly observe the joint state s =
{s1,--.,5,}. In our example task, this corresponds to the
robot having a reliable localization system that provides its
current location but not having a way to observe the loca-
tions of its teammates.

State Transition Function

The state transition function is deterministic (i.e. P(s,a,s’) €
{0,1} for s,s" € S and a € A), which corresponds to a robot
having reliable closed-loop actuation. In this case, the suc-
cess of an action depends only on whether the destination
cell is occupied. Tasks like this have a spatial relationship
between states and actions, giving the transition function
two characteristics we exploit in this paper.

First, a significant portion of the transition function is
trivially zero-valued. Specifically, P(s,a,s’) = 0 for any pair
of states s,s’ that do not correspond to adjacent cells or any
actions a that would not move the robot between the two
cells.

Second, many remaining elements of the transition func-
tion have a well-defined relationship. Specifically, all (non-
trivial) elements transitioning to state s” are equal in value.
We denote this value as xy = P(s,a,s") € {0,1} for any
state s and action a that would transition the robot to suc-
cessor state s’ if the cell at s were unoccupied. This value is
the same for any such state-action pair.

To better understand the spatial structure of the transition
function and the significance of the value xy, consider the
following 2 x 2 grid environment:

K
12]3]

Transition function elements such as P(0,-,3) are trivially
zero-valued since no single action could move the robot
from cell O to cell 3. Likewise, an element such as P(0, W, 2)
is trivially zero-valued since the action W cannot move
the robot from cell 0 to cell 2. Of the non-trivial ele-
ments of the transition function, all elements transitioning
to a given state will have the same value. For example, we
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Fig. 1 An example problem in which multiple robots independently navigate through an unknown environment. All robots try to reach the goal
as quickly as possible; team reward depends on the total time taken by all robots. A robot observes the occupancy of adjacent cells as it moves
through its environment. The robot can communicate these observations to its teammates to help them complete the task more quickly.

have x; = P(0,E,1) = P(3,N,1) = 0 and x» = P(0,S,2) =
P(3,W,2) = 1. In other words, the elements of the transition
function that would lead to cell 1 have value O since cell 1
is occupied, and those that would lead to cell 2 have value
1 since cell 2 is unoccupied. From this, observe that the
value x; corresponds to the occupancy of the cell at state s.
For the remainder of the paper, agents maintain the x; values
in place of the transition function. The full transition func-
tion can be constructed from these values when needed.

Transition Beliefs

The agents do not know the true state transition function P.
Equivalently, the agents do not know the true value of x; for
s € S. Instead, each agent maintains a belief b;(x,) € [0, 1]
for each x, of the transition function. We denote the belief
over all x; as b;(x).

In our concrete example, the robots do not know the true
map of the environment (i.e. P). The map is given by the
occupancy value of its cells (i.e. x;). The belief b;(x;) corre-
sponds to believed likelihood that a cell is occupied, which
we assume is independent of any other b;(xy ). We illustrate
such a belief in Figure 1.

Teammate Beliefs

Because an agent cannot directly observe the states or tran-
sition beliefs of other agents, it must represent these values
with a belief distribution. Specifically, each agent i main-
tains a distribution b;(m;) over possible models for each
other agent j. An agent model m; = (s;,s7°*",b;(x)) con-
sists of a state, goal state, and transition belief.

In our example task, an agent model corresponds to a
single estimate m; of another robot’s location and map. The
belief b;(m;) is a belief over all possible models, which we
approximate with a particle filter (see Section 3.4). We illus-
trate such a belief in Figure 2.

®

Fig. 2 An illustration of the Robot 1’s belief over models of its team-
mate (Robot 2) in the multi-robot navigation task. These models repre-
sent possible locations and maps for Robot 2.

We denote the ego-agent’s beliefs about all its team-
mates as b;(m).

Action Policies

All agents select actions using the same deterministic plan-
ning algorithm. This planner produces a policy m; : S — A
for agent i given its current state s;, its goal state sf°*", and
its transition belief b;(x).

In our example task, robots compute the shortest path
between their location and the goal location using their
current map, assuming that unobserved cells are unoccu-

pied (Koenig and Likhachev 2005).
Observations
An observation ®*) € {0,1} is sampled from the observa-

tion function O(®®)|x). In our example task, this corre-
sponds to an observation of the occupancy of the cell at
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state s. Though our formulation admits a stochastic obser-
vation function, we assume in our evaluation that O is de-
terministic, in which case observation ®®) reveals the true
value of x;.

At each time step ¢, agent i receives a set of observa-
tions @;(t). This corresponds in our example task to a robot
observing all its adjacent cells.

Communication

Agent i carries out a communication action ¢;(¢) € C at each
time step 7. This broadcasts observations @, to all other
agents along with the ego-agent’s state s;. This results in the
other agents incorporating the associated observations into
their beliefs.

Reward

We compute each agent’s reward independently and then
combine the individual rewards to yield the team reward (i.e.
the reward function is factored). An agent’s reward comes
from two components. The action reward function R4 : S X
A — R gives the reward an agent receives after taking an
action from a particular state. The communication reward
function R¢ : C — R assigns reward based on a communica-
tion action. The total reward for the team, 7, is given by

Y=Y+Y

=) YA+ Y
; (1

= Z ZRA (si(t),ai(t)) +Rc(ci(t)).
ielteT
In our example task, we assign action reward —1 for
each step the robots take until they reach the goal. We assign
communication reward differently depending on the com-
munication paradigm, which we discuss next.

2.2 Communication Paradigms

Roth et al (2006) introduce the concept of communication
paradigms, which are sets of rules governing how much
communication is allowed or how much communication
costs. They propose three such paradigms, which we sum-
marize here. These paradigms give context to OCBC and
related methods. In Section 4, we use these paradigms to
structure our evaluation and facilitate comparison with ex-
isting work.

Fixed-Cost Communication

Most decision-theoretic methods (e.g. Unhelkar and Shah
2016; Carlin and Zilberstein 2009b; Wu et al 2011) only fo-
cus on the question of when to communicate. This limits the

set of possible communication actions C to only two mem-
bers: share all information possible (e.g. the ego-agent’s en-
tire observation history) or do not communicate at all. The
former action is assigned a fixed cost (i.e. Re(c) = € < 0)
while the latter has zero cost. We call this paradigm Fixed-
Cost Communication.

Proportional-Cost Communication

To penalize excessive bandwidth consumption, communi-
cation cost should depend on message size. This is the
Proportional-Cost Communication paradigm, in which the
cost of a communication action is proportional to the length
of the associated message (i.e. Rc(c) o< |@.|). Roth et al
(2006) use this paradigm to motivate the question of what
to communicate.

Fixed-Bandwidth Communication

Multi-robot teams using a wireless network must share some
fixed amount of bandwidth (Bianchi 1998; Hiertz et al 2007,
Shrader and Ephremides 2007). We denote the amount of
bandwidth available to the team at each time step as f3.
The team allocates a portion of this bandwidth f;(¢) to each
agent i at time step ¢ through an offline round robin sched-
ule or other similar mechanism. Each agent must then de-
cide how to use this bandwidth allocation. We call such a
paradigm Fixed-Bandwidth Communication.

In the Fixed-Bandwidth paradigm, there is no cost asso-
ciated with a communication action (i.e. Rc(-) = 0). The set
of communication actions available to an agent, C;(), con-
tains all messages that fit within its bandwidth allocation at
time step 7. That is, C;(z) = {c : |@.| < Bi(¢)}.

As we present it in the following section, OCBC fits
within the Fixed-Bandwidth paradigm. In Section 4, we will
discuss how to modify OCBC to compare its performance
to methods from the other two paradigms.

3 Approach

We now introduce OCBC and its supporting algorithms.
Section 3.1 explains OCBC, which is a bandit-based ap-
proach to optimizing multi-robot communication under
bandwidth constraints. Section 3.2 shows how OCBC eval-
uates communication actions using forward simulation.
These two sections correspond to our two primary contri-
butions.

The remaining two sections discuss how we implement
OCBC in the context of a sequential decision-making agent.
Section 3.3 gives the main sequential decision-making
method, and Section 3.4 deals with maintaining and updat-
ing agent beliefs within that method.
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3.1 Optimizing Communication under Bandwidth
Constraints (OCBC)

An agent typically has multiple observations it could com-
municate with its teammates. When the agent’s bandwidth
allocation is too small to share all of those observations, it
must decide which observations to include. This requires es-
timating the reward associated with each observation, which
we do by forward simulation (see Section 3.2). Because of
the uncertainty in the ego-agent’s beliefs, though, any one
forward simulation only samples from the distribution of re-
wards for a given communication. In this way, the obser-
vations are like levers a multi-armed bandit could pull, and
our goal is to efficiently identify the observations with the
highest expected reward.

To this end, we apply the CSAR algorithm (Chen et al
2014), which is a bandit-based method that performs com-
binatorial optimization under uncertain rewards. CSAR tries
to find an optimal member of a specified decision class (e.g.
all arm combinations of a certain size). CSAR stands for
“Combinatorial Successive Accept Reject”, a title that ex-
plains the algorithm’s basic function. Given a set of K arms,
CSAR makes K successive decisions to either accept or re-
ject an arm. In between decisions, CSAR samples from the
remaining arms to better estimate their associated reward
distributions. CSAR makes the accept-reject decision on the
arm for which it has the highest-confidence reward distribu-
tion estimate. By the end of this process, the set of accepted
arms is an approximately optimal member of the decision
class. See (Chen et al 2014) for details on suboptimality
bounds of the CSAR method.

Algorithm 1 shows how we apply the CSAR algorithm
to the problem of optimizing communication under band-
width constraints. The function OPTIMIZECOMMUNICA-
TION (Lines 1-13) takes in the ego-agent’s current beliefs
about the transition function,b;(x), and its teammates, b;(m),
and decides which observations from the set @ to commu-
nicate. The resulting message must satisfy the ego-agent’s
bandwidth constraint ;.

The function has a fixed computational budget B (in
terms of iterations of the main loop) that it uses to evaluate
observations and decide what to communicate. The CSAR
algorithm dictates how much of this computational budget
should be allocated to each of the K accept-reject decisions
(Lines 14-18, see Chen et al 2014 for derivation). The al-
gorithm uses this budget allocation By to refine its reward
distribution estimates of the candidate arms (Line 7).

ESTIMATEREWARDDISTRIBUTIONS (Lines 19-27) is
responsible for this task. The function carries out By for-
ward simulations on each of the candidate observations. We
begin each of these forward simulations by sampling a set
of agent models (Line 21) and a transition function from the
ego-agent’s beliefs (Lines 22-23). The function EVALUATE-

Algorithm 1 Optimizing Communication under Bandwidth
Constraints (OCBC)

For convenience, let 3, b;(x), b;(m), A}, and L be global variables
shared among all functions
function OPTIMIZECOMMUNICATION(b;(x), b;(m), @)

: K+ |o|

1:

2

3 wCAND — o, a)Acc —0

4 A0 0, ke{l,... K}

5: fork<1,...,Kdo

6: By < ALLOCATESAMPLEBUDGET(B, K, k)

7 ESTIMATEREWARDDISTRIBUTIONS(By, @CANP)
8 ®" — ASSEMBLE(l, @*°C, @“ANP)

9: [ + SELECT(®AC, @CANP | @*)
10: if 0, € @ then

11: wACCemACCU{wI}

12: a)CAND — wCAND \ {0)1}

13: return ®A°C

14: function ALLOCATESAMPLEBUDGET(B, K, k)
150 k() 2L

16: f(y)é[ﬁ}, y>0

17:  f(0)20

18: return f (k) — f(k—1)

19: function ESTIMATEREWARDDISTRIBUTIONS(By, @CANP)
20: for 1,...,B; do

21: i < Jjep; Sample mj ~ b;(m;)
22: Sample ¥ ~ b;(x)
23: P <+ CONSTRUCTTRANSITIONFUNCTION(%)
24: for & € @“*"" do
25: 6 < EVALUATECOMMUNICATION({®; }, fir, P)
26: Al — Al U {5}
. 1 S
27: ulemzse&é
28: function ASSEMBLE([, @A°C, @CANP)
29: @« @A
30: while |®*| < B; and |@“*N°| > 0 do
31: [ ¢ argmax;. , c gcano My
32: if 1; <0 then return ®*
33: & — @ U{w}
34: @CAND L nCAND \ {wl}
35: return ®”

ok

36: function SELECT(@A°C, @C*N°, @)
37 ¥V Xiweco W

38: for w; € ®°ANP do

39: if 0, € @ then

40: @] < ASSEMBLE(HL, @"°C, @°A™P\ {@y})

41: else

42: @] < ASSEMBLE(HL, @“°C U @y, @“*™°\ {@y})
43: ¥ Lrweca;

44: v 7 -

45: return argmax; y;

COMMUNICATION returns the reward obtained from com-
municating a candidate observation given that set of agent
models and transition function (see Section 3.2). This re-
ward is used to update the statistics associated with the ob-
servation (Lines 26-27).
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Once the reward distributions have been updated, we as-
semble the estimated optimal message @" according to the
current rewards and the bandwidth constraint (Line 8). The
function ASSEMBLE (Lines 28-35) is responsible for this
task. It starts by adding all of the previously accepted ob-
servations into the message. It then repeatedly adds the best
remaining observation to the message until the bandwidth
constraint is reached or the candidate pool is exhausted.

We use the optimal message estimate @* to help us
select the observation we will decide on at this iteration
(Lines 36-45). This message estimate corresponds to a par-
ticular accept-reject decision for each of the remaining can-
didate elements. We then assemble optimal message esti-
mates @, in which we force the alternative decision to be
made for each element @; (Lines 38-42). The difference in
the reward expected to result from @ (the optimal message
estimate) and @, (the optimal message estimate with the al-
ternative decision about ay) is the suboptimality gap associ-
ated with @; (Line 44). The size of this suboptimality gap is
a measure of the confidence of the associated reward distri-
bution. We therefore select the observation with the largest
suboptimality gap and decide whether to accept or reject it
(Lines 10-12).

The running time of Algorithm 1 depends on the free
parameter B as well as parameters given by the problem
instance. The function OPTIMIZECOMMUNICATION carries
out B evaluations to refine its estimates of the reward distri-
butions associated with each candidate observation. In each
of these evaluations, the reward distribution for each candi-
date observation is updated. At most K such updates occur,
since K is the number of initial candidate observations, and
the pool of candidates shrinks as each accept-reject deci-
sion is made. Updating the reward distribution for a candi-
date observation requires a call to the function EVALUATE-
COMMUNICATION, which carries out forward simulations
for all n— 1 teammate agents (see Section 3.2). Forward sim-
ulating to time horizon T requires a policy computation at
each time step, the cost of which depends on the particular
planning algorithm used. An implementation with a naive
shortest path planner would have complexity O(|S| +|S||A|)
(i.e. the sum of the number of vertices and edges in the
state-action graph), but an incremental replanning algorithm
requires this computation only at the first time step and
then can quickly update the policy thereafter (Koenig and
Likhachev 2005). Altogether, the worst-case complexity of
OPTIMIZECOMMUNICATION is O(BKnT |S||A|), but careful
implementation can reduce this significantly.

One drawback of the CSAR algorithm is that it as-
sumes independence between the reward distributions of
arms. Such an assumption is necessary for CSAR’s tractabil-
ity, but it may harm performance in tasks where the reward
distributions are not independent. For example, there may
be scenarios in which communicating the occupancy of one

Algorithm 2 Evaluating Communication Actions

1: function EVALUATECOMMUNICATION(®,., #it, P)
2: for i € m do

3: (57,879M,b;(x)) < rin;

4 1a}OCOM «— FORWARDSIMULATE(;, P)

5: b';(x) <~ INCORPORATEOBSERVATIONS(b;(x), @)
6: i 4= (s,55%4, b/ (x) i

7 1M — FORWARDSIMULATE(], P)

8 S «— Rc(c‘) +Zj (')/A]COM — ')/A?IOCOM)

9 return &

10: function FORWARDSIMULATE(i}, P)

W (sj,s59%,bj(x)) =

12: <0

13: forz,...,T do

14: ® + OBSERVE(s;, P)

15: bj(x) <~ INCORPORATEOBSERVATIONS(b;(x), @)
16: 7t < COMPUTEPOLICY (s}, sJG.OA‘-, bj(x))

17: a < m(s;)

18: sj + argmaxy P(-|s;,a)

19: )/AHYA+RA(SJ',(1)

20: return 4

cell is only useful when combined with communicating the
occupancy of a second cell. We leave study of this drawback
as future work.

3.2 Evaluating Communication Actions

Evaluating candidate communications in terms of their ex-
pected effect on reward is typically expensive. In this sec-
tion, we provide our method for performing this evaluation
efficiently and review the key aspects of our formulation that
enable this approach.

General multi-agent models are unfactored, assuming
that team reward is a function of joint actions. Such models
require planning in the joint action space, which scales ex-
ponentially with the number of agents. In contrast, we con-
sider only factored multi-agent problems, where agents plan
independently of one another. The computational cost of for-
ward simulating such problems then scales linearly with the
number of agents.

Furthermore, we assume that the transition function is
deterministic. We can transform such a deterministic tran-
sition function into a directed graph where nodes are states
and edges are actions. An agent can compute a policy by
finding a shortest path through the state-action graph. We
can further leverage incremental shortest-path planners to
recompute the policy quickly at each step of the forward
simulation (Koenig and Likhachev 2005).

Algorithm 2 specifies our method for evaluating candi-
date communications. The goal of this algorithm is to esti-
mate the effect a proposed communication will have on team
reward given sampled agent models and a sampled transition
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function (see Algorithm 1). To measure this effect, we first
forward simulate the agent models to get the baseline re-
ward that occurs without any communication (Line 4). Next,
we incorporate the communicated observation into the agent
models’ beliefs and repeat the forward simulation (Lines 5-
7). The difference in reward is an estimate of the value of
the communication (Line 8).

The function FORWARDSIMULATE estimates the reward
earned by an agent model 7; in a world given by transition
function P. At each time step of the forward simulation, the
modeled agent first observes its environment and incorpo-
rates that observation into its belief (Lines 14-15). The mod-
eled agent then plans and executes an action and arrives in an
updated state (Lines 16-18). The function returns the cumu-
lative action reward earned by the modeled agent (Line 20).

The function EVALUATECOMMUNICATION of Algo-
rithm 2 is called from within the function ESTIMATERE-
WARDDISTRIBUTIONS of Algorithm 1, where it is used to
evaluate the effect of communicating a candidate observa-
tion and thus update the estimated reward distribution asso-
ciated with that observation.

3.3 Making Sequential Communication Decisions with
OCBC

In Algorithm 3, we show how we use OCBC within a
sequential decision-making agent. This algorithm provides
context for using OCBC as well as a means for evaluating
its performance (see Section 4).

Initialization

The algorithm begins by initializing the ego-agent’s beliefs
via the function INITIALIZEBELIEFS (Lines 11-18). The
agent starts with some prior p for each transition function
value b;(x;) (Line 13). The ego-agent also initializes its be-
liefs about each of its teammates (Lines 14-17). In our eval-
uation, we assume a strong prior on this belief, that is, we
assume that the ego-agent knows the initial state and transi-
tion belief of each of its teammates. Such a prior could come
from an offline sharing step before the task begins. We im-
plement the belief over agent models as a set of particles (see
Section 3.4), so the initial particle set contains M copies of
the agent model m ;, where M is a user-specified parameter.

Sensing

At each time step ¢, the ego-agent first senses its environ-
ment (Line 4), making observations @;(z) drawn from the
observation function O(@®|x,) (Line 20). Additionally, the
ego agent receives the communications ¢(# — 1) transmitted
by its teammates at the previous time step (Line 21).

Algorithm 3 Sequential Decision Algorithm
For convenience, let s;(-), sf°*", a;(-), @;(-), c;i(-) be global vari-
ables shared among all functions
function MAKESEQUENTIALDECISIONS( )
bi(x),b;i(m) < INITIALIZEBELIEFS( )
forr € {1,...,T} do
@;(t),c(t — 1) +SENSE()
bi(x),bi(m) < UPDATEBELIEFS(;(x), b;(m))

1:
2
3
4
5:
6: 7,ci(t) « PLAN(D;(x), bi(m))
7.
8
9
0

ACT(7)
return b/ (x),b(m)

Vi Z[T:I Ry (S,'(l),d,‘(l)) +Rc(c‘i(l‘))
return %

—_

11: function INITIALIZEBELIEFS( )
12: for s € S do

13: bi(xs) < ps

14: for j €I\ {i} do
155y e (57580 b))
16: bi(mj) < Uy, puim;}

17 bi(m) < Ujep gy bi(m;)
18: return b;(x),b;(m)

19: function SENSE

20: @;(t) < OBSERVE(s;(t), P)

21: ¢(t — 1) <~ RECEIVECOMMUNICATIONS( )
22: return @;(r),c(t — 1)

23: function UPDATEBELIEFS(;(x), b;(m))

24: Dyppare < O;(t)Uc(t—1)
25: b}(x) +— INCORPORATEOBSERVATIONS(b;(X), @Uppare)
26: b}(m) <~ UPDATETEAMBELIEFS(b;(m), ®@uppare)

27: return b}(x),b(m)

28: function PLAN(D;(x), b;(m))

29: 7T < COMPUTEPOLICY((s;(r), sFO*", b;(x))

300 @M Ureqr, 0i(7)

31: ci(t) + OPTIMIZECOMMUNICATION(b; (x), b;(m), @A)
32: return 7, c¢;(t)

33: function ACT(7)

34: a;i(t) < m(si(1))

35: si(t+1) < argmaxy P(-|s;(t),ai(1))
36: COMMUNICATE(¢;(t))

Updating Beliefs

Next, the agent updates its beliefs based on the result of
the sensing step (Line 5). The ego-agent aggregates all the
observations it made directly or received via communica-
tion (Line 24). It incorporates these observations into its
transition belief via the function INCORPORATEOBSERVA-
TIONS (see Algorithm 4). The ego-agent then updates its
beliefs about its teammates via the function UPDATETEAM-
BELIEFS (see Section 3.4 and Algorithm 5).
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Algorithm 4 Incorporating Observations into a Transition
Belief

1: function INCORPORATEOBSERVATIONS(b(x), ®)
2: for 0¥ € @ do

3: b (x;) < nO(@0® |x,)b(xs)

4 return b’ (x)

Algorithm 5 Updating Team Beliefs

1: function UPDATETEAMBELIEFS(b;(m), @uppare)
2: for b,’(l’ﬂj) S b,(m) do

3: for m®) € b;(m;) do
4: (5,590 b(x)) + m®)
5: 7 <+ COMPUTEPOLICY(s, s°°*L, b(x))
6: a <+ 7(s)
7: Sample £ ~ b(x)
8: P < CONSTRUCTTRANSITIONFUNCTION(%)
9: s+ argmaxy P(-|s,a)
10: ® <+ OBSERVE(s, P)
11: ' (x) - INCORPORATEOBSERVATIONS(b(x), @)
12: mj — (s',5994L b/ (x))
13: Wi = Tl cagp P (@9 1D (x5))
14: bi(m;) <=y, Sample m with probability o< wy
15: return b/(m)
Planning

The ego-agent computes a policy 7 based on its current
state s;(¢) and its transition belief b;(x) (Line 29). Then, it
selects a (possibly empty) set of observations to commu-
nicate using the function OPTIMIZECOMMUNICATION, the
implementation of which is our primary contribution (see
Algorithm 1).

Acting

Finally, the agent executes action a;(¢) based on the policy 7
and arrives in state s;(f + 1) (Lines 34-35). The agent then
broadcasts its selected set of observations to all its team-
mates (Line 36).

3.4 Updating Agent Beliefs
Transition Beliefs

Algorithm 4 shows how we update an agent’s transition be-
lief based on a set of observations. Recall that we assume
the beliefs about transition elements are independent of one
another. Therefore, observation o®) only affects belief ele-
ment b(x;). We use Bayes rule to compute the new value of
the belief for each affected element (Line 3).

Teammate Beliefs

Algorithm 5 details our method of updating the ego-agent’s
beliefs about its teammate models. The algorithm takes in

the existing beliefs b;(m) as well as a set of new observa-
tions Wyppare- It performs a particle filter update on the be-
lief b;(m;) about each teammate j (Lines 3-14).

First, each particle m®) is evolved forward one step
(Lines 4-12). Recall that each particle m®) is an agent model
that contains a state, goal state, and transition belief. We then
plan and execute an action for the agent model (Lines 5-6).
To simulate the next time step for the agent model, we sam-
ple from the model’s transition element beliefs and construct
a transition function P (Lines 7-8). We use P to find the new
state s” and generate an observation @ (Lines 9-10). We then
incorporate this observation into the particle’s transition be-
lief to get evolved belief »'(x) (Line 11). At this point, we
assemble s, s,‘ﬁszL, and b'(x) into an evolved particle n.
We assign the particle weight wy based on the likelihood
of the actual observations @yppare given the updated model
(Line 13). We then re-sample the particles according to these
weights to get the updated set b}(m;) (Line 14).

4 Evaluation

In this section, we evaluate our method on the multi-robot
navigation task introduced in Section 2.1. We structure our
evaluation around the three communication paradigms intro-
duced in Section 2.2. As we have presented it so far, OCBC
is a part of the Fixed-Bandwidth paradigm. The closest ex-
isting work (Unhelkar and Shah 2016) is in the Fixed-Cost
paradigm. We therefore evaluate variants of OCBC for the
Fixed-Cost and Proportional-Cost paradigms that allow us
to compare it to this existing method.

We first detail the experimental setup (Section 4.1).
Then, we compare OCBC to ConTaCT (Unhelkar and Shah
2016) in the Fixed-Cost and Proportional-Cost paradigms
(Section 4.2). Finally, we compare OCBC to a randomized
baseline method in the Fixed-Bandwidth paradigm (Sec-
tion 4.3).

4.1 Experimental Setup

In the experiments of Section 4.2, we use five agents in each
simulation. In Section 4.3, we vary the number of agents
between two and ten.

We begin each simulated trial by generating a 10 x 10
gridmap. The occupancy of each grid cell is determined by
a Bernoulli trial with probability 0.3. Such a randomized
method can yield maps without feasible paths between cer-
tain cells. We therefore test that the resulting gridmap is
fully connected; that is, any given cell in the map must be
reachable from every other cell. If the gridmap is not fully
connected, we replace it with a new randomly generated
map until the condition is met.
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Once the map is generated, we select a shared goal cell
and agent start cells uniformly at random from among the
unoccupied cells. Because of the random nature of this pro-
cess, some generated problem instances are not interesting
tests of communication. For example, agents that begin on
opposite sides of a map may not benefit at all from sharing
observations with one another. We can detect such cases by
conducting two initial simulations: in the first, agents auto-
matically share all observations, and in the second, agents
share nothing. If both simulations yield the same result, we
reject the trial as uninteresting and generate a new gridmap,
a new goal location, and new agent locations.

Each simulated trial returns the reward, y(x) = ya(x) +
Yc(x), earned by the team using method ). We are inter-
ested in measuring the effect of communication on task per-
formance. In this case, task performance is measured by ac-
tion reward, which is given by 74 (). To measure the effect
of communication on task performance, we repeat the trial
without any inter-robot communication to obtain the value
Y(NoCoM) = 14 (NoCOoM) + Y (NoCoMm). We then com-
pute the difference in action reward earned during the two
trials, that is,

6(x) =1(x) —ra(NoCom). )

We normalize this value by dividing by the corresponding
value for the method ALLCOM, in which agents automati-
cally share all observations. This normalized value is given
by

b0 =75 5(x) 3)

ALLCOM)’

In other words, 3( x) measures how much the communica-
tion of method ) helps task performance relative to the full
communication baseline method.

For each method, we run the same set of 1000 trials.
Each data point represents the mean of 5 (x) for these trials,
and the error bars represent one standard error on the mean.
In our experiments, we set OCBC’s computational budget at
B = 1000 and maintain beliefs consisting of M = 50 parti-
cles.

4.2 Fixed-Cost and Proportional-Cost Communication

To compare OCBC to existing work (Unhelkar and Shah
2016), we present two variants OCBC, Fixed-Cost and
OCBC, Proportional-Cost.

In OCBC, Proportional-Cost, the ego-agent has no limit
on its available bandwidth (i.e. §; — o), but each commu-
nicated observation incurs some cost (i.e. Rc(+) > 0). This
causes the function ASSEMBLE of Algorithm 1 to return
all observations with positive expected reward regardless
of how large the resulting message is. Although OCBC,

Proportional-Cost is a variant of OCBC, it still includes
both of our primary contributions (i.e. optimizing message
content and evaluating messages with forward simulation).

By contrast, OCBC, Fixed-Cost only includes the latter
contribution (i.e. evaluating messages with forward simula-
tion). It uses the same sampling method as OCBC, but only
evaluates messages containing all available observations.

We compare the performance of these methods to that
of ConTaCT, a method introduced by Unhelkar and Shah
(2016). Our method has several key distinctions from Con-
TaCT. First, the ConTaCT ego-agent maintains only a sin-
gle estimate of the transition function and of its teammates,
whereas OCBC maintains belief distributions over these val-
ues (see Section 3.4). Second, ConTaCT estimates the no-
communication reward by computing the expected reward
of an agent’s previously declared policy in the ego-agent’s
updated transition function estimate. This fixed-policy eval-
uation does not consider the future observations and asso-
ciated re-planning of other agents, which OCBC models
through forward simulation (see Section 3.2). Finally, Con-
TaCT reasons only about when to communicate, whereas
OCBC also considers what to communicate, which allows
OCBC to operate under bandwidth constraints (see Sec-
tion 3.1).

ConTaCT belongs to the Fixed-Cost paradigm and thus
reasons only about when to communicate. The primary dis-
tinction between OCBC, Fixed-Cost and ConTaCT is our
forward simulation method. Unlike ConTaCT, our method
considers the future observations and re-planning of other
agents as well as the uncertainty in the ego-agent’s beliefs.

To compare the cost-based methods, we vary the mod-
eled cost of communication in the range 0.01 < R¢(+) < 20
and measure the resulting task performance and proportion
of observations communicated. Figure 3 shows the results
of this experiment with the measured number of communi-
cations on the horizontal axis and the measured task perfor-
mance on the vertical axis. Note that the controlled parame-
ter in the experiment is the communication cost, and both
the number of communications and task performance are
measured values. When the modeled cost of communica-
tion is high, all methods communicate little, leading to low
task performance. As the modeled cost parameter decreases,
the amount of communication and task performance both in-
crease.

Our partial method, OCBC, Fixed-Cost, performs simi-
larly to ConTaCT at low levels of communication, but sig-
nificantly outperforms ConTaCT as the amount of commu-
nication increases. At the top right portion of the figure,
OCBC, Fixed-Cost communicates less than 10 percent of its
observations while achieving approximately 85 percent of
the task performance of the method that communicates all
observations.
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Fig. 3 Effect of communication on task performance as a function of
the proportion of observations communicated. To achieve the differ-
ent levels of communication, we vary the modeled cost of communi-
cation within each method. As the cost of communication decreases,
the methods communicate more often and thus achieve higher task
performance. Compared to previous work (ConTaCT, Unhelkar and
Shah 2016), our full method (OCBC, Proportional-Cost) yields higher
task performance for a given level of communication. Furthermore, to
achieve the same level of task performance, our full method communi-
cates more than an order of magnitude less.

Our full method, OCBC, Proportional-Cost, outper-
forms ConTaCT across the entire tested range of commu-
nication levels. For a given level of communication, OCBC,
Proportional-Cost achieves significantly higher task perfor-
mance compared to ConTaCT. Furthermore, to achieve the
same level of task performance, our method uses more than
an order of magnitude fewer communications. At the ex-
treme end of its range, OCBC, Proportional-Cost achieves
approximately 55 percent of the task performance of the full
communication method with less than 1 percent of the com-
munications.

4.3 Fixed-Bandwidth Communication

We now evaluate OCBC’s performance in the Fixed-
Bandwidth paradigm. We fix the bandwidth available to the
robots, 3, and vary the number of robots sharing that band-
width. The robots use a round-robin scheduling method,
with each robot i having bandwidth allocation f3;(¢) at time
step 7. As the number of agents sharing the bandwidth in-
creases, the bandwidth allocation per agent decreases. We
evaluate OCBC against a baseline method that randomly se-
lects observations.

Figure 4 shows the effect of communication on task per-
formance for variable-size robot teams. The total bandwidth
available in all experiments is 3 = 4, meaning that up to 4
observations can be communicated across the entire team at
each time step.

Number of Robots

Fig. 4 Effect of communication on task performance as a function of
the number of simulated robots sharing a fixed amount of bandwidth.
As team size increases, each robot has less opportunities to communi-
cate, leading to decreased performance. Our method (OCBC), achieves
significantly better task performance compared to a randomized base-
line method.

We first point out the general trend present in the meth-
ods: as more robots share the same amount of bandwidth,
task performance decreases. This may be surprising at first
since the same number of observations are still transmitted
at each time step. However, the value of communications
varies, and the round-robin bandwidth allocation cannot ac-
count for this. As a part of a large team sharing a small
amount of bandwidth, a robot that makes a particularly in-
teresting observation may have to wait several time steps for
its turn to share that observation.

We observe that across the range of team sizes, our
method significantly outperforms the Random baseline
method. Furthermore, our method achieves normalized task
performance close to 1 in the 2-robot experiment. This
means that, in that experiment, our method has similar task
performance to the baseline method sharing all observations
without a bandwidth constraint. Our method achieves this
performance while communicating at least 50 percent fewer
observations.

We also point out that this experiment features simula-
tions with up to 10 agents in an environment with 100 states
and 4 available actions. This is one of the largest-scale ex-
periments to date in the communication decision-making lit-
erature, demonstrating the scalability of our method.

5 Related Work
Communicating based on Decision Theory

Decision-theoretic approaches like OCBC evaluate com-
munication actions based on their expected effect on re-
ward. Computing this value directly for general agent mod-
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els like Dec-MDPs or Dec-POMDPs is prohibitively com-
plex (Pynadath and Tambe 2002; Goldman and Zilberstein
2004). To avoid direct computation and its associated costs,
Williamson et al (2008, 2009) measure the information con-
tent in recent messages and use this as a proxy for a mes-
sage’s value. More concretely, their method computes the
KL divergence between an agent’s current belief and its be-
lief at the time of its last communication. If this divergence
is sufficiently large compared to some threshold parameter,
the agent decides to communicate.

Carlin and Zilberstein (2009a,b) and Becker et al (2009)
examine the effect of common myopic assumptions made
by existing methods. Specifically, they analyze the assump-
tions that future communication will not occur and that other
agents will not initiate communication themselves. They ar-
gue that these assumptions lead to over-communication and
present an algorithm free from these assumptions. However,
the complexity of the resulting algorithm limits it to very
small problems. OCBC makes these assumptions for the
sake of tractability.

Unhelkar and Shah (2016) propose ConTaCT, which de-
liberately deemphasizes uncertainty to make communica-
tion decisions tractable in larger domains. In ConTaCT, the
ego-agent maintains a belief about the world as well as an
estimate of other agents’ beliefs. By evaluating the expected
result of sharing its available observations, the ego-agent de-
cides whether or not to communicate. We discussed Con-
TaCT further in Section 4 and evaluated its performance
against that of OCBC.

Selecting What to Communicate

Because of the complexities already involved in deciding
when to communicate, few papers have addressed the ques-
tion of what to communicate. Roth et al (2006) and Roth
(2007) point out this deficit and provide one of the few meth-
ods for optimizing the content of communication messages.
Specifically, they use greedy hill-climbing optimization to
select observations to include in a communication. Their al-
gorithm is built on top of their previous coordination method
in which all agents act on common knowledge (Roth et al
2005). They then try to select the set of observations to add
to this common knowledge to maximize team reward. Be-
cause they use a very general multi-agent model, their ap-
proach does not scale beyond small problem domains.

Giamou et al (2018) take a task-oriented approach to se-
lecting what to communicate, proposing a communication
planning framework for cooperative SLAM. Specifically,
they find a solution for exchanging the minimal amount of
raw sensory data without missing out on potential loop clo-
sures. While our approach is also concerned with selecting
observations to share, their method does not extend beyond
the specific problem of cooperative SLAM.

Communicating to Maintain Coordination

In many multi-agent problems, agents must tightly coordi-
nate their actions. Such coordination typically requires sig-
nificant amounts of inter-agent communication. Therefore,
some methods reason about when communication is neces-
sary to maintain coordination.

In Roth et al (2005) and Roth (2007), agents generate
an offline centralized policy that maps possible joint beliefs
to joint actions. During execution, agents use this policy to
select actions based on the current joint belief. When agents
make observations, they consider how communicating those
observations would change the joint belief and how the up-
dated joint belief would affect team performance.

Wu et al (2011) also maintain coordination by having
agents act only on common knowledge. Agents communi-
cate whenever they detect an inconsistency in their shared
belief. This guarantees that agents will remain coordinated
even when they forgo communication for some time.

Best et al (2018b) present a communication planning
algorithm suitable for the Dec-MCTS coordination frame-
work (Best et al 2018a). In Dec-MCTS, agents maintain be-
lief distributions over the possible future action sequences
of their teammates. Best et al (2018b) reason about when an
agent should request information from a teammate to update
this distribution. More specifically, when a belief becomes
sufficiently uncertain, the agent requests an updated distri-
bution from the teammate.

In this paper, we focus on factored multi-agent problems
where coordination is not a concern. Rather, agents commu-
nicate observations to help their teammates perform their re-
spective independent tasks.

Deep Reinforcement Learning

Recent papers (Foerster et al 2016; Sukhbaatar et al 2016)
have used deep reinforcement learning to learn communi-
cation policies. Such methods do not have a defined lan-
guage of symbols for the agents to transmit. Rather, the
agents learn to use a continuous-valued broadcast commu-
nication channel. Foerster et al (2016) use such a method
to solve communication riddles and multi-agent computer
vision problems. Sukhbaatar et al (2016) show results for
multi-turn games and communication at a traffic junction.
Such data-driven methods show promise in the demon-
strated domains, but the continuous-valued broadcast chan-
nel limits the types of information that can be communicated
by such systems.

6 Conclusion

In this paper, we proposed OCBC, an approach to Optimiz-
ing Communication under Bandwidth Constraints. OCBC
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uses forward simulation to evaluate possible communica-
tion actions and incorporates those evaluations into a bandit-
based combinatorial optimization algorithm that computes
an approximately optimal set of observations to communi-
cate. OCBC is designed for collaborative multi-agent prob-
lems with a deterministic but unknown transition function,
which includes tasks where multiple robots operate in pre-
viously unexplored terrain. We showed that OCBC outper-
forms its closest existing competitor at a simulated multi-
robot navigation task, achieving higher task performance
while communicating more than an order of magnitude less.
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