
Probabilistic Multi-Robot Search for an

Adversarial Target

Ryan J. Marcotte1 Acshi Haggenmiller1 Gonzalo Ferrer2

Edwin Olson1 ∗†

Abstract

The problem of planning the actions of several robots (pursuers) who
are searching for another agent (an evader) has been frequently studied,
with most methods focusing on finding strategies that guarantee capture
of even a worst-case evader. However, in many real-world situations, the
environment may be too complex or the pursuers too few in number to
ensure capture. In such cases, the best that the pursuers can do is select
actions that maximize the probability of capture for a given type of evader.

In this paper, we propose Probabilistic Adversarial Target Search
(PATS), which computes joint search actions that approximately max-
imize capture probability against an evader with perfect knowledge but
finite speed. PATS uses Monte Carlo tree search (MCTS) to compute
pursuit plans given the pursuers’ probabilistic belief about the evader’s
location. PATS then evolves this belief forward in time based on the ex-
pected actions of the evader, which are obtained from the search tree’s
empirical statistics. We show that PATS outperforms an existing proba-
bilistic search method in a simulated search setting for which guaranteed
search is impossible.

1 Introduction

We consider the problem of searching for an adversarial target (an evader)
with multiple robots (pursuers). Whereas others (e.g. [1]–[4]) have presented
approaches that can guarantee capture given a sufficient number of pursuers,
we address the case in which the pursuit team is too small or the environment
too complex for such a guarantee. In such a case, the pursuers must plan their
collective actions based on their belief about the evader’s location, and then
update the belief after executing those actions. We propose a single algorithm,
which we call probabilistic adversarial target search (PATS), that accomplishes
both of these tasks, planning joint pursuit actions and then using the results of
those computations to update the belief.

∗1University of Michigan, Ann Arbor, MI, USA {ryanjmar,acshikh,ebolson}@umich.edu
†2Skolkovo Institute of Science and Technology, Moscow, Russia g.ferrer@skoltech.ru

P

P

E P

P

Figure 1: Illustration of search scenario in which a team of robots searches for an
adversarial target that has perfect knowledge. The pursuers maintain a proba-
bilistic belief over possible locations of the evader and generate pursuit strategies
that maximize the probability of capture. Our proposed method, PATS, uses a
collection of MCTS game trees to select pursuit actions and updates the belief
based on the empirical statistics contained in those trees.

When a guaranteed approach is impossible, planning pursuit actions requires
a belief about the location of the evader and model for how the evader will
respond to pursuit actions. Existing non-adversarial multi-robot search methods
(e.g. [5]–[7]) maintain a probabilistic belief and compute search actions that
optimize the probability of target capture, assuming the target follows a static
motion model (e.g. a random walk). We extend this idea to the adversarial
setting in which the target actively tries to avoid capture. The pursuers maintain
a probabilistic belief about the evader’s location and use Monte Carlo tree search
(MCTS) to generate actions. Because the evader’s location is uncertain, the
pursuers search in multiple game trees, each one representing a possible current
configuration of the agents. Computation is distributed to these trees according
to the believed probability of the associated configuration.

The search problem is sequential, so the pursuers must update their belief
about the location of the target after each time step. In non-adversarial settings,
the pursuers may evolve their belief according to a random walk or similar
motion model. We instead use the results of the pursuit planning algorithm to
inform this belief update. The game tree contains rich information about the
actions an adversarial evader is likely to take in response to the selected pursuit
joint action. We use these statistics generated during the planning process to
efficiently update the pursuers’ belief for the next time step.

Our contributions in this work include:

• A formulation of the search problem as an imperfect information variant
of game-tree search,

• An MCTS-based method that computes pursuit plans given the pursuers’
probabilistic belief of the evader’s location, and

• A method for evolving the pursuers’ target belief based the empirical
statistics contained in the search tree, thus enabling re-execution of pur-
suit planning at the next time step.

2 Related Work

Our method builds upon work from both the multi-robot search and pursuit-
evasion literature. For comprehensive overviews of these topics, please refer to
the surveys of Chung, Hollinger, and Isler [8] and Robin and Lacroix [9] or the
thesis of Noori [10].

When pursuing an adversarial evader, many methods assume worst-case
characteristics for that adversary, such as complete knowledge, infinite speed,
or unlimited computation. With such assumptions, the only way for pursuers
to capture the evader is to plan strategies that force capture regardless of the
evader’s actions. Many researchers have studied the mathematical theory be-
hind the number of pursuers required to guarantee capture in a particular envi-
ronment or the properties of environments for which a pursuit team of a given
size allows for such a strategy [11]. Others have considered the theoretical ef-
fects of different properties of the pursuit-evasion game, such as the effect of the
evader’s information access [12] and adversarialness [13].

Another area of research has focused on actually generating guaranteed
search strategies, which are also known as clearing schedules. The problem
of generating a clearing schedule with the minimum number of robots is NP-
hard on general graphs, but can be solved in linear time on trees [14]. Rec-
ognizing this, Hollinger, Kehagias, and Singh [1] proposed Guaranteed Search
with Spanning Trees (GSST), which transforms the structure of an environment
into a spanning tree by positioning stationary guards at key locations. Differ-
ent spanning trees may require different numbers of guards, so GSST considers
many possible candidates and returns the clearing schedule that requires the
fewest number of pursuers. Hollinger, Singh, and Kehagias [2] later show how
GSST can be made more efficient (in terms of expected capture time) by in-
cluding more pursuers who together search for the evader using a probabilistic,
non-adversarial planning method [5]. The Iterative Greedy Node Search (IGNS)
method of Kehagias, Hollinger, and Singh [3] also generates an offline clearing
schedule. Although IGNS can generate clearing schedules that succeed regard-
less of the evader’s capabilities, it can also generate strategies guaranteed to
capture an evader with finite speed, which may reduce the number of pur-
suers required. Kolling, Kleiner, Lewis, et al. [15] demonstrated a large-scale
real-world implementation of a guaranteed search algorithm by equipping eight
humans with iPads that provided instructions on where to search. Kolling,
Kleiner, and Carpin [16] recently proposed a method in which a team of robots
traverse an environment in formations known as sweep lines. They show that

in many practical cases, they can compute sweep schedules (clearing schedules
using sweep lines) in polynomial time.

The common thread in these guaranteed methods is that they all require
some minimum number of robots in order to be executed. This minimum num-
ber depends on the complexity of the environment and on the particular guar-
anteed method used. If the pursuit team is not of sufficient size to execute such
a strategy, however, these methods are inapplicable.

Other approaches have considered searching for a non-adversarial target us-
ing multiple robots. Some assume the target is stationary and provide search
plans that minimize the expected time to target detection [17]. Others con-
sider the target to be moving according to some non-adversarial motion model
[18]. Hollinger, Singh, Djugash, et al. [5] formulate the problem of search-
ing for a non-adversarial moving target as a partially observable Markov de-
cision process (POMDP). They propose a method, finite horizon path enu-
meration (FHPE), that generates optimal pursuit trajectories within a finite
time horizon, assuming a particular target motion model such as a uniform ran-
dom walk. Hollinger, Singh, and Kehagias [2] later incorporate FHPE into the
GSST guaranteed search method, using any extra searchers to reduce expected
capture time. Renzaglia, Noori, and Isler [6] consider the effect of the target
model (stationary or stochastic) on the resulting search strategies and find that
a probabilistic planning approach performs better against a moving target than
coverage path planning.

In this paper, we propose a method, PATS, that bridges the gap between
existing guaranteed pursuit algorithms and non-adversarial search approaches.
We address the case in which the pursuit team is too small to guarantee cap-
ture, a case which the guaranteed methods provide no solution for. We build
from the ideas of the non-adversarial probabilistic search methods and demon-
strate through empirical evaluation that PATS outperforms these methods when
searching for an adversarial target.

3 Problem Formulation

The search game is sequential and unfolds over discrete time steps t = 1, . . . , T .
The agents occupy an environment discretized into an undirected graph G (V,E)
of n = |V | vertices. See the survey of Bormann, Jordan, Li, et al. [19] for
techniques that achieve such a segmentation.

The location of pursuer k at time t is given by pk (t) ∈ V for each of the
K searchers. Similarly, the location of the evader at time t is given by e (t) ∈
V . The pursuers do not know the evader’s location, but rather maintain a
belief b (t) = [b1, . . . , bn], which is a probability distribution over V . Each
element bi corresponds to the probability of the evader occupying vertex i.

The pursuers and evader alternate in taking actions. The game ends if the
pursuers capture the evader, which occurs when a pursuer and evader occupy
the same location (i.e. e(t) = pk(t) for some k). The reward earned by the
pursuers depends on the number of time steps it took to capture the evader: for

E
vTTree T

+

vTi
p = p (t)
e = i

Tree Ti

−− −
vTi→u

p = u
e = i

u

+

vTi→u→j
p = u
e = j

j

+

+

vT1

−− −

+

vTn

−− −

Figure 2: Illustration of the search tree T . At the root is the expectation node
vT . Each subtree Ti of the root is a game tree in which the evader begins in
state i. Within the game tree Ti, the pursuit team maximizes reward while the
evader minimizes it. Computation is distributed to each game tree Ti based on
the pursuers’ belief that the evader is at location i, bi (t). The pursuers select
the action u∗ that maximizes expected reward. After taking action u∗, the
pursuers update their belief based on the expected actions of the evader, which
comes from the empirical node statistics at each node vTi→u∗

capture at time tc the pursuit reward is Rp = γtc , where γ ∈ (0, 1] is a discount
factor. If the pursuers fail to capture the evader before time tmax, they receive
zero reward. The search game is constant-sum, with evader reward Re = 1−Rp.

4 Approach

In this section, we describe a method to plan pursuit actions to search for an
evader whose location is unknown to the pursuers. To develop the ideas we will
need for this method, we first describe an approach to the perfect-information
variant of this game in which the pursuers know the location of the evader at
the time of planning. Once we have a technique in place to plan pursuit actions,
we use the results of that method to update the pursuers’ probabilistic belief of
the evader’s location.

4.1 Pursuit Planning with Known Evader Location

The challenge in the perfect-information variant of the game is to select a pursuit
action leading toward capture of the evader, given that the evader will take
future actions to avoid that fate. Game tree search provides a solution to such
a task.

Consider a game tree rooted at a node representing a particular configuration
of pursuers and evader. From this root node, the pursuers search forward in
time, looking for actions that maximize pursuit reward Rp while knowing that

the evader will take opposing actions to minimize this reward.
More specifically, we use Monte Carlo tree search (MCTS), a type of game-

tree search that randomly samples from the decision space and builds a search
tree according to the results [20]. Unlike a traditional minimax game tree search,
which evaluates non-terminal nodes according to a heuristic function, MCTS
executes randomized forward simulations to sample from the distribution of
rewards associated with a node and thereby determine its value. MCTS main-
tains empirical statistics for each node based on the results of these forward
simulations. For MCTS node v, the visit count N (v) is the total number of
forward simulations that have passed through that node, and the total reward
earned during those forward simulations is Q (v). The ratio of these two statis-

tics, Q(v)
N(v) , is an estimate of the game-theoretic value of the node. Note that

by using Upper Confidence Bound for Trees (UCT) as a node expansion pol-
icy, the empirical estimate of an MCTS node’s value will converge to the true
game-theoretic (minimax) value given enough samples [21].

4.2 Pursuit Planning with Probabilistic Belief

As we have formulated it to this point, game tree search assumes that the
pursuers know where the evader is at the time of planning. However, we are
interested in the case that the pursuers only have a probabilistic belief about
the evader’s location. Because the evader can only begin at one location in a
single game tree, we build n game trees, with each tree Ti corresponding to the
evader being at location i. Each tree Ti has probability bi (t) of being the true
game tree, according to the pursuers’ belief.

An alternate way of viewing the collection of game trees is as a single tree
with an expectation node vT at its root, as illustrated in Fig. 2. The root vTi

of each game tree Ti is a child of this expectation node. The approximate

game-theoretic value of each such child node vTi
is

Q(vTi)
N(vTi)

, as determined by

the MCTS rollouts performed through that node. This value is an estimate of
the reward the pursuers will earn by executing the best available action, given
that the evader is in state i (i.e. that tree Ti represents the true configuration
of agents). However, the pursuers do not know the evader’s true location, but
instead maintain a probabilistic estimate bi (t) that the evader is at location i
at time t. From the perspective of the pursuers, the expected value of the root
node of the entire tree, vT , then is given by

E [vT] =
∑
i∈V

bi (t)E (vTi
)

=
∑
i∈V

bi (t)
Q (vTi)

N (vTi
)
.

(1)

The pursuers have the same set of actions U (t) available to them at the root
node vTi

of each tree Ti. The value of each action u ∈ U (t) within game tree Ti

is
Q(vTi→u)
N(vTi→u)

, where vTi→u is the child node of vTi
corresponding to the pursuit

team taking action u. Therefore, the expected value of each pursuit action is
given by

E [u] =
∑
i∈V

bi (t)
Q (vTi→u)

N (vTi→u)
. (2)

A best action for the pursuers to take is an action u∗ with highest expected
reward:

u∗ = arg max
u∈U(t)

E [u] . (3)

4.3 Evolving the Target Belief

Searching for an adversarial target is a sequential process. If the pursuers fail
to capture the evader at one time step, they must repeat the planning process
again at the next. While this occurs, the evader is also planning and executing
actions. Therefore, after failing to capture the evader at one time step, the
pursuers must evolve their belief forward to use in planning at the next time
step. This evolved belief will then be input to the pursuit planning process of
Section 4.2 at the next time step.

Non-adversarial search methods evolve their probabilistic belief by applying
a fixed Markovian target model. For example, Hollinger, Singh, Djugash, et
al. [5] update the belief as if the target performed a uniform random walk.
However, such a belief update does not model the behavior of an adversarial
target actively working to avoid capture.

To evolve the pursuers’ belief, we draw inspiration from the Monte Carlo
belief state update method of Silver and Veness [22]. They consider the case of
evolving a belief state in a large POMDP. Because an exact Bayesian update is
intractable for large belief state spaces, Silver and Veness sample particles from
the belief space and evolve them using a black-box simulator. They approximate
the new belief with all particles whose evolved state is consistent with the actual
observation made by the agent.

In a similar way, the pursuers have access to the results of a series of forward
simulations after executing the planning method of the previous section. Each
game tree Ti has a child node vTi→u∗corresponding to the action u∗ selected
by the pursuers. Consider each MCTS forward simulation that passed through
this node to be a sampled particle. Each of these simulations passes through a
successor state corresponding to a particular action of the evader. The relative
frequency of each evader action in these forward simulations provides an esti-
mate of the probability of an adversarial evader taking those actions in reality.

These action probabilities provide the means to evolve the belief according to
an adversarial random walk. Rather than uniformly distributing the probability
mass from a location to neighboring locations, we distribute it according to the
probability of an evader moving to each neighboring location.

Concretely, according to the MCTS forward simulations, the probability of
an evader at location j moving to neighboring location i in response to pursuit

Algorithm 1 Probabilistic Adversarial Target Search (PATS)

1: for B iterations do
2: Sample i ∼ b(t)
3: GrowTree(Ti)
4: u∗ ← arg maxu∈U(t)

∑
i bi (t)

Q(vTi→u)
N(vTi→u)

5: ExecuteJointAction(u∗)
6: if evader not captured then
7: for pursuer location i do
8: bi(t+ 1)← 0

9: for location i not occupied by a pursuer do

10: bi(t+ 1)←
∑

j : ji∈E bj (t)
N

(
vTj→u∗→i

)
N

(
vTj→u∗

)
11: Normalize(b (t+ 1))

action u∗ is given by
N

(
vTj→u∗→i

)
N

(
vTj→u∗

) . The probability of the evader moving to

location i is then the sum of these probabilities for each neighbor j of i, weighted
by the probability of the evader starting in j. That is,

bi (t+ 1) =
∑

j : ji∈E

bj (t)
N
(
vTj→u∗→i

)
N
(
vTj→u∗

) (4)

4.4 Complete Search Algorithm

Algorithm 1 details the complete method for planning pursuit actions, which we
call probabilistic adversarial target search (PATS). Note that growing all of the
search trees equally would waste computation on unlikely configurations. We
therefore distribute a fixed computational budget B according to the believed
probability of each configuration. Each loop iteration samples a tree Ti according
to belief b(t) and performs a single forward simulation on that tree using the
method GrowTree. GrowTree encompasses the steps of a standard MCTS
iteration, which include selecting a node of the tree for expansion, executing
a forward simulation from that node, and propagating the results back up the
tree. Each call to GrowTree adds a single leaf node to the tree.

After the computational budget is exhausted, the function computes the
action with highest expected value. It then evolves the pursuers’ belief based
on the node statistics contained in the search tree. The belief is set to zero
for all locations occupied by the pursuers. For all other locations, the belief
is updated according to the expected probability of the evader moving to that
location i from an adjacent location j, weighted by the current belief bi (t). This
probability comes from the empirical node statistics of the MCTS search trees.

Figure 3: Floorplan of the simulated test environment, an office building first
introduced by Hollinger, Singh, Djugash, et al. [5].

5 Evaluation

5.1 Experimental Setup

We conducted a series of simulated experiments consisting of two pursuers
searching for a single evader. We compare the performance of PATS to that
of the FHPE method of Hollinger, Singh, Djugash, et al. [5]. FHPE assumes
that the search target moves according to a fixed Markovian policy, such as
a uniform random walk. It then selects the set of paths that maximizes the
probability of target capture out to a finite horizon. Between time steps, FHPE
evolves the pursuers’ belief according to the fixed motion policy.

We tested against an evader implementation that plans using MCTS. Specif-
ically, we implemented the plain UCT variant proposed by Kocsis and Szepesvári
[21]. This implemented evader knew the locations of each pursuer throughout
the experiments. Within the confines of its allocated computational budget,
the evader planned actions that maximized its own expected reward. We varied
the evader’s computational budget (in terms of MCTS samples) to test against
a range of adversaries: a budget of 1 sample corresponds to a non-adversarial
random walk agent, whereas increasing the budget results in an increasingly
capable and adversarial evader.

Our simulated experiments took place in the test environment shown in
Fig. 3. This environment, which was first introduced by Hollinger, Singh, Dju-
gash, et al. [5], has 60 nodes and 124 edges. Hollinger, Kehagias, and Singh
[1] demonstrated a guaranteed search schedule for the environment using three
evaders. To the best of our knowledge, no such schedule has been achieved for
the two-evader team we use in this evaluation. This evaluation therefore ad-
dresses our scenario of interest, namely situations in which the environment is
too complex or the pursuers too few in number to guarantee capture.

We conducted 400 trials for each tested parameter setting. In each trial,
the pursuers and evader began at distinct, randomly generated locations. The
pursuers initially knew the location of the evader but received no further infor-
mation about the evader’s location until capture.

The reward assigned to the pursuers for a particular trial followed the def-
inition given in Section 3; that is, Rp = γtc when the pursuers captured the
evader at time tc, and Rp = 0 if the pursuers failed to capture the evader before
time tmax. We used discount factor γ = 0.98 and time step limit tmax = 120,
though the specific values do not affect our conclusions.

Error bars in all figures correspond to one standard error of the mean.

5.2 Effect of FHPE Search Depth

An important factor in the effectiveness of any pursuit planning method is the
computational budget allocated to it, which affects the depth its search tree
reaches. The computational budget of PATS is expressed in terms of the number
of search nodes expanded (or equivalently, the number of forward simulations
performed). Recall that the MCTS search trees grow asymmetrically, so the
tree’s leaves do not reach a uniform depth. In contrast, FHPE enumerates all
sets of paths of a selected length, which corresponds to the depth of the search
tree.

Because the two tested methods have different ways of varying computational
budget, it is important to control for this parameter. We therefore begin by
evaluating the performance of FHPE as its search depth is varied.

Fig. 4 shows the results of this experiment. Each curve corresponds to
the reward earned by pursuers planning with FHPE against an evader with a
particular computational budget. For any search depth, the pursuers’ reward
decreases as the evader’s budget increases. Against a fixed-budget evader, pur-
suit reward saturates quickly with FHPE search depth. This indicates that a
non-adversarial method cannot perform better in an adversarial setting simply
by planning farther into the future.

The saturation effect occurs more slowly against the more capable adver-
saries, but a search depth of 12 approximately maximizes FHPE’s performance
against a range of adversaries. We will use search depth to compare the perfor-
mance of FHPE to PATS in Section 5.4.

5.3 Effect of PATS Budget

Having tested the effect of FHPE’s search depth on pursuit reward, we now
evaluate the performance of PATS as a function of its computational budget.

Fig. 5 shows the results of this experiment. Each curve represents the reward
earned by pursuers with PATS against an evader with a particular computa-
tional budget. The effect of the PATS computational budget is most pronounced
against the stronger evaders. For example, the reward earned by the PATS
pursuers against the strongest evader increases from approximately 0.5 with a

2 4 6 8 10 12 14

FHPE Search Depth

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
u
rs
u
it
R
ew

ar
d

Evader Budget = 1

Evader Budget = 8

Evader Budget = 64

Evader Budget = 512

Evader Budget = 4096

Figure 4: Reward earned by pursuers planning with the FHPE algorithm [5]
with variable search depth. Pursuit reward saturates quickly: increasing FHPE
search depth leads to diminishing returns.

104 105

PATS Computational Budget

0.5

0.6

0.7

0.8

0.9

P
u
rs
u
it
R
ew

ar
d

Evader Budget = 1

Evader Budget = 8

Evader Budget = 64

Evader Budget = 512

Evader Budget = 4096

Figure 5: Reward earned by pursuit team as a function of pursuit planning
budget. A larger planning budget helps the pursuers account for the adversarial
behavior of a strong evader.

computational budget of 10,000 to approximately 0.75 with a computational
budget of 320,000.

Interestingly, the pursuers with the largest computational budget perform
better against the strongest evader (budget 4096) than they do against the
slightly weaker evader (budget 512). Recall that PATS uses game tree search,
so the evader modeled in the search tree tries to minimize pursuit reward while
the pursuers try to maximize it. Increasing the PATS computational budget
also increases the budget of the evader modeled in the game tree. Therefore, in-
creasing the PATS computational budget can lead to better performance against
stronger adversaries.

5.4 Effect of Evader Budget

We have now evaluated the effect of computational budget on the non-adversarial
method (FHPE) of Hollinger, Singh, Djugash, et al. [5] and our own method
(PATS). To complete the comparison, we fix the computational budget of
both methods and evaluate performance against evaders of varying capabilities.
Specifically, we fixed the search depth of FHPE at 12 and the budget of PATS
at 320,000. We varied the budget of the evader between 1 (non-adversarial) and
4096 (adversarial).

Fig. 6 shows the results of this experiment. At the left of the plot, the evader
has a low computational budget, so its behavior is non-adversarial. FHPE
performs well in this region since its non-adversarial assumption matches the
actual behavior of the evader. As the evader’s budget increases, however, PATS
significantly outperforms FHPE. The reward earned by PATS decreases by only
12 percent between the least and most adversarial evaders; the FHPE reward
decreases by 43 percent across that same range. Against the strongest adversary
(budget 4096), the pursuit reward of PATS corresponds to capturing the evader
in an average of 14 steps, compared to an average capture by FHPE in 31
steps. Overall, this demonstrates the effectiveness of probabilistic search for an
adversarial target.

6 Conclusion

In this paper, we proposed Probabilistic Adversarial Target Search (PATS), a
method by which a team of robots can search for an adversarial target. PATS
is particularly suited for scenarios in which the environment is too complex or
the pursuers too few in number to guarantee capture of an evader. PATS com-
putes pursuit plans that approximately maximize the probability of capturing
an evader with finite speed but perfect knowledge. PATS uses Monte Carlo tree
search (MCTS) to compute pursuit joint actions based on a probabilistic belief
about the evader’s location. Because the search process is sequential, PATS
provides a means to update this probabilistic belief using the results of the
MCTS planning procedure. We demonstrated that PATS outperforms an ex-
isting probabilistic search method in a simulated scenario for which guaranteed

1 10 100 1000 10000

Evader Budget (MCTS Samples)

0.5

0.6

0.7

0.8

0.9

P
u
rs
u
it
R
ew

ar
d

FHPE (Depth = 12)

PATS (Budget = 320,000)

Figure 6: Reward earned by pursuit team against a variable-budget evader.
Though the non-adversarial method (FHPE [5]) performs well against a weak
adversary, our proposed adversarial method (PATS) continues to receive a high
level of reward and outperforms FHPE as the evader becomes more capable.

capture is impossible.

Acknowledgments

This material is based upon work supported by the National Science Foundation
Graduate Research Fellowship Program under Grant No. DGE 1256260 and the
National Science Foundation Grant No. NRI 1830615. Any opinions, findings,
and conclusions or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the National Science
Foundation.

References

[1] G. Hollinger, A. Kehagias, and S. Singh, “GSST: Anytime Guaranteed Search,” Au-
tonomous Robots, vol. 29, no. 1, pp. 99–118, 2010.

[2] G. Hollinger, S. Singh, and A. Kehagias, “Improving the Efficiency of Clearing With
Multi-Agent Teams,” International Journal of Robotics Research, vol. 29, no. 8, pp. 1088–
1105, 2010.

[3] A. Kehagias, G. Hollinger, and S. Singh, “A Graph Search Algorithm for Indoor Pur-
suit/Evasion,” Mathematical and Computer Modelling, vol. 50, no. 9-10, pp. 1305–1317,
2009.

[4] A Kleiner and A. Kolling, “Guaranteed search with large teams of unmanned aerial
vehicles,” in Proceedings of the IEEE International Conference on Robotics and Au-
tomation, IEEE, 2013, pp. 2977–2983.

[5] G. Hollinger, S. Singh, J. Djugash, and A. Kehagias, “Efficient multi-robot search for a
moving target,” International Journal of Robotics Research, vol. 28, no. 2, pp. 201–219,
2009.

[6] A. Renzaglia, N. Noori, and V. Isler, “The Role of Target Modeling in Designing Search
Strategies,” in Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2014, pp. 4260–4265.

[7] L. D. Stone, J. O. Royset, and A. R. Washburn, “Path-constrained search in discrete
space and time,” in Optimal Search for Moving Targets, Springer International Pub-
lishing, 2016, ch. 4, pp. 189–207.

[8] T. H. Chung, G. A. Hollinger, and V. Isler, “Search and pursuit-evasion in mobile
robotics,” Autonomous Robots, vol. 31, no. 4, p. 299, 2011.

[9] C. Robin and S. Lacroix, “Multi-Robot Target Detection and Tracking: Taxonomy and
Survey,” Autonomous Robots, vol. 40, no. 4, pp. 729–760, 2015.

[10] N. Noori, “Adversarial and Stochastic Search for Mobile Targets in Complex Environ-
ments,” PhD thesis, University of Minnesota, 2016.

[11] A. Bonato, The game of cops and robbers on graphs. The American Mathematical
Society, 2011.

[12] A. Kehagias, D. Mitsche, and P. Pralat, “The role of visibility in pursuit/evasion games,”
Robotics, vol. 3, no. 4, pp. 371–399, 2014.

[13] ——, “Cops and invisible robbers: The cost of drunkenness,” Theoretical Computer
Science, vol. 481, pp. 100–120, 2013.

[14] N. Megiddo, S. L. Hakimi, M. R. Garey, D. S. Johnson, and C. H. Papadimitriou, “The
complexity of searching a graph,” Journal of the ACM, vol. 35, no. 1, pp. 18–44, 1988.

[15] A. Kolling, A Kleiner, M Lewis, and K Sycara, “Computing and executing strategies
for moving target search,” in Proceedings of the IEEE International Conference on
Robotics and Automation, IEEE, 2011, pp. 4246–4253.

[16] A. Kolling, A. Kleiner, and S. Carpin, “Coordinated search with multiple robots ar-
ranged in line formations,” IEEE Transactions on Robotics, vol. 34, no. 2, pp. 459–473,
2018.

[17] L. D. Stone, J. O. Royset, and A. R. Washburn, “Search for a stationary target,” in
Optimal Search for Moving Targets, Springer International Publishing, 2016, ch. 2,
pp. 189–207.

[18] ——, “Search for a moving target in discrete space and time,” in Optimal Search for
Moving Targets, Springer International Publishing, 2016, ch. 3, pp. 189–207.

[19] R. Bormann, F. Jordan, W. Li, J. Hampp, and M. Hägele, “Room Segmentation: Survey,
Implementation, and Analysis,” in Proceedings of the IEEE International Conference
on Robotics and Automation, IEEE, 2016, pp. 1019–1026.

[20] C. Browne, E. Powley, D. Whitehouse, S. Lucas, P. Cowling, P. Rohlfshagen, S. Tavener,
D. Perez, S. Samothrakis, and S. Colton, “A Survey of Monte Carlo Tree Search Meth-
ods,” IEEE Transactions on Computational Intelligence and AI in Games, vol. 4, no. 1,
pp. 1–43, 2012.

[21] L. Kocsis and C. Szepesvári, “Bandit-based Monte-Carlo planning,” in Proceedings of
the European Conference on Machine Learning, Springer, 2006, pp. 282–293.

[22] D. Silver and J. Veness, “Monte-Carlo Planning in Large POMDPs,” in Proceedings of
the Advances in Neural Information Processing Systems Conference, 2010, pp. 2164–
2172.

