
Fast discovery of influential outcomes for risk-aware MPDM

Dhanvin Mehta Gonzalo Ferrer Edwin Olson

Abstract— In the Multi-Policy Decision Making (MPDM)
framework, a robot’s policy is elected by sampling from
the distribution of current states, predicting future outcomes
through forward simulation, and selecting the policy with the
best expected performance. Electing the best plan depends on
sampling initial conditions with influential (very high costs)
outcomes. Discovering these configurations through random
sampling may require drawing many samples, which becomes
a performance bottleneck.

In this paper, we describe a risk-aware approach which
augments this sampling with an optimization process that
helps discover those influential outcomes. We describe how
we overcome several practical difficulties with this approach,
and demonstrate significant performance improvements on a
real robot platform navigating a semi-crowded, highly dynamic
environment.

I. INTRODUCTION

Multi-Policy Decision Making (MPDM) [1] provides a

powerful framework for autonomous navigation among un-

certain dynamic agents by choosing from amongst a set

of closed loop policies - {Go-Solo, Follow, Stop}. Each

candidate policy is evaluated based on forward simulations of

samples drawn from the estimated distribution of the agents’

states (Monte-Carlo sampling). These forward simulations

and thereby the cost function, capture agent-agent interac-

tions as well as agent-robot interactions which depend on

the policy being evaluated.

Collisions are profoundly serious, but near misses are

mundane. Sampling randomly is likely to miss high-cost

events, even if they are individually reasonably probable

(high probability density) because of the scarcity of such

configurations in the state space (low total probability mass

of high-cost outcomes). Discovering these configurations

through random sampling may require drawing many sam-

ples, which becomes a performance bottleneck.

Without enough samples to find influential outcomes, the

quality of planning suffers. Addressing this issue is crucial

for reliable systems in applications such as autonomous cars,

navigation in social environments, etc.

The key challenges arise from the uncertainty associated

with the inferred state of the agents (people) and the complex

multi-agent interactions which make the forward-simulated

trajectories (Fig. 1) sensitive to the initial configurations

sampled. The dimensionality of the space of all possible

initial configurations is very large. However, typically, only

the joint configuration of a small subset of the observed

agents affect the cost function significantly.

The authors are associated with the University of Michigan, Ann Arbor.
{dhanvinm,gferrerm,ebolson}@umich.edu.

This project was supported by the ONR ProbCog grant F033232.

Fig. 1. Top: The MAGIC robot navigating among a group of pedestrians.
Bottom: GUI of the system with observed agents are depicted by gray
circles. The yellow lines show the predicted trajectories for a single initial
configuration of the observed agents. The robot elects a policy by forward-
simulating the interactions between itself and other agents.

In our application, it is especially difficult to sample bad

outcomes because we assume that all agents follow policies

that tend to avoid collisions and dangerous scenarios in the

first place. The bad outcomes arise from a few initial config-

urations whose neighborhoods may be fairly uninteresting.

In other words, the cost function tends to be tightly peaked

around these configurations. This problem is more prevalent

in complex multi-agent scenarios.

The key idea in this paper is that we explicitly search for

influential outcomes (those that have high cost and probabil-

ity) because they influence our decision making process the

most. Our contributions are as follows:

• We formulate a risk-aware objective for evaluating

policies to bias the sampling of initial configurations

towards likely, high-cost outcomes. This is in contrast

to the conventional approach which tried to minimize

the expected cost.

• We propose a search-based approach that quickly com-

putes an ordered list of promising perturbations. Fur-

thermore, it is anytime, finding increasingly influential

configurations at every iteration.

• We demonstrate the efficiency of this algorithm through

extensive simulation experiments (Sec. VI) and show

that using only 50 samples, our proposed method can

perform comparably to sampling with 500 samples.

• Finally, we incorporate this idea into MPDM and

demonstrate significant performance improvements on a

real robot platform navigating in a semi-crowded highly

dynamic environment (Sec. VII).



II. RELATED WORK

Several approaches to autonomous navigation in dynamic

environments restrict the state of the system exclusively to

the robot’s state. Reactive approaches provide a powerful

technique for dealing with multiple dynamic agents [2],

[3] by centering a potential field on them, but they suffer

from local minima problems. Obstacle avoidance techniques

[4], [5], provide a valid path avoiding possible obstacles or

other agents. Augmenting the dimensionality of the system

by considering other agents helps us model agent-agent

interactions, required to deal with more complex situations.

More recent approaches [6]–[8] account for the probabilistic

future locations of dynamic obstacles and have been effective

for safe navigation.

Inverse Reinforcement Learning approaches capture rel-

evant features that explain the interactions taking place

between dynamic agents [9], [10] although they may be

limited by the training datasets used.

Visual tracking of human motion faces similar challenges

in providing good solutions to these entangled environments.

Bera and Manocha [11] extract the trajectories of people,

improving their approach by a hybrid motion model of

pedestrians. Large et al. [12] clustered recorded trajectories

of pedestrians and used an informed Velocity Obstacle model

for planning. More recently, Vasquez [13] proposed a pre-

diction system based on a joint planning problem, assuming

some optimal objectives to be sought by the pedestrians.

The work of Fulgenzi et at. [14] addressed a full state

of the system by predicting the agents’ trajectories, over a

time horizon. However, this approach does not contemplate

changes to the current predictions of the scene according to

the robot’s plans. An example of reciprocal evaluation of

future trajectories and robot’s plans is the work of Trautman

et al. [15] using Gaussian Process to perform regression

on the agents’ trajectories and estimate the intentions of

dynamic agents or the work of [16], considering temporal

constraints and optimizing over several objectives. This paper

follows a similar approach of conditioning predictions on the

robot’s policy and vice versa.

In addition to a large state, we must deal with uncertainty.

POMDPs describe a complete theoretical framework to deal

with uncertainty, although they quickly become intractable.

Recent methods based on scenario sampling and forward

simulation have recently been applied to autonomous nav-

igation [17] and mapping [18], using similar approximations

to those considered in MPDM [1].

In this work, we show the benefits of biasing sampling

towards efficiently discovering high-cost outcomes for multi-

policy decision making (MPDM). This same idea has been

applied in Grisetti et al. [19] in the context of SLAM,

where they introduced an informative search over their cost

function.

III. PROBLEM FORMULATION

Our model of the environment consists of static obstacles

(e.g. walls) and a set of freely moving dynamic agents,

assumed to be pedestrians.

The robot maintains an estimate of the state of each

observed agent i, which consists of its position and velocity

in two dimensions and an inferred goal point. The collective

state xt consists of the robot state plus all the agents visible

to the robot at time t. Throughout the paper, we will refer

to x0 as the collective state at the current time. The robot

maintains an estimate P (x0) based on observations of the

pedestrians’ positions z.

An initial configuration x0 is forward simulated until s

time-steps, by iteratively applying the transition operator Tπ,

which yields the trajectory

X(π, x0) = {x0, Tπ(x0), T
2
π (x0), . . . , T

s
π(x0)}. (1)

The transition operator Tπ can be viewed as a “black-

box” – it can compute a likely future state X given an initial

configuration x0 and the robot’s proposed policy π. However,

other types of analysis (e.g. inversion) are not possible.

In practice, Tπ is a simulator that proposes the forward

dynamics of the agents. With a suitably small step size,

these future predictions reflect the closed-loop interactions

of agents (see [20] for details). Note that these simulations

are performed online.

IV. MULTI-POLICY DECISION MAKING APPROACHES

In MPDM, the robot dynamically switches from amongst

a set of closed-loop policies adapting to different situations.

A robot may Follow a person through a cluttered environ-

ment, or Stop in case of a commotion or high perceptual

uncertainty.

Our original implementation of MPDM [20] chooses the

policy with the lowest expected cost:

π∗ = argmin
π

Ex0{C
(
X(π, x0)

)
}, (2)

where the cost C
(
X(π, x0)

)
is associated with the current

state x0 upon choosing a policy π.

Note that the cost function C is not only a function

of the final state, but also all of the intermediate states

through the transition function Tπ. Therefore, C
(
X(π, x0)

)

is a highly nonlinear function of robot policy π, and an

initial configuration x0 whose evaluation involves a time

consuming forward propagation of the system. It might

compute, for example, high costs for trajectories that lead

to near-collisions.

The robot’s behavior reflects not only the mean state

estimates of the other agents, but also the uncertainty as-

sociated with those estimates. Estimation uncertainty and

measurement noise affect the quality of sampled future

trajectories and thereby system performance.

MPDM relies on quick re-planning in order to deal with

uncertainty, which constrains the number of forward propa-

gations that can be evaluated per candidate policy.

A. Cost Function

We consider the application where the robot is in a social,

dynamic environment. The robot is assigned a goal point and

it tries to reach the goal without inconveniencing people.



For the application domain described above, we developed

a cost function with two components: Blame which captures

the potential disturbance that the robot causes in the environ-

ment and Progress which indicates progress made towards

the goal.

Blame: We use the distance to the closest agent as a proxy

for the potential disturbance caused to the environment by

the robot.

B
(
X(π, x0)

)
=

s∑

k=0

max
j 6=r

u(‖vr‖ − ǫ)e−dr,j(k)/σ (3)

where dr,j(k) is the distance between the robot and agent

j and ‖vr(k)‖ is the speed of the robot at time-step k. u

is the step function which is 1 when the argument is ≥ 0
and 0 otherwise. If the robot is in motion (‖vr‖ > ǫ), the

decay rate σ determines how much proximity to other agents

is penalized.

Progress: We reward the robot for the distance-made-good

during the planning horizon.

PG
(
X(π, x0)

)
=

(
pr(s)− pr(0)

)
· epr→gr , (4)

where pr(k) is the position of the robot at time-step k and

epr→gr is the unit vector from the current position of the

robot to the goal gr .

The resultant cost function is a linear combination of both

C
(
X(π, x0)

)
= −αPG

(
X(π, x0)

)
+B

(
X(π, x0)

)
, (5)

where α is a weighting factor.

B. Sampling-based MPDM

In our previous work [20], we used Monte Carlo sampling

from the estimator’s posterior distribution P (x0) to approx-

imate the expected cost

Ex0{C
(
X(π, x0)

)
} ∼

1

N

N∑

n=1

C
(
X(π, x

n)
)
, (6)

where {x1, . . . , xN} is the set of samples drawn from the

distribution P (x0).
The dimensionality of the space of all possible initial

configurations is very large. Sampling is likely to miss

high-cost events, even if they are individually reasonably

probable (high probability density) because of the scarcity

of such outcomes in the state space (low total probability

mass of high-cost outcomes). In other words, collisions are

profoundly serious, but near misses are mundane. Good

planning performance, under these conditions, can require

a prohibitive number of samples.

C. Proposed Approach

The key idea in this paper is that we explicitly search for

influential outcomes (those that have high cost and probabil-

ity) because they influence our decision making process the

most. For instance, we may perturb the state elements of x0

while sampling in order to find high C(x0)P (x0) outcomes.

However, the samples used to search are no longer random

samples from the posterior distribution and cannot be used

to approximate the expectation according to Eq. 6.

We propose an anytime algorithm for discovering influ-

ential configurations through optimization of the following

objective function

max
x0

{P (x0)C
(
X(π, x0)

)
}. (7)

This objective allows us to use optimization techniques; un-

like sampling, it does not matter how we find the maximizing

configuration.

One could set aside some samples for the optimization

while the remaining samples could be used to calculate a

more informed estimate of expectation by constructing a

proposal distribution around the likely and dangerous config-

urations (importance sampling [21]). In this way, our method

can be used to augment sampling. We do not explore this

option in our experiments. Instead, we change our decision

making rule as follows

π∗ = argmin
π

[
max

x0

{P (x0)C
(
X(π, x0)

)
}
]
. (8)

Naturally, changing the objective function from Eq. 2 to

Eq. 8 changes the emergent behavior of the planner, and

the design of the cost function may need to be adjusted.

In practice, though, we have had no difficulty adapting our

systems to the proposed objective function. For safety-critical

systems in which it makes sense to be risk-aware, using

Eq. 8 may even be a more natural choice than minimizing

the expected cost of an outcome.

V. OPTIMIZATION

We now turn our attention to the problem of construct-

ing informative outcomes (maximizing P (x0)C
(
X(π, x0)

)
)

given a budget on the number of samples or forward simu-

lations.

In our application, it is especially difficult to sample

bad outcomes because we assume that all agents follow

policies that tend to avoid collisions and dangerous scenarios

in the first place (“unstable” points in some sense). The

bad outcomes arise from a few initial configurations whose

neighborhoods may be fairly uninteresting. In other words,

the cost function tends to be tightly peaked around these

configurations.

Unfortunately, we cannot rely on an analytical expression

for the gradient of P (x0)C
(
X(π, x0)

)
since the transition

function and thereby the cost function is non-differentiable.

Also, the dimensionality of the space of all possible initial

configurations is very large. Hence, gradient ascent requires

many forward simulations (one for every dimension) just to

compute the gradient numerically, enabling just one actual

gradient step.

Using gradient-free local optimization techniques such

as coordinate ascent is an alternative. Coordinate ascent

randomly explores dimensions restrictively, perturbing them

one at a time while keeping the other dimensions fixed (in

contrast with random sampling which tries to change all the

dimensions simultaneously). When a significant gradient is



found, it is exploited repeatedly. This restrictive exploration

becomes problematic when the cost function depends on

only a small subset of the observed agents. In these cases,

coordinate ascent wastes many samples perturbing unin-

teresting dimensions during exploration before finding an

improvement. In short, coordinate ascent is efficient when a

large fraction of the dimensions are interesting. Empirically,

we observe that coordinate ascent fails to outperform Monte-

Carlo sampling over P (x0), as we show in Sec. VI-A.

Rather than testing random perturbations to the initial

configuration, we use information available in the predicted

trajectories to find promising perturbations. We describe our

approach below.

A. Heuristic Cost Function

The cost function C
(
X(π, x0)

)
captures the complex in-

teractions between agents. This function is highly non-linear

and non-differentiable with respect to the initial configuration

x0. However, since collisions lead to high costs, we can use

domain knowledge to propose a heuristic cost function

C̃(x0) =
∑

i∈A

s∑

k=0

vir(k) · p̂ir(k)︸ ︷︷ ︸
C̃i(k)

(9)

where A is the set of agents, pir and vir are the velocity and

position of agent i with respect to the robot. The operatorˆ
indicates a unitary vector. The value of Eq. 9 is large when

the trajectories of the agents are consistently aligned for a

collision with the robot (see Fig. 2).

Fig. 2. Intuition for the heuristic cost function C̃(x0). At time-step k, the
robot is more likely to collide with the agent if the relative velocity vir(k)
aligns with the relative position pir(k). The gradient of the initial velocity
of agent i turns out to be

∑
s

k=0
p̂ir(k). Intuitively, this gradient promotes

collision with the robot.

The gradient ∇C̃ with respect to the initial conditions x0

corresponds to

∇C̃ =
∂C̃

∂x0
=

∑

i∈A

s∑

k=0

∂C̃i(k)

∂xk

∂xk

∂x0
. (10)

We approximate the gradient by ignoring the non-

linearities making the assumption that perturbations in the

initial state x0 reflect directly into xk i.e. ∂xk
∂x0
≈ 1. Thereby,

∇C̃ =
∂C̃

∂x0
≃

∑

i∈A

s∑

k=0

∂C̃i(k)

∂xk
︸ ︷︷ ︸

∇̃C̃i

= ∇̃C̃, (11)

where all states of the trajectory are contributing to modify

equally the initial conditions x0 as if in a voting scheme. The

main advantage of this approximation is that the gradient ∇̃C̃
can be computed directly from the trajectory.

B. Stochastic Gradient Ascent

With the series of approximations made in the pre-

vious section, we must remember that ∇̃C̃(x0) 6=
∇P (x0)C

(
X(π, x0)

)
. In order to limit divergence, we update

only one agent at a time and limit the step size η of every

update. In short, updating the configuration of all the agents

at once according to ∇̃C̃(x0) may even decrease the value

of P (x0)C
(
X(π, x0)

)
.

Algorithm 1 Stochastic Gradient Ascent

1: function HILLCLIMB(x0, π)

2: x ← x0

3: again:

4: best, gradients ← Evaluate(x, π)

5: while ∇C̃i∗=gradients.pop() do

6: x′ ← x + η∇C̃i∗

7: probcost, — ← Evaluate(x′, π)

8: if probcost > best then

9: x ← x′

10: goto again

11: end if

12: end while

13: return x

14: end function

15:

16: function EVALUATE(x, π)

17: X ← ForwardSimulate(x, π)

18: utility ← P (x)C(X)
19: gradients ← OrderedGradients(X)

20: return utility, gradients

21: end function

Stochastic gradient ascent [22] is a popular technique to

maximize complex objective functions consisting in summa-

tions, such as the one presented in Eq. 9. Consequently, ∇̃C̃
is composed of gradients for each agent ∇̃C̃i (Eq. 11). We

view these components as promising modular perturbations.

∇̃C̃ is decomposed into an ordered list of stochastic

gradients based on the proximity of the agent i to the robot

along their trajectories

dmin
i (X) = min

0≤k≤s
‖pir(k)‖. (12)

The sorted election (Alg. 1 line 5) is motivated by the fact

that the nearest agents potentially have a higher impact on

the resulting cost C(x0).
We propose an iterative approach (Alg. 1) where we

evaluate a perturbed solution according to ∇̃C̃i∗ where i∗

is the most promising agent (in the ordered list) whose

gradient is unexplored. If it improves the objective function,

the perturbation is retained and the ordered list is re-evaluated

based on the new sample. If the update fails, the next gradient



4
Fig. 3. An example demonstrating hill climbing (Alg. 1) for a given initial sample. Top-Left: Initial Sample. Table: Blue means that the gradient was
evaluated and an improvement was observed. Red means that the gradient was evaluated but no improvement was observed. The above hill climbing takes
13 forward propagations or samples. Here we see that the search algorithm can capture important multi-agent configurations that are likely to arise. The

arrows near the agents indicate the stochastic gradients ∇̃C̃i. Note that these perturbations promote collision with the robot. The blue arrows indicate

∇̃C̃i∗ , the most promising gradient. In this example, the robot is following the Go-Solo policy towards its goal gr .

is evaluated (line 5). The algorithm keeps performing updates

until the sample budget is consumed or until all the gradients

on the list have failed to update a new solution.

Figure 3 illustrates our procedure to order gradients,

update trajectories, and evaluate improvements.

VI. SIMULATION EXPERIMENTS

Our operating environment is an open space, freely tra-

versed by a set of agents while the robot tries to reach a

goal. The unconstrained nature of this domain makes the

trajectories more dependent on initial configurations. Agents

can randomly slow down or come to a stop. We set to α = 5
using a procedure similar to [20] so that both Blame and

Progress have more or less equal impact on the cost function.

One simulation ‘epoch’ consists of a random initialization

of agent states followed by a 5 minute simulated run at a

granularity ∆t = 0.1s. MPDM is carried out at 3Hz to match

the frequency of the sensing pipeline for state estimation in

the real-world experiment. The planning horizon is 3s into

the future.

A. Efficiency of Search

We tested the efficacy of the proposed algorithm in eval-

uating maxP (x0)C(x0) on 2k random scenarios from the

simulated domain. The scenarios were generated by running

the simulation and capturing the state of the system if an

agent is within 2m of the robot. To ensure independence,

the scenarios were spaced at least 10 seconds apart.

For each scenario, we sample 50k initial configurations.

Additionally, each of the local search algorithms (coordinate

Forward Simulation Budget

0 100 200 300 400 500

F
ra

c
ti
o
n
 O

f 
T
ru

e
 M

a
x

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Random Sampling

Stochastic Gradient Ascent

Coordinate-Ascent

Fig. 4. Efficacy of search in estimating maxP (x0)C
(
X(π, x0)

)
. Varying

the number of samples available, we show here the mean and standard error
of the fraction of the true maximum attained. The statistics are computed
using 2k randomly generated scenarios from the atrium domain. Each
scenario required at least one agent to be within 2m of the robot. The true
maximum for a scenario was estimated from 50k random initializations.

ascent and stochastic gradient ascent) were run 1k times

and the objective function values for all the intermediate

configurations are stored.

Varying the sample budget, the above datasets are boot-

strap sampled (with replacement) 1k times in order to obtain

the plot in Fig. 4. The ‘true maximum’ is the maximum

function value over all the random samples, and all the local

search samples. In short, each search algorithm is run 1k



Fig. 5. Random sampling often results in poor decision making. If the two humans move away from each other (Middle-Top), the robot would be able
to pass through without causing inconvenience. However, if the agents move too close to each other and interact in the path of the robot (Middle-Bottom),
Go-Solo is no longer a good policy for the robot. Initial configurations that result in such interactions should ideally be accounted for while evaluating the
utility of a policy (Go-Solo, in this case). Such configurations have high probability density but low probability mass and hence, Monte-Carlo sampling
from a cost-function agnostic posterior distribution often fails to capture these situations. Left: A real world scenario where two agents are walking towards
each other. Middle-Top: At their current speed and orientation, the agents would pass the robot and not obstruct it. This is mostly the case. Middle-Bottom:
However, the adverse situation where the two agents head straight at each other is also probable but is unlikely to be sampled (it has high probability
density but low probability mass). Right: The scenario 0.7s later. The robot decides to stop at the very last moment when the probability mass for the
imminent adverse scenario is large.

times on each of the 2k scenarios and the mean and standard

error of their performance is recorded.

Fig. 4 shows that random sampling fails to capture influen-

tial outcomes for complex scenarios and even increasing the

sample budget does not help much. In short, we just cannot

sample enough to guarantee that we find the bad outcomes.

Coordinate ascent explores the dimensions, but perturbs

them one at a time while keeping the other dimensions

fixed. In contrast, random sampling tries to change all the

dimensions simultaneously. Coordinate ascent wastes a lot

of samples perturbing non influential dimensions during

exploration, when only a small subset of observed agents are

truly affecting the cost, before finding an improvement. Due

to wasteful sampling, empirically, coordinate ascent performs

worse than random sampling for our domain.

We observe that the stochastic gradient search outperforms

random sampling and can consistently improve performance

with a bigger sample budget. Using only 50 samples, our

proposed method performs comparably to random sampling

with 500 samples. In this sense, we are about 10 times more

efficient than random sampling in this domain.

This shows that it is possible to efficiently search for high-

probability, high-cost configurations (influential outcomes).

VII. REAL-WORLD EXPERIMENTS

We implemented our system on the MAGIC robot [23], a

differential drive platform equipped with a Velodyne VLP-16

laser scanner used for tracking and localization. 1

1We encourage the reader to see our video
(https://www.youtube.com/playlist?list=
PLbPJN-se3-QiwIITl5cNsUV4-SRIyl9OM) demonstrating the
advantages of risk-aware MPDM.

An LED grid mounted on the head of the robot has been

used to visually indicate the policy chosen at any time.

We use a laptop with an Intel i7 processor and 8GB

RAM for our forward simulations and LCM [24] for inter-

process communication. Every 333ms (policy election cycle),

MPDM chooses a policy. This constrains the robot to a

budget of N = 50 forward simulations per core used (we

use only one core for the planning algorithm, although the

task is readily parallelizable). Although the policy election is

slow, the robot is responsive as the policies themselves run

at over 100Hz.

Sampling

Search

Minimum distance to human (m)

Fig. 6. Real-world results. The scenario described in Fig. 5 was repeated
20 times for each algorithm. The normalized histograms for the distance to
the closest human the robot is moving towards. We notice that close calls
and collisions are avoided by searching for likely high-cost outcomes. The
sampling based approach collided with agent on 3 runs out of the 20 while
our proposed approach never collided with another agent.

We ran two types of real-world experiments - one in which

volunteers were asked to repeat the scenario described in

Fig. 5 and the second in which six volunteers were asked

to randomly move around in the open space for 30 minutes

(Fig. 1). In both experiments, the planning algorithm being

used was unknown to the participants by randomly switching



between the two approaches. Fig. 6 shows the normalized

histograms for the distance to the closest human while the

robot is navigating. While the Monte-Carlo sampling failed

to consistently capture influential configurations resulting in

an optimistic utility for the Go-Solo policy, our approach can

consistently capture such configurations, making the robot

stop when required.

VIII. CONCLUSIONS

We have presented a method that efficiently searches for

likely configurations that have high cost and hence, influence

on the decision making. We formulate a new objective

function that captures this notion and propose an efficient

anytime optimization algorithm.

We use stochastic gradient ascent on a heuristic cost

function capturing collisions between the robot and agents

to provide promising perturbations. At every update of the

optimization process, we verify if the real cost function has

been improved. Our proposed search technique outperforms

other optimization methods such as Monte Carlo simulation

or coordinate ascent.

We have also demonstrated that incorporating this new

objective directly into MPDM improves performance of

navigation significantly in simulated and real scenarios. We

show that the system is more reliable, since it is able to

systematically capture potentially dangerous outcomes that

our former method was not able to consistently detect.

REFERENCES

[1] A. G. Cunningham, E. Galceran, R. M. Eustice, and E. Olson,
“MPDM: Multipolicy decision-making in dynamic, uncertain environ-
ments for autonomous driving,” in Proc. IEEE Int. Conf. Robot. and

Automation, Seattle, WA, USA, 2015.
[2] E. A. Sisbot, L. F. Marin-Urias, R. Alami, and T. Simeon, “A human

aware mobile robot motion planner,” IEEE Transactions on Robotics,
vol. 23, no. 5, pp. 874–883, 2007.

[3] G. Ferrer, A. Garrell, and A. Sanfeliu, “Social-aware robot navigation
in urban environments,” in European Conference on Mobile Robotics,
2013, pp. 331–336.

[4] R. Simmons, “The curvature-velocity method for local obstacle avoid-
ance,” in Proceedings of the International Conference on Robotics and

Automation. IEEE, 1996, pp. 3375–3382.
[5] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to

collision avoidance,” IEEE Robotics & Automation Magazine, vol. 4,
no. 1, pp. 23–33, 1997.

[6] T. Schouwenaars, “Safe trajectory planning of autonomous vehicles,”
Ph.D. dissertation, Massachusetts Institute of Technology, 2005.

[7] A. Bautin, L. Martinez-Gomez, and T. Fraichard, “Inevitable colli-
sion states: A probabilistic perspective,” in Robotics and Automation

(ICRA), 2010 IEEE International Conference on. IEEE, 2010, pp.
4022–4027.

[8] N. E. Du Toit and J. W. Burdick, “Robot motion planning in dynamic,
uncertain environments,” IEEE Transactions on Robotics, vol. 28,
no. 1, pp. 101–115, 2012.

[9] B. D. Ziebart, N. Ratliff, G. Gallagher, C. Mertz, K. Peterson,
J. A. Bagnell, M. Hebert, A. K. Dey, and S. Srinivasa, “Planning-
based prediction for pedestrians,” in Proceedings of the IEEE/RSJ

International Conference on Intelligent Robots and Systems, 2009, pp.
3931–3936.

[10] H. Kretzschmar, M. Spies, C. Sprunk, and W. Burgard, “Socially
compliant mobile robot navigation via inverse reinforcement learning,”
The International Journal of Robotics Research, 2016.

[11] A. Bera and D. Manocha, “REACH-Realtime crowd tracking using a
hybrid motion model,” in IEEE International Conference on Robotics

and Automation. IEEE, 2015, pp. 740–747.
[12] F. Large, D. Vasquez, T. Fraichard, and C. Laugier, “Avoiding cars

and pedestrians using velocity obstacles and motion prediction,” in
Intelligent Vehicles Symposium, 2004 IEEE. IEEE, 2004, pp. 375–
379.

[13] D. Vasquez, “Novel planning-based algorithms for human motion
prediction,” in IEEE Conference on Robotics and Automation, 2016.

[14] C. Fulgenzi, A. Spalanzani, and C. Laugier, “Probabilistic motion plan-
ning among moving obstacles following typical motion patterns,” in
Proceedings of the IEEE/RSJ International Conference on Intelligent

Robots and Systems. IEEE, 2009, pp. 4027–4033.
[15] P. Trautman, J. Ma, R. M. Murray, and A. Krause, “Robot navigation

in dense human crowds: Statistical models and experimental studies
of human–robot cooperation,” The International Journal of Robotics

Research, vol. 34, no. 3, pp. 335–356, 2015.
[16] G. Ferrer and A. Sanfeliu, “Multi-objective cost-to-go functions on

robot navigation in dynamic environments,” in Proceedings of the

IEEE/RSJ International Conference on Intelligent Robots and Systems,
2015, pp. 3824–3829.

[17] H. Bai, S. Cai, N. Ye, D. Hsu, and W. S. Lee, “Intention-aware online
pomdp planning for autonomous driving in a crowd,” in Robotics and

Automation (ICRA), 2015 IEEE International Conference on. IEEE,
2015, pp. 454–460.

[18] M. Lauri and R. Ritala, “Planning for robotic exploration based on
forward simulation,” Robotics and Autonomous Systems, vol. 83, pp.
15–31, 2016.

[19] G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for
grid mapping with rao-blackwellized particle filters,” IEEE transac-

tions on Robotics, vol. 23, no. 1, pp. 34–46, 2007.
[20] D. Mehta, G. Ferrer, and E. Olson, “Autonomous navigation in

dynamic social environments using multi-policy decision making,” in
Proceedings of the IEEE/RSJ International Conference on Intelligent

Robots and Systems, 2016, p. to appear.
[21] S. M. Ross, A course in simulation. Prentice Hall PTR, 1990.
[22] S. Amari, “A theory of adaptive pattern classifiers,” IEEE Transactions

on Electronic Computers, no. 3, pp. 299–307, 1967.
[23] E. Olson, J. Strom, R. Morton, A. Richardson, P. Ranganathan,

R. Goeddel, M. Bulic, J. Crossman, and B. Marinier, “Progress toward
multi-robot reconnaissance and the magic 2010 competition,” Journal

of Field Robotics, vol. 29, no. 5, pp. 762–792, 2012.
[24] A. S. Huang, E. Olson, and D. C. Moore, “LCM: Lightweight

communications and marshalling,” in Intelligent robots and systems

(IROS), 2010 IEEE/RSJ international conference on. IEEE, 2010,
pp. 4057–4062.


