
Backprop-MPDM: Faster risk-aware policy evaluation through efficient

gradient optimization

Dhanvin Mehta1 Gonzalo Ferrer2 Edwin Olson1

Abstract— In Multi-Policy Decision-Making (MPDM), many
computationally-expensive forward simulations are performed
in order to predict the performance of a set of candidate
policies. In risk-aware formulations of MPDM, only the worst
outcomes affect the decision making process, and efficiently
finding these influential outcomes becomes the core challenge.
Recently, stochastic gradient optimization algorithms, using a
heuristic function, were shown to be significantly superior to
random sampling.

In this paper, we show that accurate gradients can be
computed – even through a complex forward simulation – using
approaches similar to those in deep networks. We show that
our proposed approach finds influential outcomes more reliably,
and is faster than earlier methods, allowing us to evaluate more
policies while simultaneously eliminating the need to design an
easily-differentiable heuristic function. We demonstrate signif-
icant performance improvements in simulation as well as on a
real robot platform navigating a highly dynamic environment.

I. INTRODUCTION

Multi-Policy Decision Making (MPDM) [1], [2] dynami-

cally switches between a set of candidate closed-loop poli-

cies, allowing it to adapt to different situations encountered

while navigating in an uncertain dynamic environment.

When first proposed, MPDM evaluated policies according

to the expected cost of the outcomes which naturally weights

outcomes according to their likelihood. But in risk-aware

settings [3], policies are evaluated according to the maximum

value of P (x)C(x), where P (x) is the probability density of

the outcome and C(x) is its cost. This risk-aware approach

tends to skew decision-making to award policies that have

fewer potentially dangerous outcomes. A key advantage is

that the evaluation of a policy can be seen as an optimization

problem, as opposed to the computation of a probabilistic

expectation.

The major challenges arise from the large space of possible

initial configurations as well as the sensitivity of the forward

simulation to the initial configuration. As illustrated in Fig. 2,

initial configurations that result in bad outcomes may be indi-

vidually likely (high probability density), but scarce (low to-

tal probability mass) and are hence unlikely to be discovered

through random sampling, resulting in poor performance.

Recently, stochastic gradient optimization algorithms using

heuristic functions were shown to be significantly superior to

random sampling [3]. Although these approximate gradients

are useful for guiding search, they are still sub-optimal and

1The authors are at the University of Michigan, Ann Arbor.
{dhanvinm,ebolson}@umich.edu.

2G. Ferrer is with the CDISE department, Skolkovo Institute of Science
and Technology, Moscow, Russia. g.ferrer@skoltech.ru

This project was supported by the NSF CyberSees grant CCF 1442773.

Fig. 1. Repeated real-world experiments. We collect real-world data from
three repeatable experiments represented by different symbols 1) pedestrians
crossing orthogonal to the robot’s trajectory (+), 2) pedestrians crossing the
robot’s path obliquely at 45 degrees (∆) and 3) pedestrians walking slowly
in front of the robot (star). We measure the Time Stopped for every goal
reached as well as the Blame per meter traveled by the robot accumulated
by inconveniencing pedestrians. Lower the Time Stopped and Blame, the
better. Our proposed approach (green) can evaluate more policies in real-
time than earlier possible. With more candidate policies, the robot can find
good policies and can navigate safely without stopping unnecessarily.

limit the number of policies that can be evaluated reliably in

real-time. With limited options, the robot is often forced to

stop as seen in Fig. 1.

The key idea in this paper is representing a forward

simulation as a differentiable deep network and enabling

effective backpropagation. We show that despite our objec-

tive function being highly non-convex, we can efficiently

calculate accurate gradients that can be used to update

all agents simultaneously. The performance benefit of our

proposed approach increases as the number of other agents in

the environment increases, due to the increasing inadequacy

of the previously used heuristic function.

The contributions of this paper include the following:

1) We show that our forward simulation can be encoded

in a differentiable deep network and propose an efficient

procedure using backpropagation to compute an accurate gra-

dient of the objective function without the need for heuristics

(Sec. IV). Unlike Stochastic Gradient Ascent (SGA) [3], our

computed gradient accounts for interactions with other agents

and static obstacles.

2) We demonstrate the limitations of the SGA algorithm in

crowded configurations. We show that our proposed method

not only outperforms SGA in simple configurations but also

scales well with the number of agents.

3) Additionally, we show that our method allows us

to reliably evaluate more policies in real-time than pre-

viously possible, which results in significant performance

improvements on a real robot platform navigating in a highly

dynamic environment (Sec. V-B).

II. RELATED WORK

In this section, we summarize prior work related to both

the problem and the optimization technique: first, discussing

previous approaches in the area of autonomous navigation in

dynamic environments, then discussing techniques that use

backpropagation for optimal control and parameter optimiza-

tion.

Planning techniques and learning-based methods are

commonly used for navigation in dynamic environments.

Learning-based approaches [4], [5] use relevant features that

might explain the interactions taking place between dynamic

agents, but may be limited by the training datasets used. Chen

et al. [6] developed a deep reinforcement learning approach

to learn a time-efficient navigation policy that respected com-

mon social norms. The work of Fulgenzi et at. [7] predicted

a set of trajectories for each agent over a time horizon.

However, they did not address the interactions of those

predicted trajectories with the actual robot trajectory. The

work of Trautman et al. [8] is an example of the reciprocal

evaluation of future trajectories where the robot plans using

Gaussian Process. Ferrer [9] considers temporal constraints

and optimizes over several objectives. The essence of the

present paper is to efficiently capture those interactions,

particularly looking for likely adversarial outcomes.

POMDPs provide a rigorous formalization for incorporat-

ing uncertainty into planning, but rapidly become intractable

as the dimensionality of the state-space grows. Recently, ap-

proximate POMDP methods based on scenario sampling and

forward simulation have been applied to navigation [10] and

mapping [11]. Multi Policy Decision Making (MPDM) [1],

[2] is a framework for navigation in dynamic environments

under uncertainty, by dynamically switching between a set

of policies evaluated using forward simulations.

Classic techniques for trajectory optimization and optimal

control such as LQR for linear systems [12], or nonlinear

approaches such as iLQG [13] and LQR-Trees [14], use a

backwards process to efficiently update solutions. While our

proposed method uses a similar process, our application is

quite different. In our target domain, the complexity arising

from interactions between multiple agents in the environ-

ment makes finding an optimal solution impractical. Hence,

MPDM chooses from a fixed set of closed-loop policies

and in this paper, the proposed optimization evaluates these

candidate policies.

Backpropagation has been the de-facto method for pa-

rameter optimization in neural networks since the 80’s.

Seminal works [15], [16] showed encouraging results using

neural networks to learn control actions from perception.

With increased computational power, Levine et al. [17] have

applied deep learning to much harder problems of end-to-

end robotic manipulation. Our representation of the forward

simulation as a differentiable deep network makes risk-

aware MPDM more amenable to learning methods. However,

Fig. 2. An illustration motivating risk-aware planning. The trajectories
arising from the most likely initial configuration for the agents (orange)
and the robot (green), like most outcomes of possible initial configurations
(dashed lines) are benign. Near misses are mundane as the agents in the
forward simulation tend to avoid collision. As a result, there may be a few
dangerous initial configurations that may be individually likely and yield
high-cost outcomes (red). While evaluating policies, likely collisions (red
stars) should be discovered as quickly as possible to allow larger candidate
policy sets for MPDM.

end-to-end learning is non-trivial in our domain. Complex

interactions between pedestrians and the robot’s closed-loop

policies make data collection and generalization challenging.

III. RISK-AWARE MULTI-POLICY DECISION MAKING

In this paper, we use non-holonomic motion models for

each observed agent i as well as for the robot. The robot

maintains a probabilistic estimate of each observed agents’

state - i.e. its position, velocity, angular velocity and inferred

policy. An agent’s policy πi = (vdes, gsub), expresses an

intent to move towards sub-goal gsub at a desired speed vdes.

The collective state xt ∈ X consists of the states of the robot

and all observed agents at time t. Throughout the paper, we

will refer to x0 as the collective state of all agents and the

robot’s state at the current time. The probabilistic estimate

P (x0) is based on past observations of the pedestrians’

positions1. The robot’s policy π is elected from amongst a

set of closed-loop policies Π.

An initial sampled configuration x0 is forward simulated

H time-steps (through t = 1, . . . , H), by recursively apply-

ing the transition function T : X → X to yield a trajectory

X(x0) = {x0, T (x0), T
2(x0), . . . , T

H(x0)}

= {x0,x1,x2, . . . ,xH},

where xt ∈ X is the collective state consisting of the robot

state plus all the agents at time t of the forward simulation.

The transition function T () captures the trajectory that each

agent is executing while at the same time considering the

interactions with all other agents.

The cost function C
(

X(x0)
)

assigns a scalar value to the

outcome of a simulation. Like earlier work [3], we use a cost

1Several methods can be used for estimating P (x0) based on past
trajectories of agents. We use a Kalman Filter to infer position and velocity
and a Naive Bayes Classifier to infer an agent’s policy parameters.

function that penalizes the inconvenience the robot causes to

other agents in the environment (Blame) along the predicted

trajectory and rewards the robot’s progress towards its goal

(Progress).

In Risk-aware MPDM, the robot’s policies are evaluated

based on the most influential (likely and high-cost) outcome

that may occur. Such outcomes are discovered by optimizing

a probabilistic cost surface max
x0

{P (x0)C
(

X(π,x0)
)

}, in-

stead of the expected value of the cost function approximated

by sampling.

Algorithm 1 describes the policy election for risk-aware

MPDM. Provided with a probability distribution over initial

configurations, P (x0), a set of candidate policies, Π, and

a forward simulation budget, Nπ, each candidate policy is

evaluated (scored) according to the most influential (worst-

case) outcome discovered within the computational budget.

The objective function P (x0)C(X) can have multiple

local-minima depending on the number of agents and the

complexity of the initial configuration. Finding the global

maximum through exhaustive search is computationally in-

feasible due to the large state-space. Our goal is to quickly

find an influential configuration whose value is comparable to

the global optimum even if it may not be the highest-valued

configuration.

Algorithm 1 Policy Election for Risk-aware MPDM

1: function POLICY-ELECTION LOOP(P (x),Π, Nπ)

2: for π ∈ Π do

3: Initialize Uπ, n← 0
4: while n < Nπ do

5: Sample x0 ∼ P (x)

6: U∗, nopt ← Optimize(x0, π)
7: n ← n+ nopt

8: Uπ ← max{U∗, Uπ}
9: end while

10: end for

11: π∗ ← argminπ Uπ

12: end function

Our algorithm samples an initial configuration from P (x0)
(Line 5) and optimizes it, perturbing the sampled configu-

ration iteratively towards increasingly influential outcomes

until convergence to a local optima whose objective function

value is U∗ (Line 6). The number of forward simulations

nopt used by an optimization procedure corresponds to

its rate of convergence. Upon convergence, a new initial

configuration is sampled and this process is repeated until

the forward simulation budget Nπ is consumed. The util-

ity of a policy Uπ is the most influential (highest-valued)

configuration encountered. The policy with the least risk is

elected.

In the next section, we address the problem of computing

the function Optimize(x0, π) efficiently using backpropa-

gation (BP), overcoming the limitations of our previous

optimization technique, Stochastic Gradient Ascent (SGA).

...

...

...

...

Fig. 3. A deep network representation for our cost function. The initial
configuration x0 propagates through several layers, each representing the
transition function T . The output of layer t determines a cost Lt(xt). Our
cost function C(X(x0)) accumulates costs calculated at each time-step
along the forward simulated trajectory.

IV. COMPUTING ACCURATE GRADIENTS

A. Network Architecture

Deep neural networks model complex functions by com-

posing (chaining) relatively simple functions (convolutions

or ReLU modules). Similarly, a forward simulation captures

the complex dynamics of the system using simple one-step

transition functions T .

Since our cost function is a linear combination of costs

computed along the trajectory, we can conceptualize the

forward simulation as a deep network (Fig. 3) that outputs a

trajectory cost C(X(x0)) based on the input initial config-

uration x0.

Let Lt(xt) be the cost accrued at time-step t for the state

xt. We define a function Φ(t,X) that accumulates the cost

of a trajectory, from the final time H backwards to the initial

time t = 0

Φ(t,X) =

H
∑

τ=t

Lτ (xτ). (1)

Our objective cost can be expressed as C(X) = Φ(0,X).
We can formulate Φ recursively as:

Φ(t,X) = Φ(t+ 1,X) + Lt(xt). (2)

We want to compute ∇x0
C(X) = ∇x0

Φ(0,X). The

gradient of the cost at time-step H is

∇xH
Φ(H,X) =

∂Φ(H,X)

∂xH

=
∂LH(xH)

∂xH

. (3)

We can compute the gradient iteratively from time-step H

...

...

2

1

2

1

Fig. 4. Block diagram of the transition function. At each time-step, an

agent i (in this case, the robot) is repelled by other agents (f
j
rep) and

attracted towards its sub-goal gsub in accordance to the Social Force Model
(SFM). Pedestrians are modeled using the HSFM model where the social
force [18] acts as a control input for the Human Locomotion Model. The
robot is modeled like a unicycle and the social force fr

net is transformed
into a compliant reference signal (vref , ωref) for a lower-level velocity
controller.

backwards to t = 0 by applying (2) and expanding terms:

∇xt
Φ(t,X) =

∂Φ(t,X)

∂xt

=
∂{Φ(t+ 1,X) + Lt(xt)}

∂xt

=
∂Φ(t+ 1,X)

∂xt

+
∂Lt(xt)

∂xt

=
∂Φ(t+ 1,X)

∂xt+1

∂xt+1

∂xt

+
∂Lt(xt)

∂xt

=
∂Φ(t+ 1,X)

∂xt+1

∂T (xt)

∂xt

+
∂Lt(xt)

∂xt

.

(4)

Eqn. 4 can be used to efficiently compute ∇x0
C(X) as

long as the gradient of transition function can be computed

effectively.

B. Limitations of Earlier Approaches

We have recognized that the kinematic models used for

the agents have an impact on the quality of the gradients.

Previous implementations of MPDM used a simple double

integrator model for all agents with heuristics to restrict

lateral motion for more realistic simulation [2]. While the

simple model was useful for fast forward simulation, the

heuristics contain hard thresholds that manifest as zeros in

the matrix
∂T (xt)
∂xt

. As a result, useful gradients are truncated

(as highlighted by the box in Eqn. 4 hampering effective

backpropagation.

Previous methods [3] used a surrogate cost function de-

signed to avoid computing the gradient of the transition

function. Although these approximate gradients are useful

Fig. 5. Backpropagation finds increasingly influential outcomes. The
forward propagated outcome of the sampled initial configuration (Top) is
not discouraging for the robot as it does not inconvenience either agent. For
agents i = {1, 2}, the computed gradients ∇

x
i
0

ln
(

C(X)
)

(Blue) drive the

agents towards configurations where the robot would inconvenience them
under its current policy while ∇

x
i
0

ln
(

P (x0)
)

(Green) drive them to more

likely configurations. The agents can be simultaneously updated resulting
in a more influential configuration (Bottom).

for guiding search, they are still sub-optimal. Moreover,

designing such a function is difficult and ultimately ad-hoc.

C. Our proposed transition function

In this paper, we use non-holonomic kinematic models that

augment the agent’s state with angular velocity to capture the

effect of lateral forces. This model ensures the differentia-

bility of T while maintaining realistic human motion in the

forward simulation.

Specifically, we use the headed social force model

(HSFM) [18] for all the pedestrians and a unicycle-like

model for the robot as described below. For the robot, the net

force is computed using the SFM f r
net, but due to the inherent

constraints on a wheeled platform, we transform f r
net into

a compliant reference signal (vref , ωref) for a lower-level

velocity controller

[

vref
ωref

]

t+1

=

[

cos(θ) sin(θ)
− sin(θ) cos(θ)

] [

1 0
0 1

l

]

f r
net. (5)

The lookahead distance l determines the tendency of the

robot to turn to compensate the lateral force. The robot’s

state is then propagated towards the reference signal using a

first-order model for each of the independent wheel velocity

controllers and a unicycle plant model.

D. Backpropagation

Our proposed transition function layer T (xt) (Fig. 4)

allows us to compute accurate gradients of the transition

function. Eqn. 4 can now be implemented efficiently via

1 2 3 4 5 6 7 8

Agents in neighbourhood

0

50

100

150

200

250

300

350

400
#

 I
te

ra
ti
o

n
s
 t
o

 fi
n

d
 5

0
%

 o
f

g
lo

b
a

l
m

a
x
.

BP

SGA

Random

Proposed
Method

Fig. 6. Degradation of SGA in crowded scenarios. For each algorithm, we
estimate the mean and standard error of the number of iterations (forward
simulations) taken to discover an influential outcome varying the number
of agents in the robot’s vicinity, and thereby the dimensionality of the
search space. The lower the slope, the better, more robust the algorithm to
complex scenarios with high-dimensional search spaces. Random sampling,
as expected, requires many samples even in simpler configurations (1 agent).
SGA cannot find influential outcomes efficiently in complex scenarios with
multiple agents, scaling so poorly that for more than 6 agents it performs
worse than random sampling. BP is able to find those adverse outcomes
even for crowded scenarios with 8 people.

backpropagation, where
∂T (xt)
∂xt

and
∂Lt(xt)

∂xt
are computed

during the forward propagation and cached.

Fig. 5 illustrates one iteration of gradient ascent using

backpropagation through a simple initial configuration x0

consisting of two agents and the robot executing the Go-

Solo policy, where the robot moves straight towards its goal

gr, while trying to avoid pedestrians. The heuristic-based

stochastic gradient method (SGA) computed approximate

gradients for each agent and perturbed one agent at a time

to avoid divergence. In contrast, by computing accurate

gradients, we can perturb all the agents simultaneously

without divergence. The gradient also accounts for agent-

agent interactions as well as static obstacles. Each agent’s

update rate is determined using line-search along the gradient

direction

V. EXPERIMENTS

The simulated environment consists of an open space,

freely traversed by 15 agents that can randomly change

speed or direction while the robot tries to reach its goal.

The unconstrained domain allows for a large number of

possible outcomes and makes the trajectories more dependent

on initial configurations, which makes policy evaluation

challenging. MPDM relies on quick decision making and re-

planning (every 300ms) to react to sudden and unexpected

changes in the environment.

Probabilistic Estimates: A pedestrian can suddenly come

to a stop, slow down or speed up. We model this as a

distribution over the preferred speed of each agent that is

a mixture of two truncated Gaussians - one centered around

the estimated most-likely current speed with a σ = 0.4m/s
to account for speeding up or slowing down and a truncated

0 1 2 3 4 5 6 7 8 9 10

Blame per meter travelled (1/m)

0.5

1

1.5

2

2.5

3

3.5

4

4.5

T
im

e
 S

to
p

p
e

d
 (

s
)

t
p

=1s

t
p

=0.3s

t
p

=0.3s
t
p

=0.3s
t
p

=1s
t
p

=1s

SGA with
10 Policies

SGA with
2 Policies

BP with
10 Policies

Be

Fig. 7. Our proposed method, BP can evaluate 10 policies reliably in real-
time, while SGA cannot. We compare the performance of various algorithms
on 6 hours of navigation in our simulated environment. We measure the Time

Stopped for every goal reached as well as the Blame per meter traveled by
the robot. For each algorithm, we use bootstrap sampling to estimate the
mean and standard error for these metrics, represented by the axes of an
ellipse. Lower the Blame or Time Stopped, the better. We run the simulator in
real-time allowing a planning time tp = 0.3s. Although SGA can evaluate
the smaller policy set reliably in real-time, the lack of options results in
frequent Stopping. Unfortunately, SGA cannot evaluate a larger policy set of
10 policies reliably and accumulates large Blame. Since BP can evaluate the
larger policy set more quickly and reliably than SGA , the robot navigates
safely (low Blame) in real-time without Stopping unnecessarily. The benefits
of risk-aware MPDM with the larger policy set can also be observed in the
attached video. Upon slowing down the simulator (three times slower than
real-time) to allow an unrealistic planning time of tp = 1s, we observe that
SGA with 10 policies is able to drastically reduce Blame. However, even
then BP outperforms SGA.

half Gaussian with a peak at 0 and σ = 0.2m/s to account

for coming to a sudden stop.

A pedestrian can also suddenly change direction without

signaling. In order to account for uncertain direction for each

agent, the robot assumes a Gaussian centered around the

agent’s estimated most-likely orientation and σ = 30◦ that

determines the agent’s way-point. All truncated Gaussians

are restricted to µ± 1.5σ.

A pedestrian’s sub-goal is inferred from a set of salient

points using a Naive Bayes classifier.

Cost Function: For a sampled initial configuration, the

predicted trajectory is evaluated using a cost function. High-

cost outcomes correspond to those where the robot in-

conveniences other agents by driving too close to them,

thus accumulating high Blame. The robot is also rewarded

according to the Progress it makes towards the goal. These

metrics are defined in greater detail in [3].

A. Simulation Experiments

We have used the same simulation environment that was

used in [3] to demonstrate the limitations of Stochastic Gra-

dient Ascent (SGA) in crowded scenarios, and validate the

scalability of our proposed approach using backpropagation

(BP).

1) Varying the number of agents: We generated a dataset

consisting of 16k randomly chosen simulated scenarios

where at least one agent was present within 5m of the robot.

We then sort them based on the number of agents in the

robot’s neighborhood.

Fig. 8. Real situations illustrating the benefits of risk-aware MPDM with many policies. The sequence of images depict different situations that the robot
encounters as it makes its way towards its goal. Dashed segments denote portions of the robot’s trajectory (green lines) where it slowed down. The orange
tracks represent the trajectories of relevant pedestrians. The lines were manually superimposed on the video after careful examination of the corresponding
logs. The robot slows down upon discovering possible imminent collision (a and c) and turns appropriately to avoid them when possible (a and e) as
denoted by the white ellipses. By dynamically switching between multiple policies, the robot is able to navigate safely, without stopping unnecessarily.

Our objective function P (x0)C(X) is defined over innu-

merable possible initial configurations belonging to a high-

dimensional continuous space that scales linearly with the

number of agents considered. For each scenario, 2k random

samples were optimized and the worst-case outcome was

used to approximate the global optimum.

We now vary the number of agents in the robot’s vicinity,

thus increasing the complexity of the scenario and the

dimensionality of the state space. For reliable real-time

policy evaluation, influential outcomes must be detected

quickly. We estimate the number of iterations needed by

each algorithm to achieve a certain fraction (50%) of the

worst outcome in the dataset (find an influential outcome).

For each algorithm, the experiment is run 1k times on each

scenario. We use bootstrap sampling (with replacement) on

our data-set as in [3] to estimate the mean and standard error

of their performance.

Stochastic Gradient Ascent computes approximate agent-

specific gradients of a simplified cost function. In order to

limit the divergence arising due to these approximations, the

stochastic gradients are ranked using a heuristic function

and only the most promising agent is perturbed at a time.

Despite performing well in scenarios involving few agents,

this method does not scale well to more challenging crowded

settings. Fig. 6 shows that although all the algorithms take

longer to find influential outcomes as the complexity of the

environment grows, the performance of SGA deteriorates

sharply for more than 3 agents. Beyond 6 agents, it performs

as poorly as random sampling since it takes a long time

to converge from a sampled initial configuration to a local

optimum. Backpropagation, on the other hand, overcomes

these limitations as it computes accurate gradients, and all

agents can simultaneously be updated without divergence.

2) Increasing the number of candidate policies for Risk-

aware MPDM: Through 6 hours of navigation in our sim-

ulated environment, we demonstrate that our proposed ap-

proach, unlike SGA, can reliably evaluate a large policy set.

Each simulation ‘epoch’ consists of a random initialization

of agent states followed by a 5 minute simulated run at a

granularity ∆t = 0.15s. In our simulator, the observations z

are modeled using a stationary Gaussian distribution with

uncorrelated variables for position, speed and orientation

for the agent. We parameterize this uncertainty by a scale

factor {σpx
, σpy

, σ|v|, σθ} = {10cm, 10cm, 10cm/s, 15◦}.
The corresponding diagonal covariance matrix is denoted

by diag(σpx
, σpy

, σ|v|, σθ). We do not perturb the goal and

assume no angular velocity (ignoring any uncertainty). These

uncertainties are propagated in the posterior state estimation

P (x|z).

Our simulation experiments are run on an Intel i7 proces-

sor and 8GB RAM to mimic the computational capabilities of

our robot. In order to react to sudden changes, MPDM relies

on quick re-planning. The robot must replan every 300ms for

effective real-time navigation. We evaluate the performance

of risk-aware MPDM using 2 candidate sets of policies - a

large candidate set with 10 policies, and a small set with 2

policies:

1) 2 Policies - {Go-Solo, Stop} - The robot evaluates

going straight towards the goal at maximum speed

(1.5m/s) and stops if it senses danger.

2) 10 Policies - { (Fast, Medium, Slow)×(Straight, Left,

Right), Stop} - Rather than going straight towards the

goal at maximum speed, the robot may also choose

to go at Medium speed (0.9m/s) or Slowly (0.2m/s).

Simultaneously, the robot can also choose to create a

sub-goal to the Left or Right of the goal instead of

going Straight to the goal as in Go-Solo.

We record the Time Stopped per goal reached, as well as the

Blame normalized by the distance to goal (Blame per meter

traveled). Time Stopped indicates the failure of the planner to

find a safe policy. With a larger policy set, the robot is more

likely to find a safe policy, and Stops less often. However,

if the robot cannot evaluate its policy set quickly enough, it

is unable to react to sudden changes in the environment and

accumulates Blame. Ideally we would like a robot navigate

safely (low Blame), with minimal Stop-and-Go motion.

Fig. 7 shows how the inefficiencies in SGA become a

performance bottleneck. While SGA can navigate safely

(low Blame) with the small policy set, it often fails to

find safe policies and stops. With 10 policies, SGA fails

to find influential outcomes fast enough resulting in high

Blame. Our proposed method, BP can reliably evaluate the

large policy set in real-time, which significantly improves

navigation performance.

B. Real-World Experiments

We implemented our system on the MAGIC robot [19], a

differential drive platform equipped with a Velodyne VLP-16

laser scanner used for tracking and localization. We use LCM

[20] for inter-process communication. Every 300ms, MPDM

evaluates a set of policies and chooses the least risky one.

Although the policy election is slow, the robot is responsive

as the policies themselves run at 50Hz.

Seven volunteers were asked to move towards marked

points around an open space for 45 minutes. Fig. 8 demon-

strates the emergent behavior through an 8 second time-

line. We encourage the reader to see our attached video

(https://goo.gl/WgXW55) demonstrating the advan-

tages of large policy sets for risk-aware MPDM.

Fig. 1 shows data from 90 minutes of real-world experi-

ments in which volunteers were asked to repeat three fixed

scenarios while the robot made its way towards its goal. For

both, our proposed approach as well as SGA, each scenario

was repeated for 15 minutes. As observed in simulation, SGA

was too slow to evaluate the larger policy set reliably and

was unsafe to deploy on our robot. Using SGA with two

policies (purple), the robot fails to find safe policies and stops

often. Our proposed method (green) can reliably evaluate 10

policies in real-time (similar Blame as compared to SGA

with just two policies) and as a result, it is more likely to

find safe policies (low Time Stopped).

VI. CONCLUSIONS

We have presented a differentiable deep network that can

encode a forward simulation, allowing effective backpropa-

gation to compute the gradient of a complex cost function

efficiently. Our approach quickly finds influential outcomes

even in challenging scenarios with multiple agents. We

overcome the limitations of our previous approach (SGA)

[3] eliminating the need for heuristics, and its limitations.

Unlike SGA, the gradient computed using Backprop-MPDM

accounts for interactions with other agents and static obsta-

cles.

We have shown that Backprop-MPDM can reliably evalu-

ate more policies in real-time than previously possible, which

results in significant performance improvements on a real

robot platform navigating in a highly dynamic environment.

REFERENCES

[1] A. G. Cunningham, E. Galceran, R. M. Eustice, and E. Olson,
“MPDM: Multipolicy decision-making in dynamic, uncertain environ-
ments for autonomous driving,” in Proc. IEEE Int. Conf. Robot. and

Automation, Seattle, WA, USA, 2015.
[2] D. Mehta, G. Ferrer, and E. Olson, “Autonomous navigation in

dynamic social environments using multi-policy decision making,” in
Proceedings of the IEEE/RSJ International Conference on Intelligent

Robots and Systems, 2016, pp. 1190–1197.
[3] ——, “Fast discovery of influential outcomes for risk-aware MPDM,”

in Proceedings of the IEEE International Conference on Robotics

and Automation, 2017, https://april.eecs.umich.edu/papers/details.php?
name=mehta2017icra.

[4] B. D. Ziebart, N. Ratliff, G. Gallagher, C. Mertz, K. Peterson,
J. A. Bagnell, M. Hebert, A. K. Dey, and S. Srinivasa, “Planning-
based prediction for pedestrians,” in Proceedings of the IEEE/RSJ

International Conference on Intelligent Robots and Systems, 2009, pp.
3931–3936.

[5] H. Kretzschmar, M. Spies, C. Sprunk, and W. Burgard, “Socially
compliant mobile robot navigation via inverse reinforcement learning,”
The International Journal of Robotics Research, 2016.

[6] Y. F. Chen, M. Everett, M. Liu, and J. P. How, “Socially aware
motion planning with deep reinforcement learning,” arXiv preprint

arXiv:1703.08862, 2017.
[7] C. Fulgenzi, A. Spalanzani, and C. Laugier, “Probabilistic motion plan-

ning among moving obstacles following typical motion patterns,” in
Proceedings of the IEEE/RSJ International Conference on Intelligent

Robots and Systems. IEEE, 2009, pp. 4027–4033.
[8] P. Trautman, J. Ma, R. M. Murray, and A. Krause, “Robot navigation

in dense human crowds: Statistical models and experimental studies
of human–robot cooperation,” The International Journal of Robotics

Research, vol. 34, no. 3, pp. 335–356, 2015.
[9] G. Ferrer, “Social robot navigation in urban dynamic environments,”

Ph.D. dissertation, Universitat Politècnica de Catalunya, Spain, Octo-
ber, 2015.

[10] H. Bai, S. Cai, N. Ye, D. Hsu, and W. S. Lee, “Intention-aware online
POMDP planning for autonomous driving in a crowd,” in Proc. IEEE

Int. Conf. Robot. and Automation, 2015, pp. 454–460.
[11] M. Lauri and R. Ritala, “Planning for robotic exploration based on

forward simulation,” Robotics and Autonomous Systems, vol. 83, pp.
15–31, 2016.

[12] R. F. Stengel, Optimal control and estimation. Courier Corporation,
2012.

[13] E. Todorov and W. Li, “A generalized iterative LQG method for
locally-optimal feedback control of constrained nonlinear stochastic
systems,” in Proceedings of the American Control Conference. IEEE,
2005, pp. 300–306.

[14] R. Tedrake, I. R. Manchester, M. Tobenkin, and J. W. Roberts, “LQR-
Trees: Feedback motion planning via sums-of-squares verification,”
The International Journal of Robotics Research, vol. 29, no. 8, pp.
1038–1052, 2010.

[15] D. A. Pomerleau, “ALVINN: an autonomous land vehicle in a neural
network,” in Advances in Neural Information Processing Systems,
1989.

[16] K. J. Hunt, D. Sbarbaro, R. Żbikowski, and P. J. Gawthrop, “Neural
networks for control systems: a survey,” Automatica, vol. 28, no. 6,
pp. 1083–1112, 1992.

[17] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training
of deep visuomotor policies,” Journal of Machine Learning Research,
vol. 17, no. 39, pp. 1–40, 2016.

[18] F. Farina, D. Fontanelli, A. Garulli, A. Giannitrapani, and D. Prat-
tichizzo, “When Helbing meets Laumond: the headed social force
model,” in IEEE Conference on Decision and Control (CDC), 2016,
pp. 3548–3553.

[19] E. Olson, J. Strom, R. Morton, A. Richardson, P. Ranganathan,
R. Goeddel, M. Bulic, J. Crossman, and B. Marinier, “Progress toward
multi-robot reconnaissance and the magic 2010 competition,” Journal

of Field Robotics, vol. 29, no. 5, pp. 762–792, 2012.
[20] A. S. Huang, E. Olson, and D. C. Moore, “LCM: Lightweight com-

munications and marshalling,” in IEEE/RSJ International Conference

on Intelligent Robots and Systems. IEEE, 2010, pp. 4057–4062.

