
Multi-Policy Decision Making for Reliable Navigation in
Dynamic Uncertain Environments

by

Dhanvin Mehta

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science And Engineering)

in the University of Michigan
2018

Doctoral Committee:

Professor Edwin B. Olson, Chair
Professor Dmitry Berenson
Professor Odest Chadwicke Jenkins
Professor Benjamin Kuipers
Professor Peter Stone, University of Texas at Austin

TABLE OF CONTENTS

List of Figures . iv

Abstract . vi

Chapter

1 Introduction . 1

1.1 Motivation . 1
1.2 Intelligence and Emergent Behavior in Mobile Robots 3

1.2.1 Behavior-Based (Reactive) Robotics 4
1.2.2 Hybrid Planners . 5
1.2.3 MPDM as a Behavioral Planning Framework 6

1.3 MPDM for Navigating Dynamic, Social Environments 6
1.4 Discovering Influential Outcomes . 9
1.5 Continuously Parameterized Policies . 11
1.6 Contributions . 13

2 Background . 14

2.1 Predicting Pedestrian Motion . 15
2.2 Planning in Dynamic Environments . 16

2.2.1 Classical Motion-Planning Based Approaches 16
2.2.2 Reactive Planners . 17
2.2.3 Trajectory Optimization Over Longer Time Horizons 17
2.2.4 Learning-Based Approaches . 19

2.3 MPDM Approximates a POMDP . 20

3 Multi-Policy Decision Making for autonomous navigation in dynamic social
environments . 26

3.1 Introduction . 26
3.2 Contributions . 27
3.3 Method . 28

3.3.1 Candidate Policies . 28
3.3.2 Prediction using Forward Simulation 31
3.3.3 Cost Function . 32
3.3.4 Sampling-Based Multi-Policy Decision Making 32

3.4 Results . 34
3.4.1 Simulation . 34

ii

3.4.2 Real-World Experiments . 40
3.5 Summary . 40

4 Risk-Aware Multi-Policy Decision Making . 43

4.1 Introduction . 43
4.2 Contributions . 44
4.3 Backprop-MPDM . 45

4.3.1 Network Architecture . 47
4.3.2 Enabling Effective Backpropagation 48

4.4 Results . 52
4.4.1 Efficiency of Search . 52
4.4.2 Increasing the Number of Candidate Policies 54
4.4.3 Real-World Experiments . 56

4.5 Summary . 59

5 C-MPDM: Continuously-parameterized risk-aware MPDM by quickly dis-
covering contextual policies . 60

5.1 Introduction . 60
5.2 Contributions . 62
5.3 Method . 63
5.4 Results . 69

5.4.1 Simulation Experiments . 70
5.4.2 Real-World Experiments . 74

5.5 C-MPDM and MPEPC: A Comparative Study 77
5.5.1 Algorithmic Similarities and Differences 79
5.5.2 Structured Experiments . 80
5.5.3 Randomized Double-Blind Trials 83

5.6 Summary . 87

6 Conclusion . 89

6.1 Contributions . 89
6.2 Future Work . 91

6.2.1 Learning Policies . 91
6.2.2 Parallelizing MPDM for Multi-Modal Uncertainty 91
6.2.3 MPDM with Explicit Communication 92

Bibliography . 93

iii

LIST OF FIGURES

1.1 Mobile robots in social environments. 2
1.2 Complementary behavioral policies used to navigate a corridor. 5
1.3 A schematic of the Multi-Policy Decision Making (MPDM) framework. 8
1.4 An illustration motivating risk-aware planning. 10
1.5 A network representation for our cost function. 11
1.6 Continually-parameterized MPDM (C-MPDM) radically enhances the expres-

sivity and flexibility of the MPDM framework. 12

2.1 Limitations of a single potential field based policy. 17
2.2 An illustration of Model-Predictive Equilibrium-Point Control (MPEPC), a

state-of-the-art trajectory optimization technique. 18

3.1 Navigating a hallway by switching between different policies. 27
3.2 Our candidate policies are reactive planners based on the Social Force Model. . 29
3.3 Block diagram of the transition function for each time-step of the forward

simulation. 31
3.4 Approximating the expected utility of the Go-Solo policy through multiple

forward simulations. 34
3.5 Simulated indoor domains chosen to study MPDM’s navigation performance. . 35
3.6 Qualitative comparison of MPDM and the exclusive use of Go-Solo in a sim-

ulated environment. 36
3.7 Simulation results varying uncertainty in the environment (kz) for a fixed pos-

terior uncertainty (ke). 37
3.8 Navigation performance varying the degree of conservatism (ke

kz
= {0.25, 0.5 . . . 1.5})

of the estimator averaged over kz = {2, 4, . . . , 14}. 39
3.9 Real situations illustrating the emergent behavior from MPDM. 41
3.10 Real-world experiments comparing the performance of MPDM to a single

potential-field based approach . 42

4.1 An illustration motivating risk-aware planning. 44
4.2 A network representation of the cost function motivating the quick computa-

tion of accurate gradients . 48
4.3 Internals of the transition function for each time-step of the forward simulation. 49
4.4 Backpropagation finds increasingly influential outcomes. 50
4.5 Degradation of Stochastic Gradient Ascent in crowded scenarios. 53

iv

4.6 Our proposed method, Backprop-MPDM (BP) can evaluate more policies re-
liably in real-time than was previously possible. 54

4.7 A real-world example where random sampling often results in poor decision
making. 55

4.8 Repeated real-world experiments demonstrating that Backprop-MPDM can
find good policies, allowing safe navigation without unnecessary stopping. . . 57

4.9 An example of the benefits of enabling risk-aware MPDM with many policies. 58

5.1 Continuously parameterized MPDM (C-MPDM) greatly enhances the expres-
sivity of MPDM without increasing computational complexity. 61

5.2 Computing the gradient of the cost function with respect to ego-policy param-
eters. 64

5.3 Candidate ego-policy generation through iterative gradient-based optimization
(Alg. 4 - POLICY-GENERATION). 66

5.4 Simulation results showing that our proposed approach finds effective ego-
policy parameters quickly. 71

5.5 Due to its enhanced expressivity, C-MPDM can find good policies more often,
even other where methods cannot. 73

5.6 In repeatable real-world experiments, our proposed approach C-MPDM allows
the robot to modulate policy parameters appropriately so as to achieve low
trajectory Deviation while avoiding close encounters. 75

5.7 Robot trajectories from a real-world experiment. 76
5.8 Domain for real-world experiments to compare MPEPC and C-MPDM 78
5.9 Repeatable real-world experiments comparing C-MPDM and MPEPC 81
5.10 Emergent behavior from MPEPC and C-MPDM for a similar scenario. 82
5.11 Comparing C-MPDM with MPEPC through subjective and objective evalua-

tion of randomized double-blind trails. 84
5.12 Means and confidence intervals of measured objective metrics and subjective

feedback. 85
5.13 Volunteer feedback for MPEPC and C-MPDM, averaged across different trials. 86

v

ABSTRACT

Navigating everyday social environments, in the presence of pedestrians and other dy-
namic obstacles, remains one of the key challenges preventing mobile robots from leaving
carefully designed spaces and entering our daily lives. The complex and tightly-coupled in-
teractions between these agents make the environment dynamic and unpredictable, posing a
formidable problem for robot motion planning. Trajectory planning methods, supported by
models of typical human behavior and personal space, often produce reasonable behavior.
However, they do not account for the future closed-loop interactions of other agents with
the trajectory being constructed. As a consequence, the trajectories are unable to anticipate
cooperative interactions (such as a human yielding), or adverse interactions (such as the
robot blocking the way). Ideally, the robot must account for coupled agent-agent inter-
actions while reasoning about possible future outcomes, and then take actions to advance
towards its navigational goal without inconveniencing nearby pedestrians.

Multi-Policy Decision Making (MPDM) is a novel framework for autonomous navi-
gation in dynamic, uncertain environments where the robot’s trajectory is not explicitly
planned, but instead, the robot dynamically switches between a set of candidate closed-
loop policies, allowing it to adapt to different situations encountered in such environments.
The candidate policies are evaluated based on short-term (five-second) forward simulations
of samples drawn from the estimated distribution of the agents’ current states. These for-
ward simulations and thereby the cost function, capture agent-agent interactions as well as
agent-robot interactions which depend on the ego-policy being evaluated.

In this thesis, we propose MPDM as a new method for navigation amongst pedestrians
by dynamically switching from amongst a library of closed-loop policies. Due to real-
time constraints, the robot’s emergent behavior is directly affected by the quality of policy
evaluation. Approximating how good a policy is based on only a few forward roll-outs
is difficult, especially with the large space of possible pedestrian configurations and the
sensitivity of the forward simulation to the sampled configurations. Traditional methods
based on Monte-Carlo sampling often missed likely, high-cost outcomes, resulting in an
over-optimistic evaluation of a policy and unreliable emergent behavior. By re-formulating
policy evaluation as an optimization problem and enabling the quick discovery of poten-

vi

tially dangerous outcomes, we make MPDM more reliable and risk-aware.
Even with the increased reliability, a major limitation is that MPDM requires the system

designer to provide a set of carefully hand-crafted policies as it can evaluate only a few
policies reliably in real-time. We radically enhance the expressivity of MPDM by allowing
policies to have continuous-valued parameters, while simultaneously satisfying real-time
constraints by quickly discovering promising policy parameters through a novel iterative
gradient-based algorithm.

Overall, we reformulate the traditional motion planning problem and paint it in a very
different light — as a bilevel optimization problem where the robot repeatedly discovers
likely high-cost outcomes and adapts its policy parameters to avoid these outcomes. We
demonstrate significant performance benefits through extensive experiments in simulation
as well as on a physical robot platform operating in a semi-crowded environment.

vii

CHAPTER 1

Introduction

1.1 Motivation

Navigating dynamic social environments remains one of the key challenges preventing
mobile robots from leaving carefully designed spaces and entering our daily lives. Hu-
man motion is inherently unpredictable (pedestrians can suddenly stop or change direction
without signaling). The complex interactions between pedestrians and the robot give rise
to a large number of diverse possible future outcomes. Additionally, the robot must deal
with sensor noise and tracking errors. In such an environment, the robot should be able to
react to sudden and unexpected changes in the environment; its emergent behavior should
be quick, yet reliable.

Research on autonomous navigation began way back in 1966, with Shakey, the world’s
first mobile robot that could reason about its own actions [1]. Despite decades of progress in
the field of motion planning and control, the lack of robots in everyday environments today
is a testament to the limitations of the state-of-the-art for navigating dynamic social envi-
ronments. Many of the commercial deployments today (such as the Kiva warehouse-robot
system, or the Patrick shipping terminal at Brisbane) have segregated spaces for robots and
humans. Moreover, the robots are often guided by a centralized planning system and need
not account for uncertainty while navigating [2].

It is relatively easy to design mobile robots that are slow and safe. However, for emerg-
ing applications like autonomous vehicles or delivery robots moving at a high-speed, the
navigation algorithm must be able to deal with the large space of possible future outcomes
while staying reactive and reliable. While an overly-conservative robot moving slowly can
avoid collisions by stopping reactively, not only does it hurt productivity, but the emer-
gent behavior also makes it uncomfortable for humans to co-inhabit such spaces [3]. For
example, if an autonomous vehicle drives very slowly on the left-hand lane, it can frus-
trate other drivers, encouraging them to make a dangerous pass from the right. Similarly,

1

Figure 1.1: Mobile robots in dynamic environments. The ability of a robot to navigate
effectively amongst people is critical for services being commercialized today. From Top-
Left to Bottom-Right are pictures of a driverless shuttle Olli developed by Local Motors,
a last-mile delivery robot developed by Starship Technologies, a security robot, Anbot,
deployed at the Shenzhen airport, and an assistive warehouse robot from Fetch Robotics.

waiting too long at a left turn can cause traffic to back up or can block a crosswalk. In
situations like these, it is desirable for the robot to drive more aggressively without com-
promising safety. This dissertation presents Multi-Policy Decision Making (MPDM), a
novel behavioral planning framework to achieve quick and reliable emergent behavior in
dynamic, social environments.

The next section introduces the MPDM framework in the context of the popular plan-
ning and control architectures for mobile robots that have emerged over decades of re-
search. We begin by revisiting a crucial idea that emerged in the 1980s about how computer
programs can produce intelligent behavior. Is it necessary for intelligence to be innate, or is
it possible that intelligence is merely an interpretation of a complex system by an observer,
thereby existing only in ‘the eye of the beholder’?

2

1.2 Intelligence and Emergent Behavior in Mobile Robots

Representation was believed to be the key to artificial intelligence. The goal was to replicate
the human mind in a machine through a central cognitive system (analogous to the brain),
which could compute rational actions by reasoning over knowledge obtained through the
perception system [4]. Most research focused on assimilating and representing knowl-
edge in an attempt to model the world from a stream of sensory inputs [5]. Unfortunately,
modeling the real-world proved to be an extremely ambitious task and progress was slow.
Even after three decades, most robots could only operate in static and completely mapped
environments [6].

The real-world is full of non-determinism and we cannot predict a priori how it will
evolve. Optimizing actions based on imperfect predictions can be counter-productive, es-
pecially in a dynamic world where timing is critical [7]. Navigation algorithms that rely
heavily on high-fidelity models of the world continue to have limitations even today. Tra-
jectory planning methods [8–10] use models of human behavior to propagate the state of
the environment, but they fail to account for the closed-loop coupled interactions between
agents. Due to real-time constraints, these methods struggle to incorporate uncertainty into
the planning process. POMDPs [9] provide a principled approach to deal with uncertainty,
but they quickly become intractable. Even online POMDP solvers such as DESPOT [11],
which repeatedly compute optimal short-term policies are limited to small state-action
spaces due to the computational burden of reasoning over lots of low-probability outcomes
in real-time. Learning-based approaches [12–15] have recently made a lot of progress, but
they are limited by the training scenarios considered which might not be a representative
set of the diverse situations that may arise in the real world.

At the foundation of behavior-based robotics [7] is the profound realization that percep-
tion and action, alone, are sufficient to create the impression of intelligence in a complex
system. Through a series of thought experiments, Valentino Braitenberg [16] showed that
even extremely simple robots with no cognitive reasoning, could produce seemingly intel-
ligent behavior. Moreover, by progressively adding simpler components, it was possible to
build robots that appeared to be aggressive or cowardly, even though these behavioral traits
are merely interpretations of an observer trying to analyze the robot’s behavior. Simon’s
Law [17] notes that complex behavior can simply be a reflection of complexity in the en-
vironment. For example, on a complex terrain, simple reactive rules can mimic an ant’s
seemingly complex behavior.

With the idea that intelligent behavior can be synthesized without the need for explicit
knowledge representation and reasoning, Brooks introduced the subsumption architecture

3

for robotics [18]. The subsumption architecture decomposes the robot’s task into layers
of simple domain-specific behaviors (such as avoiding obstacles, wandering, or following
a wall), where each layer achieves a certain level of competance towards the overall task.
Each behavior is self-sufficient and reacts directly to the immediate stimulus without the
need for a centralized world representation. Different behaviors operate concurrently and
their individual responses were coordinated through a hierarchical arbitration scheme.

The ‘Creatures’ that Brooks built using the subsumption architecture were the most
reactive, robust and anthropomorphic mobile robots at that time [6, 19].

1.2.1 Behavior-Based (Reactive) Robotics

Subsumption is just one of several methods have been proposed for resolving the inde-
pendent responses of behaviors into a single action. The outputs of behaviors can be
fused together [20, 21] to produce a combined response, especially when the behaviors are
represented as potential-fields [22, 23]. Potential-field based methods became very pop-
ular [24, 25] and are still used for navigating dynamic environments even today [26, 27].
However, a reactive potential-field based controller can get stuck in local minima [28] and
in dynamic environments, can lead the robot into undesirable configurations due to their
short-sightedness [29].

Alternatively, competitive arbitration schemes can determine the ‘winning’ behavior
and thereby, the robot’s action in any scenario. Instead of deciding the arbitration scheme
a priori, the dominant behavior can be determined at run-time through goal-driven action
selection methods [30] or through a contextual voting-scheme [31, 32].

MPDM, like other behavior-based systems, switches between different policies to nav-
igate a social environment. For example, to navigate a crowded corridor, the robot uses
the complementary policies illustrated in Fig. 1.2. The robot may Go-Solo, moving as fast
as possible towards the goal while avoiding collision with pedestrians, or it may Follow

another person through the crowd, sacrificing speed in order to obtain a clear path, or it
may Stop in case of mounting uncertainty. However, unlike traditional behavior-based sys-
tems, MPDM reasons over a centralized probabilistic representation of the world through
multiple forward-simulations in order to choose the optimal policy for a given scenario
(Sec. 1.3). Hence, MPDM demonstrates intelligence as a result of innate reasoning as well
as emergent behavior from dynamically switching between complementary policies.

4

(a) Go-Solo Policy (b) Follow-other Policy (c) Stop Policy

Figure 1.2: MPDM uses a complementary set of closed-loop behavioral policies to navigate
a crowded corridor. In MPDM, rather than optimizing trajectories, a planning process
chooses from a set of complementary closed-loop policies. The color on the robot’s LED
ring indicates the elected policy. The robot may choose the (a) Go-Solo policy (green),
treating pedestrians as obstacles and overtaking them to reach its goal, or it may choose
to (b) Follow another pedestrian (blue) through the crowd, or it may Stop until it has a
clear path (red). By switching between different behavioral policies, the robot can adapt to
different situations it encounters while navigating a corridor.

1.2.2 Hybrid Planners

As Hanks and Firby [33] noted, two reasonable approaches for motion planning are 1)
planning carefully as far ahead of time as possible using rich models of the world and 2)
acting only at the last moment to reduce the effect of uncertainty. The two approaches
have complementary properties; the former is far-sighted but slower, and relies heavily
on model accuracy while the latter is responsive and more robust to uncertain, dynamic
environments, but is also myopic. Hybrid architectures attempt to get the best of both
worlds by simultaneously executing low-level reactive control and higher-level decision
making [34].

Typical hybrid solutions tend to decouple the two systems as much as possible. For ex-
ample, the low-level reactive process can responsible for obstacle avoidance and immediate
safety, while the higher level can take care of global path-planning. As long as the com-
ponents are decoupled and not in conflict, the hybrid system is easy to design. However, a
tighter coupling between the fundamentally disparate parts of the system is challenging and
often requires an intermediate coordinating component [35]. Despite a lot of research on
the design of such systems [36–39], the way in which the components should be partitioned
is still not well understood [7].

The MPDM framework is a novel hybrid-system, where the higher-level process di-
rectly models and reasons over possible outcomes from the (lower-level) policies. The
elected policy is a reactive controller, responsible for collision-avoidance. This disserta-
tion demonstrates the benefits of our tightly-coupled system for autonomous navigation in

5

dynamic, uncertain environments.

1.2.3 MPDM as a Behavioral Planning Framework

In Multi-Policy Decision Making (MPDM), the robot’s trajectory is not explicitly planned,
but instead, the robot dynamically switches between a set of closed-loop policies (behav-
iors), allowing it to adapt to different situations encountered in such environments. Further,
each candidate ego-policy is evaluated based on multiple forward-simulations of samples
drawn from the robot’s probabilistic estimate over not only the current state but also future
intentions of nearby agents.

When first introduced, MPDM demonstrated interesting emergent behavior such as
merging and overtaking in the context of autonomous driving on highways [40, 41]. How-
ever, the lanes and the ‘rules of the road’ in this domain impose a strong bias on future
outcomes and limit the plausible agent-agent interactions, thereby simplifying the prob-
lem. Earlier MPDM-systems could only deal with a small discrete set of policies for the
robot and other agents.

In this dissertation, we extend MPDM to more dynamic and unstructured social en-
vironments, where humans can instantaneously stop or change direction without signal-
ing. The robot must deal with a much larger and more diverse range of possible future
outcomes. To address these challenges, we fundamentally overhaul MPDM’s core policy
election process. We radically improve MPDM’s reliability and expressivity, not only en-
abling the robot to reason over continuous policy spaces for other agents (pedestrians, in
our case) but also allowing the robot to choose from an infinite set of ego-policies.

In the following sections, we formulate MPDM and summarize the core ideas and con-
tributions of this thesis that have made MPDM an effective and practical framework for
autonomous navigation in dynamic, uncertain environments to navigate in dynamic, un-
structured environments.

1.3 MPDM for Navigating Dynamic, Social Environments

MPDM evaluates a “library” of policies (reactive controllers) using an on-line forward roll-
out process and the “best” policy is executed until the next planning cycle. Every 300ms,
a deliberative policy-election process evaluates each candidate ego-policy based on multi-
ple forward-simulations of samples drawn from the robot’s probabilistic estimate over the
current state and policies (intentions) of nearby agents. These forward simulations model
the coupled interactions between agent behaviors. The chosen policy, however, reacts to

6

each new measurement (every 20ms) which makes the robot highly reactive and agile. By
quickly switching between policies, the robot is able to adapt to sudden and unexpected
changes in the environment. A robot navigating using MPDM is able to anticipate how
scenarios are likely to unfold and modulate its behavior now so as to avoid possible haz-
ards in the future.

Our model of the environment consists of static obstacles (e.g. walls or doors) and a set
of freely moving pedestrians. At any time, agents (the pedestrians as well as the robot) are
assumed to be acting according to some policy, which we model as a reactive controller.
The system designer is free to choose the set of policies used by the robot to infer pedestrian
behavior, as well as the candidate policies for the ego-robot to execute.

For each observed agent i, the robot maintains a probabilistic estimate of its state - i.e.
its position, velocity, and inferred policy. The collective state xt ∈ X consists of the state
of the robot and all observed agents at time t. Throughout the paper, we will refer to x0 as
the collective state of all agents and the robot’s state at the beginning of the planning cycle.
The robot’s probabilistic estimate P (x0) is based on past observations of the pedestrians’
positions. Several methods can be used for obtaining this posterior; in this thesis, we use a
Kalman Filter to infer position and velocity and a Naive Bayes Classifier to infer an agent’s
policy parameters.

During each planning cycle, the robot evaluates candidate ego-policies by forward-
simulating several initial configurations sampled based on P (x0). The agent policies in
these forward-simulations capture agent-agent interactions as they try to maintain their
desired heading and speed, while simultaneously avoiding collisions. Formally, fixing the
candidate ego-policy πr being evaluated, an initial sampled configuration x0 is forward
simulated H time-steps (through t = 1, . . . , H), by recursively applying the transition
operator T : X→ X for the time-horizon to yield a trajectory

X(x0, πr) = {x0, T (x0), T 2(x0), . . . , TH(x0)}

= {x0, x1, x2, . . . , xH},

where xt ∈ X is the collective state comprising of the state of the robot plus all the agents
at time t of the forward simulation. The operator T () captures the policy that each agent is
executing while at the same time considering the interactions with all other agents.

The cost function C
(
X(x0, πr)

)
assigns a scalar value to the outcome of a forward

simulation. We choose a cost function that penalizes the inconvenience the robot causes
to other agents in the environment (Blame) along the predicted trajectory and rewards the
robot’s progress towards its goal (Progress).

7

Figure 1.3: The Multi-Policy Decision Making framework. The perception system uses
of sensor measurements for localization as well as to maintain a probabilistic estimate of
the current positions and velocities for tracking nearby pedestrians. Each ego-policy is
evaluated based on numerous forward simulations of samples drawn from this distribution.
The policy with the best expected utility is chosen and executed.

8

Every planning cycle (3Hz), the ego-robot is tasked with determining the ‘best’ policy.
Traditionally [40], the ego-policy with the best expected utility is chosen for execution.

π∗ = arg min
π∈Π

Ex0{C
(
X(x0, πr)

)
} (1.1)

Chapter 3 introduces MPDM as a a new method for navigation amongst pedestrians
using complementary closed-loop behaviors Go-Solo, Follow-other, and Stop. By dynam-
ically switching between these policies, we show that we can improve the performance
of the robot as measured by utility functions that reward task completion and penalize in-
convenience to other agents. Our evaluation includes extensive results in simulation and
real-world experiments.

1.4 Discovering Influential Outcomes

The robot’s uncertainty about the inferred state of the dynamic agents (pedestrians) and the
complex multi-agent interactions make the forward-simulated trajectories (Fig. 1.4) sen-
sitive to the initial configurations sampled, resulting in a wide range of possible future
outcomes. In order to stay reactive to sudden and unexpected changes in the environment
(e.g. a person suddenly jumping in front of the robot), MPDM must re-plan frequently.
Therefore, the robot must evaluate a policy reliably in as few forward simulations as possi-
ble.

Earlier approaches [40] approximated each policy’s expected utility (Eqn. 1.1) by forward-
simulating a few randomly sampled (Monte-Carlo) initial configurations. However, since
the policies that the agents are executing in the forward simulation try to avoid collision,
near misses are mundane and collisions, although profoundly serious, are rare. Sampling
randomly is therefore likely to miss high-cost events, even if they are individually rea-
sonably probable (high probability density) because of the scarcity of such configurations
in the state space (low total probability mass of high-cost outcomes). Monte-Carlo sam-
pling is agnostic to the cost function and thus, fails to consistently capture the important
(high-cost) configurations that should ideally impact the utility estimate.

Discovering these configurations through random sampling may require drawing many
samples, which becomes a performance bottleneck. Without enough samples to find influ-
ential outcomes, the quality of planning suffers. Addressing this issue is crucial for reliable
systems in applications such as autonomous cars, navigation in social environments, etc.

In chapter 4, the main idea is that rather than relying on random sampling, casting pol-
icy evaluation as an optimization problem enables quick discovery of influential outcomes

9

Figure 1.4: An illustration motivating risk-aware planning. The trajectories arising from
the most likely initial configuration for the agents (orange) and the robot (green), like most
outcomes of possible initial configurations (dashed lines) are benign. Near misses are mun-
dane as the agents in the forward simulation tend to avoid collision. As a result, there may
be a few dangerous initial configurations that may be individually likely and yield high-cost
outcomes (red). While evaluating policies, likely collisions (red stars) should be discovered
as quickly as possible to allow larger candidate policy sets for MPDM.

by biasing sampling towards increasingly likely and high-cost outcomes. We define influ-

ential outcomes as high-cost outcomes that are likely based on the robot’s belief P (x0).
We reformulate the core optimization, evaluating each candidate policy based on the most

influential outcome.
π∗ = arg min

π∈Π
max

x0
{P (x0)C

(
X(π, x0)

)
}. (1.2)

Finding good solutions to the optimization problem Eqn. 1.2 in real-time is still chal-
lenging due to the large number of possible outcomes as well as the sensitivity of the
forward simulation to the initial configuration. In chapter 4, we show that accurate gra-
dients can be computed – even through a complex forward simulation – using approaches
similar to those in deep networks. Deep neural networks model complex functions by com-
posing (chaining) relatively simple functions (convolutions or ReLU modules). Similarly,
a forward simulation captures the complex dynamics of the system using simple one-step
transition functions T (Fig. 1.5). Since our cost function is a linear combination of costs
computed along the trajectory, we can conceptualize the forward simulation as a deep net-

10

...

...

...

...

Figure 1.5: A deep network representation for our cost function. The initial configuration
x0 propagates through several layers, each representing the transition function T . The
output of layer t determines a cost Lt(xt). Our cost function C(X(πr, x0)) accumulates
costs calculated at each time-step along the forward simulated trajectory.

work that outputs a trajectory costC(X(πr, x0)) based on the input initial configuration. We
demonstrate significant performance benefits of risk-aware MPDM in simulation as well as
on a real robot platform navigating a highly dynamic environment.

1.5 Continuously Parameterized Policies

Even after improving the efficiency of policy evaluation, only a handful of policies can be
evaluated reliably in real-time. It is desirable to add more policies to the system to increase
the flexibility of the system, however, this increases computational cost. The ultimate goal
of MPDM is to choose the policy with the most benign dangerous outcome and restricting
MPDM to a small set (perhaps 5-10) of discrete policies is a significant performance bot-
tleneck. Further, the need for carefully hand-crafted ego-policies also limits the application
of MPDM.

In chapter 5, we radically enhance the expressivity of MPDM by allowing policies to
have continuous-valued parameters, while simultaneously satisfying real-time constraints
by quickly discovering promising policy parameters through a novel iterative gradient-
based algorithm, as illustrated in Fig. 1.6. This removes the need for carefully hard-crafted

11

Figure 1.6: Continually-parameterized MPDM (C-MPDM) can represent much larger vol-
umes within the policy space. By quickly generating promising context-derived candidate
policies using “risk-aware policy-gradients” ∇πΨ, C-MPDM increases expressivity of the
actions available to the robot without increasing computational complexity.

candidate policy sets for the ego-robot, making MPDM a more flexible and powerful frame-
work for real-time, risk-aware behavioral planning.

Bilevel optimization is a well-studied class of mathematical programs encountered in
various fields ranging from management [42], to optimal control [43] where there are two
levels of optimization tasks, one nested within the other. In risk-aware MPDM (Eqn. 1.2),
the upper-level optimizer (the ego-robot) chooses the policy with the most benign (low-
cost) evaluation, while lower-level optimization (risk-aware policy evaluation of an ego-
policy) involves finding the most potentially dangerous (likely, high-cost) outcome from
all possible pedestrian configurations. In this way, risk-aware MPDM can be viewed as a
bilevel optimization, but we now consider an infinite number of ego-policies for the upper-
level optimization.

In order to extend MPDM to continuous ego-policy spaces, we need new optimiza-
tion strategies. Our novel anytime algorithm leverages the layered representation of the
forward simulation developed in chapter 4 to find increasingly desirable contextual ego-
policy parameters. The intermediate results of our iterative gradient-based procedure can
be used to discover influential policy candidates customized to any specific real-time con-
text. Through extensive experiments in simulation and on a real robot platform, we demon-
strate the benefits of C-MPDM over two other approaches of evaluating a continuous policy
space: a fixed set of hand-crafted policies and random policy sampling.

12

1.6 Contributions

This thesis radically improves the Multi-Policy Decision Making (MPDM) framework for
reliable navigation in dynamic uncertain environments by reformulating the traditional mo-
tion planning problem and painting it in a very different light. Our main contributions are
as follows -

1. We propose a new method for navigation amongst pedestrians in which the trajectory
of the robot is not explicitly planned, but instead, a planning process selects one
of a set of closed-loop behaviors whose utility can be predicted through forward
simulation. In particular, we extend Multi-Policy Decision Making (MPDM) [40]
to this domain using the closed-loop behaviors Go-Solo, Follow-other, and Stop.
By dynamically switching between these policies, we show that we can improve the
performance of the robot as measured by utility functions that reward task completion
and penalize inconvenience to other agents.

2. We formulate a risk-aware objective for evaluating policies to bias the sampling of
initial configurations towards likely, high-cost (influential) outcomes. This formula-
tion casts the problem of policy evaluation as an optimization problem. We show that
our forward simulation can be encoded in a differentiable deep network and propose
an efficient procedure using backpropagation to compute an accurate gradient of the
objective function without the need for heuristics (Sec. 4.3). Our anytime optimiza-
tion algorithm finds increasingly influential configurations at every iteration.

3. We exploit the aforementioned layered architecture to solve the notoriously difficult
minimax program that underlies risk-aware planning (i.e., minimizing the worst-
case cost) via gradient propagation without being restricted to a fixed set of pre-
determined policies. Thereby, we radically enhance the expressivity of MPDM by al-
lowing policies to have continuous-valued parameters, while simultaneously satisfy-
ing real-time constraints by quickly discovering promising policy parameters through
the novel iterative gradient-based algorithm.

4. We quantify the improvements made by each of these contributions through exten-
sive experiments in simulation as well as in the real-world on our robot platform.
Finally, we compare the performance of C-MPDM with a state-of-the-art trajectory
based planner, Model-Predictive Equilibrium-Point Control (MPEPC) [44] through
extensive real-world experiments using objective metrics and subjective feedback.
We demonstrate that C-MPDM produces emergent behavior that is more reliable
than MPEPC for autonomous navigation in dynamic uncertain environments.

13

CHAPTER 2

Background

The objective of a navigation system is to guide a robot from its current pose (position and
orientation) to a target position (goal). In most cases, the target pose is beyond the robots
current sensor horizon, and the robot must be aware of the goal location relative to its cur-
rent pose in some global reference frame. Typically, navigation systems employ a map to
support planning outside the robots limited field of view, requiring the robot to be localized
within that map. The robot must perceive pedestrians or other dynamic obstacles within
the robot’s sensor horizon, predict possible future outcomes and pick a suitable action to
progress towards its goal, while avoiding inconvenience to nearby pedestrians. Rather than
relying only on the current observation, the perception system often tracks pedestrians and
maintains an estimate of their current positions and velocities. These estimates may be
augmented with domain knowledge such as social norms or salient map locations [45] to
bias predicted outcomes.

A typical autonomous navigation system can be broken down into three modules that
interact with one another. The perception module is responsible for tracking dynamic ob-
stacles and localizing the robot within a mapped environment. It maintains probabilistic
state estimates for the robot as well as nearby dynamic agents. Based on these probabilistic
estimates, the planning and prediction module forecasts possible outcomes and decides the
plan of action. Since the robot’s actions often affect future outcomes, the prediction and
planning sub-systems are tightly coupled. The lower-level controller module is responsible
for executing the chosen plan (e.g. following the planned trajectory, or moving towards
a planned waypoint). The kinodynamic constraints of a robot, as well as the lower-level
control, determine how accurately a certain plan can be executed. A high-fidelity controller
may not always be available.

The field of perception for mobile robotics has rapidly evolved over the last two decades.
Recently, large realistic data-sets such as KITTI [46] have pushed the boundaries of struc-
tured prediction and deep learning algorithms for robotic perception. Today, data-driven
algorithms have become state-of-the-art for object recognition and tracking [47].

14

Despite the advances in real-time multi-object tracking [47], predicting future outcomes
in social environments remains challenging. Human motion is unpredictable – humans can
suddenly change direction or stop without signaling. In addition to the robot’s uncertainty
about the velocities and future intentions of pedestrians, the complex agent-agent interac-
tions result in a large number of diverse possible future outcomes. In section 2.1, we high-
light different approaches to predicting pedestrian motion and agent-agent interactions.

While the accuracy of prediction plays an important role in navigation, a planning al-
gorithm must be able to reason over prediction uncertainty. Motion planning in dynamic
uncertain environments still remains a major challenge. Section 2.2 discusses some influ-
ential ideas that have helped shape modern motion planning approaches.

2.1 Predicting Pedestrian Motion

Understanding the unwritten rules of pedestrian behavior, and predicting their future mo-
tion is a major challenge for autonomous navigation in social environments. Wolpert and
Ghahramani showed that intentions precede movement [48].

Some approaches assume a dynamic model of the obstacle and propagate its state using
standard filtering techniques such as the extended Kalman filter [49,50]. Despite providing
probabilistic estimates over an obstacle’s future states, these methods often perform poorly
while dealing with nonlinearities in the assumed dynamics model and the multi-modalities
induced by discrete decisions. These methods also fail to capture the complex interactions
between the dynamic agents.

Pedestrian trajectories can be clustered with the assumption that people move towards
salient points in the environment and the inferred patterns can guide prediction [51–53].
Turek et al. [54] use similar ideas to infer functional categories of objects in the environ-
ment from tracking objects in a video stream. Various factors like social affinity [55] and
human-attributes [56] have been shown to influence the accuracy of motion prediction.
Arechavaleta et al. [57] propose a geometric criteria governing human motion; humans
minimize the variation in path curvature. More recently, personality traits and social norms
have been used to predict long-term paths and time-varying behaviors for each pedestrian
in real-time [58].

With better hardware, recent progress in deep learning for computer vision, and access
to more data, model-based learning algorithms have become state-of-the-art for pedestrian
motion. Here, the underlying model implicitly or explicitly encodes latent pedestrian in-
tentions. The assumption that humans move based on some underlying optimal planning
algorithm has proven to be effective for generalization. Observed trajectories of humans

15

are used to infer model parameters or cost functions for an underlying decision process
[13–15]. Ziebart et al. [12] use maximum entropy inverse reinforcement learning (IRL) to
learn a cost function for goal-directed pedestrian motion. Kitani et al. [59] used a latent
variable Markov Decision Process to model interactions and infer traversable paths. Re-
cently, Recurrent Neural Networks (RNN) and Long Short Term Memory (LSTM) have
produced improved models for contextual socially aware trajectory prediction [60–64].
However, it has been shown that many of these models only capture interactions caused
by agents that are close-by [65].

In general, the efficacy of learning-based methods is limited by the training scenarios
considered which might not be a representative set of the diverse situations that may arise
in the real world. Capturing interactions between pedestrians and the robot remains a major
challenge for these approaches because such data is much harder to obtain and generalize
from.

This thesis explores decision making under prediction uncertainty where there is an
important trade-off between prediction accuracy and computational complexity that must
be considered. In the field of neuroscience, Helbing and Molnár [23] proposed the So-
cial Force Model, a potential field based approach that describes the interactions between
pedestrians in motion. that has proven to be simple, yet effective modeling human-human
interactions [66]. High-fidelity predictive models produced by learning-based methods of-
ten have a much higher computational cost [67] but their application within MPDM is
beyond the scope of this thesis.

2.2 Planning in Dynamic Environments

2.2.1 Classical Motion-Planning Based Approaches

Despite the probabilistic nature of the anticipation problem, several motion-planning meth-
ods in the literature assume no uncertainty on the future states of other participants [68–70].
In a simulated environment, van den Berg et al. [71] proposed a multi-agent navigation
technique using velocity obstacles that guarantees a collision-free solution assuming a
fully-observable world. From the computer graphics community, Guy et al. [72] extended
this work using finite-time velocity obstacles to provide a locally collision-free solution that
was less conservative as compared to van den Berg et al. [71].

The main drawback of these methods is that they are sensitive to imperfect state es-
timates and make strong assumptions that may not hold in the real world. This could be
justified in a scenario where vehicles broadcast their intentions over some communication

16

Figure 2.1: Limitations of a single potential field based policy. Here the robot tried to avoid
the oncoming pedestrian (Left), but in doing so, gets stuck in front of a glass wall (Right).

channel, but it is an unrealistic assumption for social environments.

2.2.2 Reactive Planners

Purely reactive planners pick an action only based on the current positions and velocities of
observable pedestrians without predicting possible future interactions between the dynamic
agents. Such approaches have the advantage of being very agile, but being myopic, the
robot may get stuck in local optima or may take actions that result in undesirable outcomes
(Fig. 2.1).

Several approaches attempt to navigate in social environments by traversing a potential
field [73] generated by a set of pedestrians [26, 27, 74]. Huang et al. [75] used visual
information to build a potential field to navigate.

Unfortunately, potential field approaches have some limitations, such as local minima
or oscillation under certain configurations [28]. These limitations can be overcome to a
certain degree by using a global information plan to avoid local minima [76]. We use this
same idea in our method by assuming that a global planner provides reachable goals, i.e.,
there is a straight line connection to those positions ensuring feasibility in the absence of
other agents. However, rather than using a single potential-field based policy, in MPDM,
the robot dynamically switches between a set of policies in order to adapt to different
situations it may encounter.

2.2.3 Trajectory Optimization Over Longer Time Horizons

More recent approaches have addressed the decision-making problem for autonomous driv-
ing through the lens of trajectory optimization [77–80], but these methods do not model the
closed-loop interactions between vehicles, and therefore fail to reason about their potential

17

Figure 2.2: Evaluated trajectories from Model-Predictive Equilibrium-Point Control
(MPEPC) [44], a state-of-the-art trajectory optimization technique. A large number of
robot trajectories are scored in real-time and the trajectory with the least cost is executed.
The red trajectories indicate high-cost while the green trajectories signify low-cost. Due to
real-time constraints, MPEPC predicts the pedestrian trajectories based on only the most-
likely estimated position and velocity of nearby agents. MPEPC does not explicitly account
for uncertainty in the estimated velocity or future intentions of the pedestrians. Moreover,
such methods require a high-fidelity motion model of the robot such that the robot can
execute the planned trajectory.

outcomes. In the context of social navigation, trajectory planning methods [8, 9] use mod-
els of human behavior to predict future states of the environment, but may fail to account
for the coupled interactions between pedestrians and the robot. Furthermore, MPC-based
approaches often rely on a high-fidelity forward simulator which may not be available.

A robot needs to exhibit a wide range of emergent behaviors to successfully deal with
the various situations that are likely to arise in social environments. For instance, navigat-
ing in a hallway with freely moving people is different than a situation where people crowd
around a door to exit a room. Several navigation algorithms [8, 9, 12–15, 26, 27, 74, 75, 81–
84] that calculate a single navigation solution may find it hard to deal with all these scenar-
ios. This inflexibility may result in undesirable solutions under challenging configurations.
Many of these methods for safe navigation in social environments relied on slow-moving
robots, delegating the responsibility of avoiding collision to people.

Model Predictive Control (MPC) is a receding-horizon control algorithm designed for

18

the online-optimization of constrained linear-time invariant systems. While MPC can han-
dle complex constraints, the online optimization may get stuck in local minima in high-
dimensional domains [85]. In practice, it is hard to design a smooth cost function that
results in good navigation behavior across a wide variety of situations [10]. A major limi-
tation of the MPC framework is that it does not directly handle uncertainty [86]. In dynamic
environments, this becomes a major performance bottleneck.

Model Predictive Equilibrium Point Control (MPEPC) is a stochastic MPC approach
that address this limitation by incorporating uncertainty into the cost function [10]. MPEPC
significantly improved the state-of-the-art in stochastic model predictive control and sample-
based optimal path planning, enabling safe, and comfortable automonous navigation in dy-
namic environments even at high speeds [44]. In MPEPC, several trajectories generated
from a high-fidelity robot model are quickly evaluated and the best trajectory is selected.
However, it considers only the single most likely outcome predicted based on most-likely
esimates of the current position and velocity of nearby agents as well as static obstacles.

Our proposed approach, MPDM evaluates fewer policies, but each policy is evaluted
more extensively based on multiple forward simulations that directly capture agent-agent
interactions.

2.2.4 Learning-Based Approaches

By observing pedestrians navigate through crowds and using data from expert demonstra-
tions typically obtained through teleoperation, the goal of learning-based methods is to
infer navigation policies can emulate human motion.

Gaussian Process (GP) regression has been utilized to learn typical motion patterns
for classification and prediction of agent trajectories [87–89], particularly in autonomous
driving [90–92].

Learning an underlying cost function from human demonstrations using inverse rein-
forcement learning (IRL) has proven to be an effective method for tasks such as vehicle
parking [93] and driving [94]. Henry et. al. [95] extended these methods to partially ob-
servable environments and demonstrated that the robot was able to successfully execute
human-like behavior in a realistic crowd flow simulator. Thereafter, several promising
IRL methods have demonstrated socially compliant navigation on a real robot platform
[15,96, 97]. For example, in the context of autonomous driving, Kuderer et. al [98] use in-
verse reinforcement learning to learn driving styles from trajectory demonstrations in terms
of engineered features. They then use trajectory optimization to generate trajectories for
their autonomous vehicle that resemble the learned driving styles.

19

One major concern about feature-based IRL is that features calculated along the paths
of pedestrians can vary significantly with different runs even on a similar scenario [96].
This limits the generalizability of these approaches.

Rather than rely on hand-crafted features, end-to-end deep reinforcement learning has
received a lot of attention and has been used to learn a navigation policy based on raw sensor
inputs [99–101]. Chen et. al. [67] define a reward function to learn socially-compliant pol-
icy from teleoperation data. More recently, generative adversarial imitation learning [102]
has been used for behavior cloning [103].

Nonetheless, these methods require the collection of training data to reflect the many
possible motion patterns the system may encounter, which can be time-consuming. Data
collection for learning policies in a dynamic social environment is particularly challeng-
ing because the robot’s actions can significantly affect outcomes. This greatly limits the
number of real-world samples that can be collected [104]. Furthermore, in a crowded envi-
ronment, even small changes in pedestrian intentions and configurations can result in very
different outcomes. The collected data might not be a representative set of the diverse sit-
uations that may arise in social environments. In this thesis, we allow domain knowledge
to be incorporated into the navigation framework by allowing the robot to choose from a
“library” of hand-engineered policies.

2.3 MPDM Approximates a POMDP

Early instances of decision-making systems for autonomous vehicles capable of handling
urban traffic situations stem from the 2007 DARPA Urban Challenge [105]. In that event,
participants tackled decision-making using a variety of solutions ranging from FSM [106]
and decision trees [107] to several heuristics [108]. However, these approaches were tai-
lored for specific and simplified situations and were, even according to their authors, “not
robust to a varied world” [108].

Partially Observable Markov Decision Processes (POMDPs) provide a principled ap-
proach to deal with uncertainty, but they quickly become intractable [109, 110]. Various
general POMDP solvers seek to approximate the solution [111–114]. For example, in
the context of autonomous driving, a point-based MDP was used for single-lane driving
and merging [115]. An MDP formulation employed by [116] for highway driving use
behaviors that react to other objects, similar to MPDM’s policies,. Our domain has a high-
dimensional belief space with a large number of low-probability outcomes (the curse of
dimensionality) which is a major hurdle for POMDP solvers. These methods typically
take several hours for problems with much smaller state-action spaces than those encoun-

20

tered in real-world scenarios [117], there has been some recent progress that exploits GPU
parallelization [118].

Recently, the idea of assuming finite sets of policies (intentions) to speed up plan-
ning has been explored [11, 116, 119–124]. However, these approaches are limited to
discrete state-action spaces and use significant resources computing policy sets online, and
are therefore limited to short planning horizons. Rather than learn policies, our approach
(Multi-policy decision making) exploits domain knowledge to design a set of policies that
are readily available at planning time. For example, one approach for navigating in social
environments is to look for a pedestrian leader to follow, thus delegating the responsibil-
ity of finding a path to the leader, such as the works of [82, 83, 125]. In MPDM, Follow

becomes one of the policies that the robot can choose to execute as an alternate policy to
navigating.

MPDM [40] is a constrained POMDP solver, in which the space of policies that can be
evaluated is narrowly constrained by design. In this section, we discuss the series of relax-
ations that allows MPDM to solve large POMDPs effectively in real-time, while accounting
for agent-agent interactions and a large space of possible outcomes.

Let P denote the set of agents near the robot including the robot. At time t, an agent
i ∈ P can take an action ait ∈ Ai to transition from state xit ∈ Xi to xit+1. As a notational
convenience, let xt ∈ X include all state variables xit for all agents at time t, and similarly
let at ∈ A be the actions of all agents.

We model the agent dynamics with a conditional probability function capturing the
dependence of the dynamics on the states and actions of all the agents in the neighborhood.

T (xit, at, xt+1) = p(xit+1|xt, at). (2.1)

Similarly, we model observation uncertainty as

Z(xt, z
i
t) = p(zit|xt), (2.2)

where zit ∈ Zi is the observation made by agent v at time t, and zt ∈ Z is the vector of all
sensor observations made by all agents.

The robot’s goal is to find an optimal policy π∗ that maximizes the expected sum of
rewards over a given decision horizon H , where a policy is a mapping π : X× Z→ A that
yields an action from the state and an observation:

π∗ = arg max
π

E

[
H∑
t=t0

R(xt, π(xt, z
r
t))

]
, (2.3)

21

where R(·) is a real-valued reward function R : X× A→ R.
The evolution of p(xt) over time is governed by

p(xt+1) =

∫∫∫
X Z A

p(xt+1|xt, at)p(at|xt, zt)p(zt|xt)p(xt) dat dzt dxt. (2.4)

Marginalizing over such a large state, observation, and action space is too expensive to
find an optimal policy online in a timely manner. A possible approximation to speed up
the process, commonly used by general POMDP solvers [111, 114] is to solve Eq. 2.3 by
drawing samples from p(xt). However, sampling over the full probability space with ran-
dom walks yields a large number of low probability samples wasting a lot of computational
resources on unlikely outcomes. MPDM samples more strategically from high likelihood
scenarios to ensure computational tractability.

The Multi-Policy Approximation

We make the following approximations to sample likely interactions of agents:

1. At any given time, both the robot and other agents (pedestrians) are executing a
policy from a set of closed-loop policies. The robot maintains a probabilistic estimate
of each observed agent’s policy p(πit|xt, z0:t). It is assumed that the agents do not
collaborate and for any pair of agents i and j, p(πit|xt, z0:t) and p(πjt |xt, z0:t) are
uncorrelated.

2. We approximate the motion and observation models through deterministic, closed-
loop forward simulation of all agents with assigned policies. The modeled agents
react to nearby agents via zit. For each sampled initial configuration (including poli-
cies), the forward simulation yields a sequence of future states and observations that
incorporates agent-agent interactions. The utility of the forward simulation captures
the reward function over the entire decision horizon.

POMDP solvers typically reason over lots of low probability outcomes, which is com-
putationally very intensive. Our approximations allow us to evaluate the consequences of
our decisions over a set of high-level behaviors determined by the available policies rather
than performing the evaluation for every possible control input of every agent.

The key idea we leverage is that, rather than plan nominal trajectories, we can think of
behavior as emerging from choosing closed-loop policies (policies that react to the pres-
ence of other agents, in a coupled manner) For instance, in indoor social environments, the

22

robot can plan in terms of going towards the end of a hallway at a certain speed, or fol-
lowing other agents or stopping. Typical behaviors that conform to these rules can greatly
limit the action space to be considered and provides a natural way to capture closed loop
interactions. Even though we assume a deterministic transition model, MPDM incorpo-
rates uncertainty over the observed agent states (including their intents/policies). Given
samples from p(πit|xt, z0:t) that assign a policy to each agent, and a policy πr for the robot,
we simulate forward both the robot and the other agents under their assigned policies to
obtain sequences of predicted states and observations. We evaluate the expected utility
using these sample roll-outs over the entire decision horizon in a computationally feasible
manner. Recently, approximate POMDP methods based on scenario sampling and forward
simulation have been applied to navigation [126] and mapping [127].

MPDM decouples closed-loop low-level control (implemented by the individual poli-
cies) from high-level planning (policy election) by approximating policy outcomes as de-
terministic functions of an uncertain state, and reduces the POMDP into the following
decision making process:

π∗ = arg min
πr

Ex0{C
(
X(πr, x0)

)
}, (2.5)

where the cost C
(
X(πr, x0)

)
is associated with the current state x0 (which includes the

latent intents of other pedestrians) upon choosing a policy πr.
Cunningham et al. [40] and Galceran et al. [128, 129] originally formulated MPDM

for making decisions based on coupled interactions between cars in a tractable manner.
They used a discrete set of lane-changing policies, each capturing a high-level behavior
and intention for autonomous driving in highway traffic situations such as driving along a
lane or turning at an intersection.

We explore more unstructured social environments where the number of complexity of
policies is far greater. In our setting, the dynamic agents (humans) can instantaneously stop
or change direction without signaling. Maneuvering in social environments is very chal-
lenging due to uncertainty associated with estimating and predicting future scenarios aris-
ing from the complex and tightly-coupled interactions between people. Sensor noise, action
execution uncertainty, tracking data association errors, etc. make this problem harder.

Optimization Techniques

While the aforementioned relaxations allow MPDM to switch between a handful of ego-
policies, for effective navigation in dynamic environments, we must address two funda-

23

mental issues -

1. MPDM has to evaluate ego-policies under a lot of uncertainty (the dimensionality of
the sample space scales linearly with the number of pedestrians considered) in real-
time. Since forward-simulation is computationally expensive, an ego-policy must be
evaluated using forward roll-outs from a few samples. How can we efficiently sample
from the space of all possible outcomes so as to reliably evaluate ego-polices?

2. While it is desirable to add more policies to the system to increase the flexibility of
the MPDM system, this increases computational cost. Can we allow for continuous
ego-policies, while still maintaining tractability?

Chapters 4 and 5 of this thesis resolve these issues by casting policy evaluation as an
optimization problem, and applying novel representations and optimization techniques for
risk-aware navigation.

In MPDM, each policy is evaluated through a forward roll-out process. We can enabling
the accurate computation of gradients even through a complex forward simulation – using
approaches similar to those in deep networks (a forward simulation captures the complex
dynamics of the system using simple one-step transition functions). Thus, a new set of
tools– well-developed in other disciplines– is brought to bear on behavioral planning. In
this section, we discuss some gradient-based methods and other applications of bilevel
optimization that have motivated our approach.

A core tool in our proposed work is gradient-based function optimization. These gradi-
ents are computed numerically using back propagation methods that closely resemble those
used in the training of neural networks. Backpropagation has been the de-facto method
for parameter optimization in neural networks since the 80’s. Seminal works [130, 131]
showed encouraging results using neural networks to learn control actions from percep-
tion. With increased computational power, Levine et al. [132] have applied deep learning
to much harder problems of end-to-end robotic manipulation. Our representation of the
forward simulation as a differentiable deep network makes risk-aware MPDM (chapter 4
more amenable to learning methods. However, end-to-end learning is non-trivial in our do-
main. Complex interactions between pedestrians and the robot’s closed-loop policies make
data collection and generalization challenging.

With its roots tracing back to Stackelberg’s game-theoretic modeling [133], bilevel op-
timization commonly appears in several practical applications such as the toll-setting [42],
environmental economics [134], chemical engineering [135] and operations research [136].
Each of these tasks can involve decision making with a hierarchical leader-follower struc-
ture where the leader must optimize its decision variables but must account for the followers

24

optimizing their decision variables (pedestrian configurations) in response. In risk-aware
MPDM, the robot (leader) must optimize its ego-policy parameters while accounting for the
influential pedestrian configuration (follower optimization) in response to the ego-policy.

Unfortunately, bilevel programming is known to be strongly NP-hard [137] and descent
based quadratic bilevel programming requires computing the Hessian of the objective func-
tion [138] which is computationally infeasible for our application. In order to find effective
approximations, we will draw from gradient-based methods first introduced by Arrow, Hur-
wicz and Uzawa [139]. Even though the analysis of associated saddle-point dynamics is
non-trivial [140], gradient dynamics have been widely used in various practical applica-
tions such as distributed convex optimization [141], distributed linear programming [142],
and power networks [143].

25

CHAPTER 3

Multi-Policy Decision Making for autonomous
navigation in dynamic social environments

3.1 Introduction

In this chapter, we present Multi-Policy Decision Making (MPDM) as a novel approach
to motion planning amongst people. Instead of computing a trajectory directly or relying
on a single algorithm, in MPDM, a planning process chooses from a set of closed-loop
policies by predicting their utilities through forward simulations that capture the coupled
interactions between the agents in the environment.

Maneuvering in dynamic social environments is very challenging due to uncertainty
associated with estimating and predicting future scenarios arising from the complex and
tightly-coupled interactions between people. Sensor noise, action execution uncertainty,
tracking data association errors, etc. make this problem harder.

POMDPs provide a rigorous formalization for incorporating uncertainty into planning,
but rapidly become intractable as the dimensionality of the state-space grows. Recently,
approximate POMDP methods based on scenario sampling and forward simulation have
been applied to navigation [126] and mapping [127]. Cunningham et al. [40] show that, by
introducing a number of approximations (in particular, constraining the policy to be one of
a finite set of known policies), the POMDP can be solved using MPDM. In their original
paper, they use a small set of lane-changing policies; in this chapter, we explore an indoor
setting in which the number and the complexity of candidate policies is much higher.

In our setting, dynamic agents (humans) can instantaneously stop or change direction
without signaling. We use different and complementary policies than those considered by
Cunningham et al. [40]: Go-Solo, Follow-other and Stop. In order for the robot’s emergent
behavior to be socially acceptable, each policy’s utility is estimated trading-off the distance
traveled towards the goal (Progress) with the potential disturbance caused to fellow agents
(Blame).

26

Figure 3.1: Our approach implemented and tested using the MAGIC [144] robot platform.
We show that our algorithm is able to navigate successfully on an indoor environment
amongst people. MPDM allows the robot to choose between policies. In this case, the
robot decides to Follow the person in front rather than try to overtake him.

Dynamically switching between the candidate policies allows the robot to adapt to dif-
ferent situations. For instance, the best policy might be to Stop if the robot’s estimation
uncertainty is large. Similarly, the robot may choose to Follow a person through a cluttered
environment. This may make the robot slower, but allows it to get a clearer path since
humans typically move more effectively in crowds, as depicted in Fig. 3.1.

Due to the low computational requirements of evaluating our proposed set of policies,
the robot can re-plan frequently, which helps reduce the impact of uncertainty.

3.2 Contributions

1. We show the benefits of switching between multiple policies (as opposed to using a
single policy) in terms of navigation performance, quantified by metrics for progress
made and inconvenience to fellow agents.

2. We demonstrate the robustness of MPDM to measurement uncertainty and study
the effect of the conservatism of the state estimator through simulation experiments
(Sec. 3.4.1).

3. Finally, we test the MPDM on a real environment and evaluate the results (Sec. 3.4.2).

27

3.3 Method

Our model of the environment consists of static obstacles (e.g. walls) and a set of freely
moving dynamic agents assumed to be pedestrians.

Based on past observations, the robot maintains a probabilistic estimate P (x0) of each
observed agent’s state - i.e. its position, velocity as well as its inferred policy1. An agent’s
policy πi = (vdes, gsub), expresses an intent to move towards sub-goal gsub at a desired
speed vdes. The collective state xt ∈ X consists of the states of the robot and all observed
agents at time t. Throughout the paper, we will refer to x0 as the collective state of all agents
and the robot’s state at the current time. The robot’s policy πr is elected from amongst a
set of closed-loop policies Π based on possible outcomes predicted by forward simulating
samples drawn from P (x0).

3.3.1 Candidate Policies

Every agent (including the robot) is assumed to be acting according to some policy. We
assume that all agents besides the robot always use the Go-Solo policy, but their goals gisub
and desired future velocities vides are ambiguous to the robot. The robot’s policy πr ∈ Π

is to be selected from a discrete set of closed-loop policies, while the pedestrian policy
parameters (vdes, gsub) are inferred based on past observations and domain knowledge (e.g.
salient points in the scene).

We propose the following candidate policy set for navigating amongst pedestrians:

Π = {Go-Solo,Followj, Stop}, (3.1)

where Followj refers to the policy of following agent j. A robot in an environment with
10 observable agents has a total of 12 candidate policies, much greater than the 3 policies
considered by Cunningham et al. [40]. Each policy πi ∈ Π : X 7→ Ai. maps a joint state
of the system to an action via a potential field.

The motion of agents is modeled according to a simple dynamics model in which ac-
celeration, integrated over time, results in a velocity. The force, and hence the acceleration
ai ∈ Ai, is computed using a potential field method that incorporates the effects of ob-
stacles and a goal point based on the Social Force Model as illustrated in Fig. 3.2. This
acceleration governs the system dynamics and is determined by the policy πi followed by
the agent as detailed below. The system is constrained to a maximum velocity |v|max for

1Several methods can be used for estimating P (x0) based on past trajectories of agents. We use a Kalman
Filter to infer position and velocity and a Naive Bayes Classifier to infer an agent’s policy parameters.

28

2

1

Figure 3.2: An agent’s policy πi = (vdes, gsub), expresses an intent to move towards sub-
goal gsub at a desired speed vdes. We model policies as reactive potential-field based con-
trollers. At each time-step, an agent i (in this case, the robot) is repelled by other agents
(f jrep) and attracted towards its sub-goal gsub in accordance to the Social Force Model
(SFM).

each agent.

Go-Solo
An agent executing the Go-Solo policy treats all other agents as obstacles and uses a poten-
tial field based on the Social Force Model (SFM) [23, 27] to guide it towards its goal. Let
epi→gisub

be the unit vector towards the goal from the agent i. The attractive force acting on
the agent is given by:

f iattr(x) = kgsei→gisub
. (3.2)

We model the interactions with other agents in the scene based on the SFM :

f i,jrep(x) = ape
−di,j/bp · ej→i, (3.3)

where {ap, bp} are the SFM parameters for people, ej→i is the unit vector from j to i and
di,j is the distance between them scaled by an anisotropic factor as in [27] .

Similarly, each obstacle o ∈ O in the neighborhood of the agent exerts a repulsive force

29

f i,oobs(x) on agent i according to different SFM parameters {ao, bo},

f i,oobs(x) = aoe
−di,o/bo · eo→i. (3.4)

The resultant force is a summation of all the forces described above:

f inet(x) = f iattr(x) +
∑
j 6=i

f i,jrep +
∑
o∈O

f i,oobs (3.5)

The action governing the system propagation is calculated as ai = f inet (without loss of
generality, we assume unit mass). Each pedestrian i tries to maintain its desired speed vides.
For the robot executing the Go-Solo policy, its desired speed vrdes is set to |v|max.

Follow-other
In addition to the Go-Solo policy, the robot can use the Follow policy to deal with certain
situations. For example, in a crowd, the robot may choose to Follow another person sac-
rificing speed but delegating the task of finding a path to a human. Following could also
be more suitable than overtaking a person in a cluttered scenario as it allows the robot to
Progress towards its goal without disturbing other agents (low Blame). We propose a reac-
tive Follow policy, making minor modifications to the Go-Solo policy.

According to the Follow policy, the robot chooses to follow another agent, the leader, de-
noted by l. To obtain the resultant force, we can apply the same procedure explained earlier
with the modification that the robot is attracted to the leader rather than the goal. Let epr→pl

be the unit vector from the robot’s position to the leader’s position. The attractive force

f rattr(x) = kfepr→pl , (3.6)

steers the robot trajectory towards the leader. The other agents and obstacles continue to
repel the robot as described in (3.5). Furthermore, the follower tries to maintain the speed
of the leader (vfdes = vl).

Stop
The last of the policies available to the robot is the Stop policy, where the robot decelerates

30

...

...

Figure 3.3: Block diagram of the transition function. At each time-step, an agent i (in this
case, the robot) is repelled by other agents (f jrep) and attracted towards its sub-goal gisub
in accordance to the Social Force Model (SFM). The acceleration ai is determined by the
resultant force f inet and acts as a control input for the Kinematic Model.

until it comes to a complete stop, according to the following force

f rnet(x) = −fmaxevr , (3.7)

where evr is the unit vector in the direction of the robot’s velocity.

3.3.2 Prediction using Forward Simulation

The transition function T : X 7→ X. maps a given combined state xt to a new state xt+1

through an action at (which in our case, is an force) generated by a potential field (Fig. 3.3).
The motion of agents is modeled according to a simple double integrator kinematic model
in which acceleration, integrated for the length of the time-step, results in a change in
velocity. In this way, the transition function T () captures each agent’s interactions with all
other agents, through the policies they are executing.

We forward simulate the joint initial state x0 until a time horizon H by applying itera-
tively and simultaneously for each agent. In other words, we recursively apply the transition
function T : X→ X for H time-steps (through t = 1, . . . , H) to yield a trajectory

X(πr, x0) = {x0, T (x0), T 2(x0), . . . , TH(x0)}

= {x0, x1, x2, . . . , xH},

where xt ∈ X is the collective state consisting of the robot state plus all the agents at time

31

t of the forward simulation.
This forward roll-out is especially interesting since the pedestrians react to each other

as well as with the robot’s proposed policy, and vice-versa.

3.3.3 Cost Function

The cost function C
(
X(πr, x0)

)
assigns a scalar value to the outcome of a simulation. We

use a cost function that penalizes the inconvenience the robot causes to other agents in
the environment (Blame) along the predicted trajectory and rewards the robot’s progress
towards its goal (Progress).

Blame: We use the distance to the closest agent as a proxy for the potential disturbance
caused to the environment by the robot.

B
(
X(πr, x0)

)
=

H∑
t=0

max
j 6=r

u(‖vr‖ − ε)e−dr,j(t)/σ (3.8)

where dr,j(t) is the distance between the robot and agent j and ‖vr(t)‖ is the speed of the
robot at time-step t. u is the step function which is 1 when the argument is ≥ 0 and 0

otherwise. If the robot is in motion (‖vr‖ > ε), the decay rate σ determines how much
proximity to other agents is penalized.

Progress: We reward the robot for the distance-made-good during the planning horizon.

PG
(
X(πr, x0)

)
=
(
pr(H)− pr(0)

)
· epr→grsub , (3.9)

where pr(H) is the position of the robot at end of the forward roll-out and epr→grsub is the
unit vector from the current position of the robot to the goal grsub .

The resultant cost function is a linear combination of both

C
(
X(πr, x0)

)
= −αPG

(
X(πr, x0)

)
+B

(
X(πr, x0)

)
, (3.10)

where α is a weighting factor.

3.3.4 Sampling-Based Multi-Policy Decision Making

In MPDM, the robot dynamically switches from amongst a set of closed-loop policies
adapting to different situations.

The policy with the lowest expected cost is chosen and executed until the next planning

32

Algorithm 1 Multi-Policy Decision Making
1: function MPDM(Px, z, tH , Ns)
2: for πr ∈ Π do
3: for s = 1 . . . Ns do
4: x0 ∼ P (x|z)
5: C

(
X(πr, x0)← Forward-Simulate(x0, πr, tH)

6: Score(πr)← Score(πr) + C
(
X(πr, x0)

7: end for
8: Mean-Score(πr)← Score(πr)

Ns
9: end for

10: return π∗ = arg minπ Ex0{C
(
X(πr, x0)

)
}

11: end function

cycle -
π∗r = arg min

πr

Ex0{C
(
X(πr, x0)

)
}, (3.11)

where the cost C
(
X(πr, x0)

)
is associated with the current state x0 upon choosing a policy

π.
We used Monte Carlo sampling from the estimator’s posterior distribution P (x0) to

approximate the expected cost

Ex0{C
(
X(πr, x0)

)
} ∼ 1

N

N∑
n=1

C
(
X(πr, xn)

)
, (3.12)

where {x1, . . . , xN} is the set of samples drawn from the distribution P (x0). MPDM relies
on quick re-planning in order to deal with uncertainty, which constrains the number of
forward propagations that can be evaluated per candidate policy πr.

Note that the cost function C is not only a function of the final state, but also all of
the intermediate states through the transition function Tπ. Therefore, C

(
X(π, x0)

)
is a

highly nonlinear function of robot policy π, and an initial configuration x0 whose evalua-
tion involves a time consuming forward propagation of the system. It might compute, for
example, high costs for trajectories that lead to near-collisions.

The robot’s behavior reflects not only the mean state estimates of the other agents,
but also the uncertainty associated with those estimates. Estimation uncertainty and mea-
surement noise affect the quality of sampled future trajectories and thereby system perfor-
mance.

33

Figure 3.4: Evaluating the Go-Solo policy through multiple forward simulations. The Go-
Solo policy (where the robot tries to move towards its sub-goal gr at maximum possible
speed) is evaluated by averaging the cost of forward simulations of samples drawn from
the estimated distribution of the agents’ states (Monte-Carlo sampling). Different sam-
pled initial configurations result in different trajectories. The forward simulations capture
closed-loop interaction between the pedestrians and the robot.

3.4 Results

3.4.1 Simulation

We simulate two indoor domains, freely traversed by a set of agents while the robot tries
to reach a goal. One simulation ‘epoch’ consists of a random initialization of agent states
followed by a 5 minute simulated run at a granularity ∆t = 0.1s. The number of samples
used to approximate the expected cost (Eqn. 3.12) is set to Ns = 50. We use the Intel i7
processor and 8GB RAM for our simulator and LCM [145] for inter-process communica-
tion.

Every 300ms (policy election cycle), MPDM chooses a policy. Although the policy
election is relatively slow, the robot is very responsive as the policies themselves run at
over 50Hz.

We assume that the position of the robot, agents, the goal point, and obstacles are
known in some local coordinate system. However, the accuracy of motion predictions is
improved by knowing more about the structure of the building since the position of walls
and obstacles can influence the behavior of other agents. Our implementation utilizes such

34

Figure 3.5: The simulated indoor domains chosen to study our approach. Left: The hallway
domain where 15 agents are let loose with the robot and they patrol the hallway while the
robot tries to reach its destination. Right: The doorway domain where 15 agents whose
goal is reaching the bottom right of the map through the door. These two domains present
the robot with a set of diverse, but realistic indoor situations (crossing agents in a hallway,
queuing and dense crowding near a doorway).

domain knowledge through by localizing into a known map, but our approach could be
applied more generally.

Domains

The hallway domain (Fig. 3.5-Left) is modeled on a 3m × 25m hallway at the University
of Michigan. The doorway domain (Fig. 3.5-Right) consists of a room with a door at the
corner of the room leading into a hallway. The robot and all agents try to reach the hallway
through the door.

Based on the observed empirical distributions generated using one hour of simulation
data (Fig. 3.6-Top), we set α = 15 so that Force and Progress have similar impact on the
cost function.

The maximum permitted acceleration is 3m/s2 while the maximum speed |v|max is set
to 1.8m/s. MPDM is carried out at 3Hz to match the frequency of the sensing pipeline for
state estimation in the real-world experiment. The planning horizon is 4s into the future.

Empirical Validation

Fig. 3.6 demonstrates the benefits of MPDM through an example simulation run. During
the initial 50s (Go-Solo) the robot makes a lot of Progress but incurs high Force and Blame

due to undesired motion, aggressively forcing its way forward even when it is very close to
another agent and hindering its path. For the next 50s, the MPDM dynamically switches
policies maintaining low Blame no longer inconveniencing other agents.

This observation is strengthened by the empirical distributions of the metrics generated

35

0 10 20 30 40 50 60 70 80 90 100
0

5

Go Solo MPDM

0 10 20 30 40 50 60 70 80 90 100P
ro

g
re

s
s
 (
m

)

Progress (m)

0

0.05

B
la

m
e

Time (s)

0 10 20 30 40 50 60 70 80 90 100

P
o
li
c
y

Go-Solo

Follow

Stop

MPDM

Go-Solo

Blame

400

800

0.006 0.012

Figure 3.6: Qualitative comparison of MPDM and the exclusive use of Go-Solo in a simu-
lated environment. Top: Distributions of the evaluation metrics - Blame and Progress gen-
erated using one hour of simulated data. Ideal behavior would give rise to high Progress
and low Blame. The higher valued mode for Blame denote undesirable behavior (close
encounters), which MPDM is able to avoid. Bottom: Temporal evolution in the hallway
domain where first the robot ran a fixed Go-Solo policy for 50s followed by MPDM for the
next 50s. The horizontal red lines indicate the average values for the trajectory. The Go-
Solo performance makes a lot of Progress but incurs high Blame, manifesting as undesired
peaks. In the next 50s, when the robot executes MPDM, the Blame curve is almost flat,
indicating that nearby interactions are reduced drastically.

from 30k samples. We notice that the Blame distributions have greater density at lower
values for MPDM. Negative Progress, which occurs when the agents come dangerously
close to each other exerting a very strong repulsive force, is absent in MPDM as the agent
would rather stop.

Experiments with Observation Noise

MPDM is a general approach in the sense that it makes no assumptions about the quality
of state estimation. The more accurate our model of the dynamic agents, the better is
the accuracy of the predicted joint states. Most models of human motion, especially in
complicated situations, fail to predict human behavior accurately. This motivates us to
extensively test how robust our approach is to noisy environments.

36

Environment Uncertainty
0 5 10 15

B
la

m
e

0

0.005

0.01

Hallway

0 5 10 15

P
ro

g
re

s
s

0.03

0.04

0.05

0.06

g

gf

gs

gfs

Environment Uncertainty

0 5 10 15

B
la

m
e

0

0.005

0.01

0.015

Doorway

0 5 10 15

P
ro

g
re

s
s

0.03

0.035

0.04

0.045

0.05g

gf

gs

gfs

Figure 3.7: Simulation results varying uncertainty in the environment (kz) for a fixed pos-
terior uncertainty (ke). We show results for 4 combinations of the policies, varying the
flexibility of MPDM: Go-Solo (g), Go-Solo and Follow (gf), Go-Solo and Stop (gs) and
the full policy set (gfs). The data collected from 100 epochs (30k samples) is averaged in
groups of 10. We show the mean and standard error. Ideally, we would want low Blame
and high Progress. Left: A lower Blame indicates better behavior as the robot is less of-
ten the cause of inconvenience. Increasing the noise in the environment makes the robot
more susceptible to disturbing other agents and vice-versa. We can observe that the Blame
when combining all the policies (gfs) is much lower than when using a single policy (g) in
the hallway domain. We observe that the robot stops more often in the doorway domain
with increasing noise from the declining Progress (Bottom-Right) for (gs) and (gfs). The
robustness of MPDM can be observed in milder slope across both domains. Right: Higher
Progress is better. The Go-Solo performs better, however at the price of being much worse
in Force and Blame. With more flexibility, (gfs) is able to achieve greater Progress and
lower Blame as compared to (gf).

37

In our simulator, the observations z are modeled using a stationary Gaussian distribution
with uncorrelated variables for position, speed and orientation for the agent. We parameter-
ize this uncertainty by a scale factor kz: {σpx , σpy , σ|v|, σθ} = kz×{2cm, 2cm, 2cm/s, 3◦}.
The corresponding diagonal covariance matrix is denoted by diag(σpx , σpy , σ|v|, σθ). We
do not perturb the goal. These uncertainties are propagated during the estimation of the
posterior state P (x|z).

The robot’s estimator makes assumptions about the observation noise which may or
may not match the noise injected by the simulator. This can lead to over and under-
confidence which affects decision making. In this section, we explore the robustness of
the system in the presence of these types of errors. We define the assumed uncertainty by
the estimator through a scale factor ke, exactly as described above.

We show results for 4 combinations of the policies, varying the flexibility of MPDM:
Go-Solo (g), Go-Solo and Follow (gf), Go-Solo and Stop (gs) and the full policy set (gfs).
For each of the domains considered, we evaluate the performance of each MPDM system
by:

1. varying kz for a fixed ke to understand how MPDM performs when varying uncer-
tainty in the environment (Fig. 3.7).

2. varying ke
kz

to understand how MPDM performs when the robot’s estimator overesti-
mates/underestimates the uncertainty in the environment (Fig. 3.8).

First, we studied the impact of different levels of environment uncertainty (kz) at regu-
lar intervals of diag(4cm, 4cm, 4cm/s, 6◦). The estimation uncertainty (ke) is fixed at
diag(10cm, 10cm, 10cm/s, 15◦). Fig. 3.7 shows the performance of the robot for the hall-
way and the doorway domain respectively. We observe that the Blame increases at the
lowest rate for MPDM with the complete policy set. If the option of stopping is removed,
we notice that the addition of the follow policy allows the robot to maintain comparable
Progress while reducing the force and Blame associated. Given the option of stopping, the
robot still benefits from the option of following as it can make more Progress while keeping
Blame lower.

Next, we studied the impact of different levels of optimism for the estimation error by
varying the ratio ke

kz
from 0.25 to 1.5 in steps of 0.25 for the settings of kz mentioned above.

The ratio indicates over-estimation (> 1) or under-estimation (< 1). For each ratio, we
average over the values of kz. Fig. 3.8 shows performance trends for both the domains. We
notice that the Progress as well as the Blame decline as the robot over-estimates the noise
and Stops more often indicating that we err on the side of caution. On the other hand, a
ratio lesser than one implies over-optimism and can cause rash behavior marked by greater

38

0.5 1 1.5

B
la

m
e

×10 -3

0

1

2

3

4

5

6

Estimator Conservatism

0.5 1 1.5

P
ro

g
re

s
s

0

0.01

0.02

0.03

0.04

0.05

0.06

ConservativeOptimistic

0.5 1 1.5

B
la

m
e

0

0.002

0.004

0.006

0.008

0.01

0.012

0.5 1 1.5

P
ro

g
re

s
s

0

0.01

0.02

0.03

0.04

0.05

g

gf

gs

gfs

Doorway

Hallway

Estimator ConservatismConservativeOptimistic

Figure 3.8: Navigation performance varying the degree of conservatism (ke
kz

=
{0.25, 0.5 . . . 1.5}) of the estimator averaged over kz = {2, 4, . . . , 14}. Combinations of
the policies as presented in Fig. 3.7. The data collected from 100 epochs (30k samples)
is averaged in groups of 10. We show the mean and standard error. The robot errs on the
side of caution and Stops more often (manifested by a decline in Progress) for (gfs) as the
robot overestimates the uncertainty in the environment. Additionally, the Follow becomes
less attractive due to high uncertainty associated with the leader’s state. Without the op-
tion of Stopping, (g) and (gf) maintain high Progress and Blame which is undesirable since
the robot’s behavior is indifferent to estimator conservatism and just react to sensory data.
With the Stop policy (gs,gfs), the robot can adapt to a conservatism of the estimator and
can behave cautiously when required.

39

Progress and Blame increases. Even in these situations, the flexibility of multiple policies
enables navigation with lower Blame.

3.4.2 Real-World Experiments

Our real-world experiments have been carried out in the hallway that the simulated hall-
way domain (Sec. 3.4.1) was modeled on. We implemented our system on the MAGIC
robot [144], a differential drive platform equipped with a Velodyne VLP-16 laser scanner
used for tracking and localization. An LED grid mounted on the head of the robot has been
used to visually indicate the policy chosen at any time.

During two days of testing, a group of 8 volunteers was asked to patrol the hallway,
given random initial and goal positions, similar to the experiments proposed in Sec. 3.4.1.
The robot alternated between using MPDM and using the Go-Solo policy exclusively every
five minutes. The performance metrics were recorded every second, constituting a total of
4.8k measurements.

In Fig. 3.9 are depicted some of the challenging situations that our approach has solved
successfully. On the Right and Left scenes, the robot chooses to Stop avoiding the “freezing
robot behavior” which would result in high values of Blame. As soon as the dynamic
obstacles are no longer a hindrance, the robot changes the policy to execute and Goes-

Solo. In Fig. 3.9-Center we show an example of the robot executing the Follow policy,
switching between leaders in order to avoid inconveniencing the person standing by the
wall. The video2 clearly shows the limitations of the Go-Solo and how MPDM solves these
limitations.

Fig. 3.10 shows the results of our robot executing MPDM as compared to a constant
navigation policy - Go-Solo. As discussed before in Sec. 3.4.1, we show that our observa-
tions based on simulations hold in real environments. Specifically, MPDM performs much
better, roughly 50%, in terms of Blame while sacrificing roughly 30% in terms of Progress.
This results in the more desirable behavior for navigation in social environments that is
qualitatively evident in the video provided.

3.5 Summary

This chapter described a novel approach for autonomous navigation among uncertain dy-
namic agents by choosing from amongst a set of closed-loop policies - {Go-Solo, Follow,

2https://www.youtube.com/playlist?list=PLbPJN-se3-QiwIITl5cNsUV4-SRIyl9OM

40

https://www.youtube.com/playlist?list=PLbPJN-se3-QiwIITl5cNsUV4-SRIyl9OM

Figure 3.9: Real situations illustrating the emergent behavior from MPDM. The left column
depicts three scenarios (each row has a different scenario) while testing the robot navigation
in a real environment. The right column shows the same configurations, but delayed by a
few seconds. The lights on the robot indicate the policy being executed, being green for
Go-Solo, blue Follow and red Stop. By dynamically switching between policies, the robot
can deal with a variety of situations.

41

Blame Progress
0

0.2

0.4

0.6

0.8

1

1.2
Go-Solo

MPDM

R
e
la

ti
v
e
 P

e
rf

o
rm

a
n
c
e
 (

R
a
ti

o
)

Figure 3.10: The mean and standard error for the performance metrics over 10 second
intervals (groups of 10 samples) using data from 40 minutes of real world experiments. All
measures are normalized based on the corresponding mean value for the Go-Solo policy.
This figure demonstrates that our results obtained in simulations (Sec. 3.4.1) hold on real
environments. MPDM shows much better Blame costs than only Go-Solo at the price of
slightly reducing its Progress.

Stop} to adapt to different situations. Each candidate policy was evaluated based on for-
ward simulations of samples drawn from the estimated distribution of the agents’ states
(Monte-Carlo sampling). These forward simulations and thereby the cost function, capture
agent-agent interactions as well as agent-robot interactions which depend on the policy be-
ing evaluated. The robot is responsive to sudden changes in the environment due to quick
replanning (every 300ms).

42

CHAPTER 4

Risk-Aware Multi-Policy Decision Making

4.1 Introduction

In the Multi-Policy Decision Making (MPDM) framework, every 300ms, a robot’s policy
is elected by sampling from the distribution of current states, predicting future outcomes
through forward simulation, and selecting the policy with the best expected performance.
More the samples used to approximate the expected utility, better is the reliability of the
estimate; however, forward-simulations are computationally intensive, and MPDM must
evaluate a policy in relatively few (about 50) forward simulations. In cases where the for-
ward simulated trajectories are more sensitive to initial configurations, and in environments
with a large number of possible outcomes, policy evaluation becomes more challenging
(Fig. 4.1). In this chapter, we address the problem of reliably evaluating as few forward
simulations as possible.

Based on past observations, the robot not only maintains the estimate of the current
position and velocity for each pedestrian, but also their future intentions (policies). The
dimensionality of the space of all possible initial configurations is very large. The key chal-
lenge arises from the uncertainty associated with the inferred state of the agents (people)
and the complex multi-agent interactions which make the forward-simulated trajectories
sensitive to the initial configurations sampled. In our application, it is especially difficult to
sample bad outcomes because we assume that all agents follow policies that tend to avoid
collisions and dangerous scenarios in the first place. The bad outcomes arise from a few ini-
tial configurations whose neighborhoods may be fairly uninteresting (Fig. 4.1). Collisions
are profoundly serious, but near misses are mundane. In other words, the cost function
tends to be tightly peaked around these configurations. This problem is more prevalent in
complex multi-agent scenarios.

Sampling randomly is likely to miss high-cost events, even if they are individually rea-
sonably probable (high probability density) because of the scarcity of such configurations

43

Figure 4.1: An illustration motivating risk-aware planning. The trajectories arising from
the most likely initial configuration for the agents (orange) and the robot (green), like most
outcomes of possible initial configurations (dashed lines) are benign. Near misses are mun-
dane as the agents in the forward simulation tend to avoid collision. As a result, there may
be a few dangerous initial configurations that may be individually likely and yield high-cost
outcomes (red). While evaluating policies, likely collisions (red stars) should be discovered
as quickly as possible to allow larger candidate policy sets for MPDM.

in the state space (low total probability mass of high-cost outcomes). Discovering these
configurations through random sampling may require drawing many samples, which be-
comes a performance bottleneck. Without enough samples to find influential outcomes, the
quality of planning suffers. Addressing this issue is crucial for reliable systems in applica-
tions such as autonomous cars, navigation in social environments, etc.

The key insight is that we need to explicitly search for influential outcomes (those
that have high cost and probability) because they influence our decision making process
the most. Rather than random sampling, by biasing the sampling of initial configurations
towards likely, high-cost outcomes, we show how policies can be evaluated efficiently in a
risk-aware fashion.

4.2 Contributions

1) We formulate a risk-aware objective for evaluating policies to bias the sampling of initial
configurations towards likely, high-cost outcomes. This formulation casts the problem of
policy evaluation as an optimization problem.

44

2) Next, we show that our forward simulation can be encoded in a differentiable deep
network and propose an efficient procedure using backpropagation to compute an accu-
rate gradient of the objective function without the need for heuristics. Our optimization
algorithm is anytime, finding increasingly influential configurations at every iteration.

3) We demonstrate the efficiency of this algorithm through extensive simulation experi-
ments and show that using only 50 samples, our proposed method can perform comparably
to sampling with 500 samples.

4) Finally, we incorporate this idea into MPDM and demonstrate significant perfor-
mance improvements on a real robot platform navigating in a semi-crowded highly dy-
namic environment.

4.3 Backprop-MPDM

Previous formulations of MPDM used Monte Carlo sampling from the estimator’s posterior
distribution P (x0) to approximate the expected cost

Ex0{C
(
X(π, x0)

)
} ∼ 1

N

N∑
n=1

C
(
X(π, xn)

)
, (4.1)

where {x1, . . . , xN} is the set of samples drawn from the distribution P (x0).
However, Monte-Carlo sampling over the posterior P (x0) often fails to capture miss

high-cost events that should guide decision making because of the sparsity of such config-
urations in the state space (low total probability mass of high-cost outcomes) as illustrated
in Fig. 4.1.

Importance Sampling

Importance sampling is used to simulate rare events that are often missed by Monte-Carlo
sampling [146]. In our domain, rather than sampling pedestrian configurations from P (x0),
a proposal distributionQ(x0) can used to bias sampling towards high-cost outcomes. How-
ever, finding a good proposal distribution in our domain is challenging because the agent-
agent interactions make the predicted trajectories and the associated cost function sensitive
to the pedestrian configuration x0. The dimensionality of the space of all possible initial
configurations is very large and importance sampling with only a few samples can result in
a high-variance or a high-bias estimate of the expected cost, depending on the choice of the
proposal distribution.

45

The maximum principle prescribes sampling from a proposal distribution with its mode
at arg max

x0
{P (x0)C

(
X(π, x0)

)
} in order to capture high-risk outcomes [147] and is a

widely used in the field of quantitative risk-management. A multi-variate Gaussian cen-
tered at arg max

x0
{P (x0)C

(
X(π, x0)

)
} is a popular choice to obtain an unbiased estimate of

the expected cost. However, since our cost function may be multi-modal and ‘spiky’, the
importance weights P (x0)

Q(x0)
for samples at the tails of Q(x0) can be very large, resulting in

high-variance estimates when there are a small number of samples. Instead, if Q(x0) is a
truncated Gaussian, we get lower variance, but this estimator is now biased towards likely
high cost initial configurations because truncated distribution’s support is a subset of the
posterior distribution’s support.

Policy Evaluation as an optimization problem

Rather than try to approximate the expected utlity with a few samples, we explicitly search
for influential outcomes (those that have high cost and probability) because they influence
our decision making process the most. We propose a new risk-aware objective for evaluat-
ing policies inspired by the maximum principle –

max
x0
{P (x0)C

(
X(π, x0)

)
}. (4.2)

This objective allows us to use optimization techniques; unlike sampling, it does not matter
how we find the maximizing configuration. We can perturb the state elements of x0 while
sampling in order to find high P (x0)C

(
X(π, x0)

)
outcomes. However, the samples used to

search are no longer random samples from the posterior distribution and cannot be used to
approximate the expectation according to Eq. 4.1.

One could set aside some samples for the optimization while the remaining samples
could be used to calculate a more informed estimate of expectation by constructing a pro-
posal distribution around the likely and dangerous configurations (importance sampling).
In this way, our method can be used to augment sampling. We do not explore this option in
our experiments. Instead, we change our decision making rule as follows

π∗ = arg min
π

[
max

x0
{P (x0)C

(
X(π, x0)

)
}
]
. (4.3)

Naturally, changing the objective function for policy evaluation from Eq. 3.12 to Eq. 4.2
changes the emergent behavior of the planner, and the design of the cost function may need
to be adjusted. In practice, though, we have had no difficulty adapting our systems to the
proposed objective function. For safety-critical systems in which it makes sense to be risk-

46

aware, using Eq. 4.3 may even be a more natural choice than minimizing the expected cost
of an outcome.

Even with the new objective, the same challenges remain - we need to quickly discover
potentially dangerous outcomes when the dimensionality of the search space scales linearly
with the number of pedestrians (5 pedestrians would yield a 20-dimensional search space)
and the complex multi-agent interactions make the forward-simulated trajectories sensi-
tive to the initial configurations. In the remainder of this section, we present an anytime
algorithm for discovering influential configurations.

4.3.1 Network Architecture

Deep neural networks model complex functions by composing (chaining) relatively simple
functions (convolutions or ReLU modules). Similarly, a forward simulation captures the
complex dynamics of the system using simple one-step transition functions T .

Since our cost function is a linear combination of costs computed along the trajectory,
we can conceptualize the forward simulation as a deep network (Fig. 5.2) that outputs a
trajectory cost C(X(x0)) based on the input initial configuration x0.

Let Lt(xt) be the cost accrued at time-step t for the state xt. We define a function
Φ(t,X) that accumulates the cost of a trajectory, from the final time H backwards to the
initial time t = 0

Φ(t,X) =
H∑
τ=t

Lτ (xτ). (4.4)

Our objective cost can be expressed as C(X) = Φ(0,X). We can formulate Φ recur-
sively as:

Φ(t,X) = Φ(t+ 1,X) + Lt(xt). (4.5)

We want to compute ∇x0C(X) = ∇x0Φ(0,X). The gradient of the cost at time-step H
is

∇xHΦ(H,X) =
∂Φ(H,X)

∂xH
=
∂LH(xH)

∂xH
. (4.6)

We can compute the gradient iteratively from time-step H backwards to t = 0 by

47

...

...

...

...

Figure 4.2: A deep network representation for our cost function. The initial configuration
x0 propagates through several layers, each representing the transition function T . The
output of layer t determines a cost Lt(xt). Our cost function C(X(x0)) accumulates costs
calculated at each time-step along the forward simulated trajectory.

applying (4.5) and expanding terms:

∇xtΦ(t,X) =
∂Φ(t,X)

∂xt
=
∂{Φ(t+ 1,X) + Lt(xt)}

∂xt

=
∂Φ(t+ 1,X)

∂xt
+
∂Lt(xt)
∂xt

=
∂Φ(t+ 1,X)

∂xt+1

∂xt+1

∂xt
+
∂Lt(xt)
∂xt

=
∂Φ(t+ 1,X)

∂xt+1

∂T (xt)
∂xt

+
∂Lt(xt)
∂xt

. (4.7)

Eqn. 5.4 can be used to efficiently compute ∇x0C(X) as long as the gradient of transi-
tion function can be computed effectively using backpropagation (Fig. 5.2).

4.3.2 Enabling Effective Backpropagation

We have recognized that the kinematic models used for the agents have an impact on the
quality of the gradients. Our previous implementation of MPDM (Alg. 1) used a simple
double integrator model for all agents with heuristics to restrict lateral motion for more
realistic simulation. While the simple model was useful for fast forward simulation, the

48

...

...

2

1

2

1

Figure 4.3: Block diagram of the transition function. At each time-step, an agent i (in
this case, the robot) is repelled by other agents (f jrep) and attracted towards its sub-goal
gsub in accordance to the Social Force Model (SFM). Pedestrians are modeled using the
HSFM model where the social force [66] acts as a control input for the Human Locomotion
Model. The robot is modeled like a unicycle and the social force f rnet is transformed into a
compliant reference signal (vref , ωref) for a lower-level velocity controller.

heuristics contain hard thresholds that manifest as zeros in the matrix ∂T (xt)
∂xt . As a result,

useful gradients are truncated (as highlighted by the box in Eqn. 5.4 hampering effective
backpropagation.

Here, we use non-holonomic kinematic models that augment the agent’s state with an-
gular velocity to capture the effect of lateral forces. This model ensures the differentiability
of T while maintaining realistic human motion in the forward simulation.

Specifically, we use the headed social force model (HSFM) [66] for all the pedestrians
and a unicycle-like model for the robot as described below. For the robot, the net force is
computed using the SFM f rnet, but due to the inherent constraints on a wheeled platform,
we transform f rnet into a compliant reference signal (vref , ωref) for a lower-level velocity

49

Figure 4.4: Backpropagation finds increasingly influential outcomes. The forward propa-
gated outcome of the sampled initial configuration (Top) is not discouraging for the robot
as it does not inconvenience either agent. For agents i = {1, 2}, the computed gradi-
ents ∇xi0ln

(
C(X)

)
(Blue) drive the agents towards configurations where the robot would

inconvenience them under its current policy while ∇xi0ln
(
P (x0)

)
(Green) drive them to

more likely configurations. The agents can be simultaneously updated resulting in a more
influential configuration (Bottom).

controller [
vref

ωref

]
t+1

=

[
cos(θ) sin(θ)

− sin(θ) cos(θ)

][
1 0

0 1
l

]
f rnet. (4.8)

The lookahead distance l determines the tendency of the robot to turn in order to com-
pensate for the lateral force. The robot’s state is then propagated towards the reference
signal using a first-order model for each of the independent wheel velocity controllers and
a unicycle plant model.

Our proposed transition function layer T (xt) (Fig. 4.3) allows us to compute accurate
gradients of the transition function. Eqn. 5.4 can now be implemented efficiently via back-

50

propagation, where ∂T (xt)
∂xt and ∂Lt(xt)

∂xt are computed during the forward propagation and
cached.

Fig. 5.3 illustrates one iteration of gradient descent using backpropagation through a
simple initial configuration x0 consisting of two agents and the robot executing the Go-

Solo policy towards its goal gr.
Algorithm 2 describes the policy election for risk-aware MPDM. Provided with a prob-

ability distribution over initial configurations, P (x0), a set of candidate policies, Π, and a
forward simulation budget, Nπ, each candidate policy is evaluated (scored) according to
the most influential (worst-case) outcome discovered within the computational budget.

The objective function P (x0)C(X) can have multiple local-minima depending on the
number of agents and the complexity of the initial configuration. Finding the global max-
imum through exhaustive search is computationally infeasible due to the large state-space.
Our goal is to quickly find an influential configuration whose value is comparable to the
global optimum even if it may not be the highest-valued configuration.

Algorithm 2 Policy Election for Risk-aware MPDM
1: function POLICY-ELECTION LOOP(P (x),Π, Nπ)
2: for π ∈ Π do
3: Initialize Uπ, n← 0
4: while n < Nπ do
5: Sample x0 ∼ P (x)

6: U∗, nopt ← Optimize(x0, π)
7: n← n+ nopt
8: Uπ ← max{U∗, Uπ}
9: end while

10: end for
11: π∗← arg minπ Uπ
12: end function

Our algorithm samples an initial configuration from P (x0) (Line 5) and optimizes it,
perturbing the sampled configuration iteratively towards increasingly influential outcomes
until convergence to a local optima whose objective function value is U∗ (Line 6). The
number of forward simulations nopt used by an optimization procedure corresponds to its
rate of convergence. Upon convergence, a new initial configuration is sampled and this
process is repeated until the forward simulation budget Nπ is consumed. The utility of a
policy Uπ is the most influential (highest-valued) configuration encountered. The policy
with the least risk is elected.

Our heuristic-based stochastic gradient method (SGA) [148] computed approximate
gradients for each agent and perturbed one agent at a time to avoid divergence. In contrast,

51

by computing accurate gradients, Backprop-MPDM (BP) can perturb all the agents simul-
taneously without divergence. The gradient also accounts for agent-agent interactions as
well as static obstacles. Our experimental results demonstrate the benefits of Backprop-
MPDM for optimizing the probabilistic cost surface (Line 6).

4.4 Results

Our operating environment is an open space, freely traversed by a set of agents while the
robot tries to reach a goal. The unconstrained nature of this domain makes the trajectories
more dependent on initial configurations. Agents can randomly slow down or come to a
stop. We set to α = 5 using a procedure similar to [29] so that both Blame and Progress

have more or less equal impact on the cost function. One simulation ‘epoch’ consists of a
random initialization of agent states followed by a 5 minute simulated run at a granularity
∆t = 0.1s. MPDM is carried out at 3Hz to match the frequency of the sensing pipeline for
state estimation in the real-world experiment. The planning horizon is 4s into the future.

4.4.1 Efficiency of Search

First, we study the efficiency of different search strategies in approximating our objective
function - max

x0
{P (x0)C

(
X(π, x0)

)
}.

We generated a dataset consisting of 16k randomly chosen simulated scenarios where at
least one agent was present within 5m of the robot. We then sort them based on the number
of agents in the robot’s neighborhood. Our objective function is defined over innumerable
possible initial configurations belonging to a high-dimensional continuous space that scales
linearly with the number of agents considered. For each scenario, 2k random samples were
optimized and the worst-case outcome was used to approximate the global optimum.

We now vary the number of agents in the robot’s vicinity, thus increasing the complex-
ity of the scenario and the dimensionality of the state space. For reliable real-time policy
evaluation, influential outcomes must be detected quickly. We estimate the number of iter-
ations needed by each algorithm to achieve a certain fraction (50%) of the worst outcome
in the dataset (find an influential outcome).

For each algorithm, the experiment is run 1k times on each scenario. We use bootstrap
sampling (with replacement) on our data-set as in [148] to estimate the mean and standard
error of their performance.

Stochastic Gradient Ascent [148] computes approximate agent-specific gradients of a
simplified cost function. In order to limit the divergence arising due to these approxi-

52

1 2 3 4 5 6 7 8

Agents in neighbourhood

0

50

100

150

200

250

300

350

400

#
 I
te

ra
ti
o

n
s
 t
o

 fi
n

d
 5

0
%

 o
f

g
lo

b
a
l
m

a
x
.

BP

SGA

Random

Proposed
Method

Figure 4.5: Degradation of Stochastic Gradient Ascent (SGA) [148] in crowded scenar-
ios. For each algorithm, we estimate the mean and standard error of the number of itera-
tions (forward simulations) taken to discover an influential outcome varying the number of
agents in the robot’s vicinity, and thereby the dimensionality of the search space. The lower
the slope, the better, more robust the algorithm to complex scenarios with high-dimensional
search spaces. Random sampling, as expected, requires many samples even in simpler con-
figurations (1 agent). SGA cannot find influential outcomes efficiently in complex scenarios
with multiple agents, scaling so poorly that for more than 6 agents it performs worse than
random sampling. Backprop-MPDM (BP) is able to find those adverse outcomes even for
crowded scenarios with 8 people.

mations, the stochastic gradients are ranked using a heuristic function and only the most
promising agent is perturbed at a time. Despite performing well in scenarios involving few
agents, this method does not scale well to more challenging crowded settings. Fig. 4.5
shows that although all the algorithms take longer to find influential outcomes as the com-
plexity of the environment grows, the performance of SGA deteriorates sharply for more
than 3 agents. Beyond 6 agents, it performs as poorly as random sampling since it takes a
long time to converge from a sampled initial configuration to a local optimum. Backprop-
agation, on the other hand, overcomes these limitations as it computes accurate gradients,
and all agents can simultaneously be updated without divergence.

53

0 1 2 3 4 5 6 7 8 9 10

Blame per meter travelled (1/m)

0.5

1

1.5

2

2.5

3

3.5

4

4.5

T
im

e
 S

to
p

p
e

d
 (

s
)

t
p

=1s

t
p

=0.3s

t
p

=0.3s
t
p

=0.3s
t
p

=1s
t
p

=1s

SGA with
10 Policies

SGA with
2 Policies

BP with
10 Policies

Be

Figure 4.6: Our proposed method, Backprop-MPDM (BP) can evaluate 10 policies reliably
in real-time, while SGA cannot. We compare the performance of various algorithms on 6
hours of navigation in our simulated environment. We measure the Time Stopped for every
goal reached as well as the Blame per meter traveled by the robot. For each algorithm, we
use bootstrap sampling to estimate the mean and standard error for these metrics, repre-
sented by the axes of an ellipse. Lower the Blame or Time Stopped, the better. We run the
simulator in real-time allowing a planning time tp = 0.3s. Although SGA can evaluate the
smaller policy set reliably in real-time, the lack of options results in frequent Stopping. Un-
fortunately, SGA cannot evaluate a larger policy set of 10 policies reliably and accumulates
large Blame. Since BP can evaluate the larger policy set more quickly and reliably than
SGA , the robot navigates safely (low Blame) in real-time without Stopping unnecessarily.
The benefits of risk-aware MPDM with the larger policy set can also be observed in the
attached video. Upon slowing down the simulator (three times slower than real-time) to
allow an unrealistic planning time of tp = 1s, we observe that SGA with 10 policies is able
to drastically reduce Blame. However, even then BP outperforms SGA.

4.4.2 Increasing the Number of Candidate Policies

Through 6 hours of navigation in our simulated environment, we demonstrate that our pro-
posed approach, unlike SGA, can reliably evaluate a large policy set. Each simulation
‘epoch’ consists of a random initialization of agent states followed by a 5 minute simulated
run. In our simulator, the observations z are modeled using a stationary Gaussian distribu-
tion with uncorrelated variables for position, speed and orientation for the agent. We pa-
rameterize this uncertainty by a scale factor {σpx , σpy , σ|v|, σθ} = {10cm, 10cm, 10cm/s, 15◦}.
The corresponding diagonal covariance matrix is denoted by diag(σpx , σpy , σ|v|, σθ). We do
not perturb the goal and assume no angular velocity (ignoring any uncertainty). These un-
certainties are propagated in the posterior state estimation P (x|z).

Our simulation experiments are run on an Intel i7 processor and 8GB RAM to mimic

54

Sampling

Search

Minimum distance to human (m)

Figure 4.7: Random sampling often results in poor decision making. If the two humans
move away from each other (Middle-Top), the robot would be able to pass through without
causing inconvenience. However, if the agents move too close to each other and inter-
act in the path of the robot (Middle-Bottom), Go-Solo is no longer a good policy for the
robot. Initial configurations that result in such interactions should ideally be accounted for
while evaluating the utility of a policy (Go-Solo, in this case). Such configurations have
high probability density but low probability mass and hence, Monte-Carlo sampling from a
cost-function agnostic posterior distribution often fails to capture these situations. Left: A
real world scenario where two agents are walking towards each other. Middle-Top: At their
current speed and orientation, the agents would pass the robot and not obstruct it. This is
mostly the case. Middle-Bottom: However, the adverse situation where the two agents head
straight at each other is also probable but is unlikely to be sampled (it has high probability
density but low probability mass). Right: The scenario 0.7s later. The robot decides to
stop at the very last moment when the probability mass for the imminent adverse scenario
is large. Bottom The scenario described was repeated 20 times for each algorithm. The
normalized histograms for the distance to the closest human the robot is moving towards.
We notice that close calls and collisions are avoided by searching for likely high-cost out-
comes. The sampling based approach collided with agent on 3 runs out of the 20 while our
risk-aware approach never collided with another agent.

55

the computational capabilities of our robot. In order to react to sudden changes, MPDM
relies on quick re-planning. The robot must replan every 300ms for effective real-time
navigation. We evaluate the performance of risk-aware MPDM using 2 candidate sets of
policies - a large candidate set with 10 policies, and a small set with 2 policies:

1. 2 Policies - {Go-Solo, Stop} - The robot evaluates going straight towards the goal at
maximum speed (1.5m/s) and stops if it senses danger.

2. 10 Policies - { (Fast, Medium, Slow)×(Straight, Left, Right), Stop} - Rather than
going straight towards the goal at maximum speed, the MPDM may also choose to
go at Medium speed (0.9m/s) or Slowly (0.2m/s). Simultaneously, the robot can
also choose to create a sub-goal to the Left or Right of the goal instead of going
Straight to the goal as in Go-Solo.

We record the Time Stopped per goal reached, as well as the Blame normalized by the
distance to the goal (Blame per meter traveled). Time Stopped indicates the failure of the
planner to find a safe policy. With a larger policy set, the robot is more likely to find a safe
policy, and Stops less often. However, if the robot cannot evaluate its policy set quickly
enough, it is unable to react to sudden changes in the environment and accumulates Blame.
Ideally, we would like a robot to navigate safely (low Blame), with minimal Stop-and-Go
motion.

Fig. 4.6 shows how the inefficiencies in SGA become a performance bottleneck. While
SGA can navigate safely (low Blame) with the small policy set, it often fails to find safe
policies and stops. With 10 policies, SGA fails to find influential outcomes fast enough
resulting in high Blame. Our proposed method, BP can reliably evaluate the large policy
set in real-time, which significantly improves navigation performance.

When we slow down the simulator (three times slower than real-time) to allow an unre-
alistic planning time of tp = 1s, SGA with 10 policies is able to drastically reduce Blame.
However, our proposed approach, BP still outperforms SGA.

4.4.3 Real-World Experiments

We implemented our system on the MAGIC robot [144], a differential drive platform
equipped with a Velodyne VLP-16 laser scanner used for tracking and localization. An
LED grid mounted on the head of the robot has been used to visually indicate the policy
chosen at any time. We use a laptop with an Intel i7 processor and 8GB RAM for our
forward simulations and LCM [145] for inter-process communication.

56

Figure 4.8: Repeated real-world experiments. We collect real-world data from three repeat-
able experiments represented by different symbols 1) pedestrians crossing orthogonally to
the robot’s trajectory (+), 2) pedestrians crossing the robot’s path obliquely at 45 degrees
(∆) and 3) pedestrians walking slowly in front of the robot (star). We measure the Time
Stopped for every goal reached as well as the Blame per meter traveled by the robot accu-
mulated by inconveniencing pedestrians. Lower the Time Stopped and Blame, the better.
Our proposed approach (green) can evaluate more policies in real-time than earlier possi-
ble. With more candidate policies, the robot can find good policies and can navigate safely
without stopping unnecessarily.

Every 300ms (policy election cycle), MPDM chooses a policy. This constrains the robot
to a budget of N = 50 forward simulations per core used (we use only one core for the
planning algorithm, although the task is readily parallelizable, as discussed in Chapter 6).
Although the policy election is slow, the robot is responsive as the policies themselves run
at over 50Hz.

We ran two types of real-world experiments - one in which volunteers were asked to
repeat structured scenarios designed to make multiple runs as similar as possible. and the
second in which six volunteers were asked to move around spontaneously in the open space
for 30 minutes (Fig. 4.1).

Fig. 4.7 shows the normalized histograms of the distance to the closest human, gen-
erated from 20 repetitions of a real-world scenario where two agents are walking towards
each other and orthogonal to the robot’s path. At their most-likely estimated speed and
orientation, the agents would pass the robot and not obstruct it. However, in the adverse
(and less likely) situation where the two agents head straight at each other, they would slow

57

Figure 4.9: Real situations illustrating the benefits of risk-aware MPDM with many poli-
cies. The sequence of images depicts different situations that the robot encounters as it
makes its way towards its goal. Dashed segments denote portions of the robot’s trajectory
(green lines) where it slowed down. The orange tracks represent the trajectories of relevant
pedestrians. The lines were manually superimposed on the video after careful examination
of the corresponding logs. The robot slows down upon discovering possible imminent col-
lision (a and c) and turns appropriately to avoid them when possible (a and e) as denoted by
the white ellipses. By dynamically switching between multiple policies, the robot is able
to navigate safely, without stopping unnecessarily.

down, thereby obstructing the robot. MPDM with Monte-Carlo sampling (without search-
ing for potentially dangerous outcomes) often results in poor decision making, resulting
in close calls and collisions (peaks in the histogram). While the Monte-Carlo sampling
failed to consistently capture influential configurations resulting in an optimistic utility for
the Go-Solo policy, our risk-aware approach can consistently capture such configurations,
making the robot stop when required.

Next, we present empirical results comparing two risk-aware approaches– Backprop-
MPDM and SGA, on the three structured experiments described below (Fig. 4.8). Volun-
teers were asked to repeat the scenarios for a duration 15 minutes while the robot made its
way towards its goal. The planning algorithm being executed was unknown to the partici-
pants.

1. Two pedestrians simultaneously cross the robot orthogonally. The pedestrians also
approach each other as the robot approaches them, increasing the uncertainty and the
scope for agent-agent interactions.

2. The pedestrians cross the robot’s trajectory obliquely, beginning from the same side
of the robot. This robot must anticipate how its interaction with the one pedestrian
can affect its interaction with the other pedestrian. The outcome of this scenario is

58

sensitive to the pedestrian velocities.

3. Both pedestrians walk slowly in front of the robot.

As observed in simulation, SGA was too slow to evaluate the larger policy set reliably
and was unsafe to deploy on our robot. Using SGA with two policies (purple), the robot
fails to find safe policies and stops often. Our proposed method (green) can reliably evalu-
ate 10 policies in real-time (similar Blame as compared to SGA with just two policies) and
as a result, it is more likely to find safe policies (low Time Stopped).

In another experiment, seven volunteers were asked to move spontaneously between
markers placed around the operating environment for 45 minutes. Fig. 4.9 demonstrates
the emergent behavior from Backprop-MPDM through an 8 second time-line during this
experiment1. With a rich set of candidate policies to choose from, the robot modulates its
speed and heading to alleviate anticipated dangerous future outcomes.

4.5 Summary

In this chapter, we introduced the idea of discovering influential outcomes for MPDM,
skew decision-making to award policies that have fewer potentially dangerous outcomes.
A key advantage is that the evaluation of a policy can be seen as an optimization problem,
as opposed to the computation of a probabilistic expectation.

By recognizing that the kinematic models used for the agents have an impact on the
quality of the gradients, we showed how accurate gradients of a forward simulation can
be computed efficiently using backpropagation. Using these gradients, we can quickly
evaluate a large number of discrete policies reliably in real-time resulting in significant
performance improvements.

1We encourage the reader to see our video (https://www.youtube.com/playlist?list=
PLbPJN-se3-QiwIITl5cNsUV4-SRIyl9OM) demonstrating the advantages of risk-aware MPDM.

59

https://www.youtube.com/playlist?list=PLbPJN-se3-QiwIITl5cNsUV4-SRIyl9OM
https://www.youtube.com/playlist?list=PLbPJN-se3-QiwIITl5cNsUV4-SRIyl9OM

CHAPTER 5

C-MPDM: Continuously-parameterized
risk-aware MPDM by quickly discovering

contextual policies

5.1 Introduction

There is a core tension in MPDM type systems — it is desirable to add more policies to
increase the expressivity of the system for better emergent behavior, however, this increases
computational cost. Risk-aware MPDM evaluates each candidate policy (ego-policy) by
anticipating potentially dangerous outcomes through an on-line optimization process based
on forward roll-outs. More specifically, each ego-policy πr is evaluated based on the most
influential (likely high-cost) forward simulated outcome Ψ(πr) that may occur which is
discovered by optimizing a probabilistic cost surface -

Ψ(πr) = arg max
x0∈X

{P (x0)C
(
X(πr, x0)

)
}. (5.1)

This optimization is computationally expensive and only a handful of policies can be eval-
uated reliably in real-time.

Policy election for risk-aware MPDM can be modeled as a real-time bilevel program,
where during each planning cycle (every 300ms), the ego-policy with the most benign
influential outcome is chosen and executed. Bilevel optimization is a well-studied class of
mathematical programs encountered in various fields ranging from management [42], to
optimal control [43] where there are two levels of optimization tasks, one nested within
the other. In risk-aware MPDM, the upper-level optimizer (the ego-robot) chooses the
policy with the most benign (low-cost) evaluation, while lower-level optimization (risk-
aware policy evaluation of an ego-policy) involves finding the most potentially dangerous
(likely, high-cost) outcome from all possible pedestrian configurations. In this way, risk-

60

Figure 5.1: Expressible policy spaces. Left: In principle, we would like to find the best
policy from the entire space of policies Π; this is generally intractable. Middle: Earlier
MPDM systems constrained the search to a finite number apriori-known discrete policies,
whose size (perhaps 5-10) depends on the computational budget. Right: Continually-
parameterized MPDM (C-MPDM) can represent much larger volumes within the policy
space. By quickly generating promising context-derived candidate policies using “risk-
aware policy-gradients” ∇πΨ, C-MPDM increases expressivity of the actions available to
the robot without increasing computational complexity.

aware MPDM can be viewed as a bilevel optimization -

min
πr∈Π

P (x0)C
(
X(πr, x0)

)
s.t. x0 = arg max

x0∈X
{P (x0)C

(
X(πr, x0)

)
}

⇐⇒ x0 = Ψ(πr).

(5.2)

In our bilevel program (Eqn. 5.2), even the lower level optimization (computing Ψ(πr)

exactly for fixed ego-policy) is computationally infeasible due to the large space of possible
initial pedestrian configurations [149]. As a result, earlier MPDM systems used a discrete
set of hand-crafted policies for the upper-level optimization to reduce the bilevel program
to a set of simpler optimizations.

Algorithm 3 describes earlier approaches to policy-election. Provided with a probabil-
ity distribution over initial configurations, P (x0), an apriori-known discrete set of candidate
policies, Πd, and a forward simulation budget,Nπ, each candidate policy evaluated (scored)
independently (Line 2) according to the most influential (worst-case) outcome discovered
within the computational budget and the policy with the most benign influential outcome
is elected. Only a handful of ego-policies can be reliably evaluated in real-time, limit-
ing Alg. 3 to a small number of discrete policies — a significant performance bottleneck.
Moreover, the system designer must decide the candidate ego-policy set apriori, and only a
small subset may be relevant at any time.

In the next section, we extend the risk-aware MPDM framework by allowing policies to
have continuous-valued parameters. We propose Continuously-parameterized Multi-Policy

61

Algorithm 3 Policy Election with Handcrafted Policies
1: function POLICY-ELECTION LOOP(P (x),Πd, Nπ)
2: for π ∈ Πd do
3: Initialize Uπ, n← 0
4: while n < Nπ

|Πd|
do

5: Sample x0 ∼ P (x)
6: U∗, nopt ← Optimize-Env(x0, π)
7: n← n+ nopt
8: Uπ ← max{U∗, Uπ}
9: end while

10: end for
11: π∗← arg minπ Uπ
12: end function

Decision Making (C-MPDM) to radically enhance the expressivity of MPDM without in-
creasing computational complexity. By allowing policies to have continuous-valued param-
eters, and then efficiently computing good values of those continuous parameters (Fig. 5.1),
C-MPDM enables the robot to choose from an infinite number of policies in real-time.

To achieve this, C-MPDM has to overcome many practical challenges. Merely check-
ing strict or local optimality in bilevel optimization problems is NP-hard and most aca-
demic research has been focused on simple bilevel programs with convex objective func-
tions [150]. In our domain, even evaluating the cost function involves a time-consuming
forward simulation. Furthermore, the high-dimensional search-space of possible robot
policies and pedestrian configurations and the complex multi-agent interactions make the
forward-simulated trajectories and thereby the cost function sensitive to the decision vari-
ables. The conflicting objectives, the real-time requirements and the lack of a closed-form
expression for the objective function makes this problem harder.

5.2 Contributions

Our proposed algorithmic approach fundamentally re-thinks the MPDM algorithm, replac-
ing a core component with a method that more closely resembles a deep learning algorithm
than a motion planner (though it is neither!). The key idea is to quickly generate promising
context-derived candidate policies using a local iterative gradient-based search procedure
(Fig. 5.1) where the necessary gradients are efficiently computed using backpropagation.
Promising policy candidates are then extensively evaluated via the forward roll-out process
described in the previous chapter. Our contributions include the following:

1) We formulate C-MPDM as a bilevel optimization and allow policies to have continuous-

62

valued parameters, which improves the expressivity and flexibility of the decision making
process.

2) We provide an effective real-time solution to the bilevel program. Our novel anytime
algorithm finds increasingly desirable contextual ego-policy parameters.

3) Through extensive experiments in simulation and on a real robot platform, we demon-
strate the benefits of C-MPDM over other approaches such as evaluating a fixed set of
hand-crafted policies and random policy sampling.

4) We compare the performance of C-MPDM with a state-of-the-art trajectory based
planner, Model-Predictive Equilibrium-Point Control (MPEPC) [44] through extensive real-
world experiments. Using objective metrics and subjective feedback, we demonstrate that
C-MPDM produces emergent behavior that is more reliable than MPEPC for autonomous
navigation in dynamic environments with large uncertainty.

5.3 Method

Previously, MPDM used a discrete set of domain-specific hand-crafted policies to nav-
igate social environments. For example, in the indoor hallway setting, we used Π =

{Go-Solo,Followj, Stop}. We allow the robot’s policy πr (which we refer to as ego-policy)
to be an instantiation of a continuously-parameterized policy π(vpref , ψgr) ∈ Π.

The robot executing a policy πr = π(vpref , ψgr) tries to move at a preferred speed vpref ,
while avoiding obstacles according to the Social Force Model [23]. Rather than heading
straight towards its goal gr, the robot tries to move towards a point to the left or right of the
goal, as determined by the direction offset parameter ψgr . For example, πr = π(0.5, 30◦)

implies a policy where the robot tries to move at 0.5m/s at an orientation 30◦ to the right of
the goal. For the sake of clarity, we do not explicitly refer to parameters of an ego-policy πr.
Gradients are expressed w. r. t. πr, although we are implicitly referring to its parameters.

We propose a novel approach where accurate gradients are computed efficiently through
backpropagation and these gradients are used quickly discovering effective contextual ego-
policy parameters (boxed in Alg. 4). Each contextual candidate ego-policies is extensively
evaluated. Our anytime candidate generation algorithm produces increasingly desirable
policies for the robot to execute.

Generating Contextual Risk-Aware Policies

Deep neural networks chain (compose) relatively simple functions such as convolutions
or sigmoids to model complex functions. In the same way, a forward simulation for H

63

...

...

...

...

 forward

simulation
backprop

...

Figure 5.2: A deep network representation for our cost function. The initial configuration
x0 propagates through several layers, each representing the transition function T . The out-
put of layer t determines a cost for a single time-stepLt(xt). Our cost functionC(X(x0, πr))
accumulates costs calculated at each time-step along the forward simulated trajectory.

time-steps captures the complex dynamics of the system using simple one-step transition
functions T . High-cost forward-simulated outcomes correspond to those where the robot
inconveniences other agents by driving too close to them, thus accumulating high Blame.
We want to penalize trajectories that have bad interactions at any point during the forward
roll-out, not just those that end in a bad interaction. The robot is also rewarded according
to the Progress it makes towards the goal. Therefore, unlike most deep networks, the cost
function C(X(x0, πr)) is not a simple loss computed at the final output, but rather costs
accumulated at each time step Lt(xt).

We define a partial cost function L(t,X) that accumulates costs along the trajectory
from time τ = t . . . H (until the end of the roll-out).

L(t,X) =
H∑
τ=t

Lτ (xτ). (5.3)

Accurate gradients of the cost function can be computed efficiently by backpropagation

64

through deep network, which leverages the following recurrence relation -

∇xtL(t,X) =
∂L(t,X)

∂xt
=
∂{L(t+ 1,X) + Lt(xt)}

∂xt

=
∂L(t+ 1,X)

∂xt+1

∂T (xt)
∂xt

+
∂Lt(xt)
∂xt

. (5.4)

The gradient of the cost function with respect to the agent configurations∇x0C(X(x0, πr)) =

∇x0L(0,X) is used during gradient-ascent to simultaneously perturb the configurations of
all pedestrians towards increasingly likely and high-cost outcomes until convergence as
follows -

x0 = x0 + η1

(∇x0C(X(x0, πr))

C(X(x0, πr))
+
∇x0P (x0)

P (x0)

)
. (5.5)

Each agent’s update rate is determined using line-search along the gradient direction.
Note that Eqn. 5.5 locally optimizes log (P (x0)C

(
X(πr, x0)

)
). We refer to this procedure

as Optimize-Env.
The key insight is that in addition to discovering influential outcomes, we can use the

same backpropagation machinery to compute the gradient of the cost function with respect
to the ego-policy parameters -

∇πrC(X(x0, πr)) =
H∑
t=1

∂L(t,X)

∂xt
∂xt
∂πr

.

We perform gradient-descent, perturbing the ego-policy πr towards increasingly benign
parameters until convergence as follows -

πr = πr − η2
∇πrC(X(x0, πr))

C(X(x0, πr))
. (5.6)

This gradient-descent procedure, which we call Optimize-Robot, locally optimizes
log
(
C
(
X(x0, πr)

))
.

Since finding the global optimum for the bilevel program (Eqn. 5.2) is computationally
intractable, we first generate promising contextual candidate policies using a greedy local
search procedure (POLICY-GENERATION) and then evaluate these candidates extensively
(POLICY-EVALUATION).

Algorithm 4 summarizes the overall policy election cycle. C-MPDM elects an ego-
policy, taking as input a probability distribution over initial pedestrian configurations, P (x0),
a continuous ego-policy space, Π, and forward simulation budgets for candidate generation
(Ncg) and policy evaluation (Nπ). A pedestrian configuration x0 sampled from P (x0) and

65

Optimize-Env

II

Figure 5.3: Candidate ego-policy generation through iterative gradient-based optimization
(Alg. 4 - POLICY-GENERATION). The forward propagated outcome of a randomly sam-
pled joint configuration (tile I) is not discouraging for the robot as its ego-policy π0

r does not
inconvenience either agent. For agent i ∈ {1, 2}, the gradients computed using backpropa-
gation∇xi0ln

(
C(X)

)
(Blue) drives the agent towards a configuration where the robot would

cause inconvenience while ∇xi0ln
(
P (x0)

)
(Green) drives it towards a more likely config-

uration (tile II inset). The agent configurations are simultaneously updated (dotted black
arrows) according to Eqn. 5.5 until convergence, resulting in a likely high-cost outcome
(tile II) that is used to evaluate π0

r . The bar plot (Bottom-Right) shows the corresponding
rise in the objective function P (x0)C

(
X(π0

r , x0)
)
. Once π0

r is evaluated, −∇πr ln
(
C(X)

)
is computed (tile III inset) through backpropagation (Blue), and the ego-policy is updated
according to Eqn. 5.6 until convergence, resulting in a more benign robot policy π1

r with a
lower objective function value. The newly discovered ego-policy π1

r is then evaluated once
again perturbing the agent configurations to discover the locally most influential outcome
for π1

r (tile IV). The bar plot (Bottom-Right) shows that even though the outcome in tile
III for π1

r has a higher cost than the outcome (tile I) for π0
r , the worst-case outcome for π1

r

(tile IV) is more benign than that for π0
r (tile II). After one more iteration, our approach

converges to a saddle point and a promising candidate policy π2
r .

66

an ego-policy πr sampled from Π (Line 3) seed the POLICY-GENERATION procedure (Line
4) which discovers promising policy parameters in the current navigation context. Promis-
ing policies π∗r are extensively evaluated (Line 8) and the policy with the most benign
influential outcome is executed (Line 10).

POLICY-GENERATION is an iterative gradient-based process that converges at a saddle
point where the robot’s policy and the pedestrian configuration are both locally optimal as
illustrated in Fig. 5.3. First, Optimize-Env (Line 15) perturbs the seed pedestrian config-
uration x0 towards the locally most influential outcome which determines the score U0 of
the seed ego-policy πr. Then, the seed ego-policy is repeatedly perturbed and evaluated
locally - at each iteration, Optimize-Robot (Line 19) perturbs the ego-policy πr towards
more benign parameters using nopt gradient-descent steps (Eqn. 5.6) and the perturbed pol-
icy is evaluated according to the locally most influential outcome (Line 21). If the forward
simulation budget for candidate generation Ncg is exceeded (Line 18) or if ego-policy per-
turbation does not improve the worst-case outcome by ε (Line 24), the search terminates.
If perturbations in the ego-policy result in a significantly more benign (locally) worst-case
outcome than the seed ego-policy (Line 5), we assume that π∗r is likely to be promising.

The POLICY-EVALUATION function evaluates π∗r more extensively by performing local
searches for influential outcomes from different seed pedestrian configurations (Line 36)
using at most Nπ forward simulations. Otherwise, a new joint configuration is sampled and
the procedure repeats.

Connection with Policy Gradient Methods

In reinforcement learning (RL), an agent (the robot) learns to act in an environment so as
to maximize its cumulative reward. The robot’s policy induces a distribution of trajectories
in the environment and the goal of an RL algorihtm is to find a policy for the robot with
the best expected return under this distribution. The main challenge faced by RL algo-
rithms is to converge to a good policy quickly (using few samples). Monte-Carlo sampling
based on the on-policy trajectory distribution can result in high-variance estimates of the
expected return. This has motivated the use of importance sampling based on carefully
constructed behavior policies for sample-efficient policy evaluation [151]. State-of-the-
art off-policy actor-critic algorithms for reinforcement learning such as TRPO [152] and
A3C [153] cycle between policy evaluation and policy improvement. These methods are
more sample-efficient because they re-use trajectories generated from behavior policies for
evaluating the target policy by assigning importance weights to each trajectory based on its
likelihood ratio and relative return.

67

Algorithm 4 Policy Election for Continuous Policy Spaces

1: function C-MPDM(P (x),Π, Ncg, Nπ)
2: while Time Remaining do
3: Sample x0 ∼ P (x), πr ∼ Π
4: π∗r , Uπ, U0 ← Policy-Generation(πr, x0, Ncg)
5: if Uπ − U0 ≤ δ then
6: continue
7: end if
8: Uπ ← Policy-Evaluation(πr, Uπ, Nπ)
9: end while

10: return arg minπ Uπ
11: end function
12:
13: function POLICY-GENERATION (πr, Uπ, Ncg)
14: Initialize Uπ, n← 0
15: x0, nopt ← Optimize-Env(x0, πr)
16: n← n+ nopt
17: U0 ← P (x0)C(x0, πr)
18: while n < Ncg do
19: π̃r, nopt ← Optimize-Robot(x0, πr)
20: n← n+ nopt
21: x0, nopt ← Optimize-Env(x0, π̃r)
22: n← n+ nopt
23: Ui ← P (x0)C(x0, π̃r)
24: if Ui ≤ Ui−1 − ε then
25: πr ← π̃r
26: Uπ ← Ui

27: else
28: break
29: end if
30: end while
31: return πr, Uπ, U0

32: end function
33:
34: function POLICY-EVALUATION(πr, Uπ, Nπ)
35: while n < Nπ do
36: Sample x0 ∼ P (x)
37: U∗, nopt ← Optimize-Env(x0, πr)
38: n← n+ nopt
39: Uπ ← max{U∗, Uπ}
40: end while
41: return Uπ
42: end function

68

MPDM is a coupled behavioral planning and intent estimation framework where all

agents (pedestrians and the robots) are executing policies and the joint policies induce a
distribution over trajectories. MPDM simulataneously reasons over the policies of multiple
agents, but each agent’s policy is more structured and has fewer parameters (uses more do-
main knowledge) than policies typically learned by RL algorithms. Unlike traditional RL
settings, in our domain the complexity arises from the closed-loop interactions between
agents in the environment, which makes the trajectories and cost-function sensitive to the
agents’ behaviors (environmental state). In section 4.1, we showed that approximating the
expected utility for a particular ego-policy with MPDM’s real-time constriants is unreli-
able and therefore, we evaluate policies by quickly discovering the worst-case pedestrian
configuration.

Even though the notions of policy-evaluation and policy-improvement in C-MPDM
are similar to those in actor-critic methods for RL, our ego-policy’s ‘critic’ is the joint
pedestrian configuraiton with the worst-case outcome, which is local and highly adaptive
with respect to the robot’s policy parameters. Moreover, the importance weights for re-
using off-policy trajectories would have high variance our ego-policies are deterministic
and the trajectories are very sensitive to the policy. Thus, C-MPDM tackles new practical
challenges arising due to our spiky cost function and real-time constraints and we take a
different optimization approach more closely resembling a Stackelberg game between the
pedestrians and the robot.

Connection with Optimal Control

Optimal control attempts to find the best sequence of actions for a system with known
dynamics and limited stochasticity within a high-dimensional action space. Classic tech-
niques for trajectory optimization and optimal control such as LQR for linear systems
[154], or nonlinear approaches such as iLQG [155] and LQR-Trees [156], use backprop-
agation to efficiently update solutions. While our proposed method uses a similar back-
propagation process, our application of these gradients is different. C-MPDM tries to find
optimal policy for the robot given worst-case policies of other agents, making it a bilevel
optimization problem.

5.4 Results

Our operating environment consists of an open area that is freely traversed by a set of
pedestrians that randomly change speed and direction without signaling while the robot

69

tries to reach its goal. The unconstrained nature of this domain makes the trajectories
more sensitive to the initial pedestrian configurations as well as the robot’s ego-policy. By
re-planning quickly (every 300ms), the robot is able to react to sudden and unexpected
changes in the environment.

For each observed agent i, the robot maintains a probabilistic estimate of its state. A
sudden change in speed is accounted for by assuming a distribution over the preferred speed
vpref of each agent that is a mixture of two truncated Gaussians - one centered around the
estimated most-likely current speed with a σ = 0.4m/s to account for speeding up or
slowing down and a truncated half Gaussian with a peak at 0 and σ = 0.2m/s to account
for coming to a sudden stop. Pedestrian i’s sub-goal gi is inferred from a set of salient points
in the environment using a Naive Bayes classifier. However, the pedestrian can suddenly
change direction without signaling which is captured by assuming a Gaussian distribution
for the pedestrian’s short-term heading ψgi that is centered around the agent’s estimated
most-likely orientation and σ = 30◦. All truncated Gaussians are restricted to µ± 1.5σ.

5.4.1 Simulation Experiments

Our simulation experiments are run on an Intel i7 processor and 8GB RAM to mimic the
computational capabilities of our robot platform. Our simulation environment is an open
space, freely traversed by a set of agents while the robot tries to reach a goal. Agents can
randomly slow down or come to a stop without signaling. First, we demonstrate that our
proposed approach discovers more desirable ego-policies than random policy sampling.
Next, we show that C-MPDM outperforms MPDM with a discrete set of apriori hand-
crafted policies by finding safer, and more effective policies in real-time.

Efficiency of Candidate Generation

We generated a dataset consisting of 4k randomly chosen simulated scenarios, each of
which has at least one agent present within 5m of the robot. For each scenario, we esti-
mate max

πr∈Π
Ψ(πr), the optimal solution to the bilevel optimization (Eqn. 5.2) by evaluating a

large number of policies Π̃, consisting of 1k randomly sampled ego-policies as well as 500
context-aware policies generated using our proposed approach (Alg. 4). For each policy,
Ψ(πr) was estimated using the POLICY-EVALUATION function with a forward simulation
budget Nπ = 100. This brute force estimation of the “globally optimal” ego-policy takes
about 5 minutes for each scenario (three orders of magnitude slower than our real-time
requirements).

Given real-time constraints, only a handful of ego-policies can be evaluated reliably.

70

Figure 5.4: Varying the planning time, we evaluate the efficacy of our proposed method in
estimating min

πr∈Π
Ψ(πr) (a bilevel optimization). We compare the distribution of the Perfor-

mance Ratio of 400k candidate sets generated using our approach with those generated by
random policy sampling. The bars mark the median and quartiles of the data-points while
the bar represents the 10th percentile. A Performance Ratio of 1 indicates optimality, while
candidates with lower Performance Ratios would cause the robot to stop unnecessarily or
pick a sub-optimal policy. Random policy sampling often fails to find desirable ego-policy
parameters even with impractical planning times of 1s. Our method significantly outper-
forms random policy sampling over the entire range of Planning Time.

For a particular scenario in the dataset, we define the Performance Ratio of N candidate
ego-policies Πcand = {πir}Ni=1 the ratio of “globally optimal” ego-policy’s utility to the
utility of the most benign ego-policy in the generated candidate set -

Performance Ratio (Πcand) =

min
πr∈Π̃

Ψ(πr)

min
πr∈Πcand

Ψ(πir)
.

A Performance Ratio of 1 is ideal and smaller ratios imply poorer candidates.
Varying the time available for planning tp from 50ms to 1s, we compare the Perfor-

mance Ratio of 400k candidate sets of randomly sampled ego-policies with context-derived
candidate ego-policies generated using our proposed approach. As more planning time is
available, more candidate policies can be evaluated and in general, the Performance Ra-

tio increases. However, in order to stay reactive to sudden changes in the environment, tp

71

should not exceed 400ms (based on experiments on our physical robot platform).
For each scenario, candidates are bootstrap sampled from the dataset and their Per-

formance Ratio is represented by box-plots in Fig. 5.4. The boxes represent the quartiles
while the bar represents the 10th percentile. We observe that our method significantly out-
performs random policy sampling over the entire range of Planning Time. Within real-time
constraints (300 − 400ms), while random policy sampling is highly unreliable (long 10th

percentile bars), our iterative gradient-based approach the elected policy is almost always
within a factor of two of the optimal ego-policy (99.9% of the times) which is better than
random policy sampling with 1s of (impractical) planning time.

C-MPDM System Validation

Through 10 hours of autonomous navigation in our simulated environment, we demon-
strate that the enhanced expressivity provided by C-MPDM results in significant perfor-
mance improvements. Each simulation ‘epoch’ consists of a random initialization of agent
states followed by a 5 minute simulated run at a granularity ∆t = 0.15s. During each
policy-election cycle, the simulator was perturbed to account for sensor noise and tracking
uncertainty.

We record the Time Stopped as well as the Blame normalized by the distance to the goal.
Time Stopped indicates the failure of the planner to find a safe policy. With a larger policy
set, the robot is more likely to find a safe policy, and Stops less often. However, if the robot
cannot evaluate its policy set quickly enough, it is unable to react to sudden changes in the
environment and accumulates Blame. Ideally, we would like a robot to navigate safely (low
Blame), with minimal Stop-and-Go motion.

We run the simulator both in real-time (tp = 0.3s), as well as slowed-down to allow
an unrealistic planning time (tp = 1.5s). We compare the performance of our proposed
approach C-MPDM, which allows for continuous-valued parameterized policies with the
following alternatives for generating discrete policies -

1. Hand-crafted Candidates (HC) - A set of hand-crafted candidate policies Πhc =

{(Fast, Medium, Slow)×(Straight, Left, Right), Stop, Follow-other} - used in previ-
ous MPDM-systems [149] is provided. Each candidate is independently evaluated as
in Alg. 3. Rather than going straight towards the goal at maximum speed (1.6m/s),
the robot may also choose to go at Medium speed (0.9m/s) or Slowly (0.2m/s). Si-
multaneously, the robot can also choose to create a sub-goal to the Left or Right of
the goal. Additionally, the robot can choose to follow any nearby agent. Due to the
open nature of our domain, the Follow-other policies have the lowest priority (they

72

0.5 1 1.5 2 2.5 3 3.5 4

Blame per meter travelled (1/m)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
T
im

e
 S

to
p
p
e
d

p
e
r

m
e
te

r
tr

a
v
e
ll
e
d
 (

s
/m

)

Policy-Sampling,

risk-aware evaluation

Hand-crafted

Our proposed approach

(C-MPDM)

Policy-Sampling,

evaluation based on most

likely outcome

Figure 5.5: Our proposed method, C-MPDM can find good policies more often, even other
where methods cannot. We compare the performance of various algorithms on 10 hours
of navigation in our simulated environment. We measure the Time Stopped for every goal
reached as well as the Blame per meter traveled by the robot. For each algorithm, we use
bootstrap sampling to estimate the mean and standard error for these metrics, represented
by the axes of an ellipse. Smaller values of Blame and Time Stopped are better. Note that in
practice, a planning time tp < 0.4s is required for responsive behavior tp = 1.5s is imprac-
tical for our application. Without risk-aware evaluation, even densely sampling the policy
space fails to anticipate potentially dangerous outcomes and incurs high Blame. Upon
running the simulator in real-time with a planning time tp = 0.3s (solid ellipses), we ob-
serve that our proposed method (C-MPDM) outperforms both, risk-aware policy evaluation
with random samples and with hand-crafted ego-policy parameters. Upon slowing down
the simulator in order to allow an impractical planning time tp = 1.5s (dashed ellipses),
all the algorithms perform better. Still, C-MPDM outperforms both policy-sampling and
Hand-crafted policies.

73

are evaluated only if time permits after evaluating the others).

2. Policy Sampling with Risk-Aware evaluation (PS-RA) - Given a continuous policy
space Π, (without a set of hand-crafted policies), a set of policies can be randomly
sampled from Π and evaluated in a risk-aware fashion.

3. Policy Sampling without Risk-Aware evaluation (PS-ML) - Since risk-aware policy
evaluation is computationally expensive, an alternate approach is to densely sample
the policy space Π and evaluate policies very quickly only based on the most likely
scenario. In our experiments, around 150-200 policies could be evaluated for a plan-
ning time of 0.3s.

For each of the four planning algorithms, Fig. 5.5 shows the mean and standard error for the
Time Stopped and the Blame per meter traveled by the robot. Under real-time constraints,
we observe that our proposed method (C-MPDM) is able to discover effective ego-policy
parameters more often than both, risk-aware policy evaluation with randomly sampled (PS-
RA) as well as with hand-crafted (HC) ego-policy parameters and Stops less frequently. On
the other hand, dense policy sampling (PS-ML) does not account for the uncertainty while
evaluating a policy and accumulates much higher Blame as it fails to anticipate potentially
dangerous outcomes and Stops only when collision is imminent. Upon slowing down the
simulator to 5x slower than real-time constraints would allow, sampling performs much
better. The hand-crafted Follow-other policies can be evaluated with tp = 1.5s and hence,
with more candidates, HC Stops less often. However, C-MPDM still offers much more
flexibility to the decision making process and outperforms both HC and PS-RA.

5.4.2 Real-World Experiments

We implemented our system on a skid-steer robot equipped with a Velodyne VLP-16 laser
scanner used for tracking pedestrians as well as for localization. Every 300ms, MPDM
evaluates a set of policies and chooses the least risky one. Although the policy election
is slow, the robot is responsive as the policies themselves run at 50Hz. Fig. 5.6 shows
data from 75 minutes of repeatable real-world experiments where volunteers were asked to
repeat two fixed scenarios while the robot made its way towards its goal about 25m away -

1. Two pedestrians simultaneously cross the robot orthogonally. The pedestrians also
approach each other as the robot approaches them, increasing the uncertainty and the
scope for agent-agent interactions.

2. Both pedestrians walk in front of the robot, flanking it from either side.

74

0 0.2 0.4 0.6 0.8

Deviation

0

0.5

1

1.5

2

2.5

3

3.5

4

B
la

m
e
 p

e
r
m

e
te

r
tr
a
v
e
ll
e
d

Figure 5.6: Repeated real-world experiments. Data is collected from two repeatable ex-
periments represented by different symbols. 1) Pedestrians crossing the robot’s trajectory
orthogonally (∆) and 2) Pedestrians walking slowly in front of the robot (star). We mea-
sure the trajectory Deviation as well as the Blame per meter traveled by the robot. Lower
the Deviation and Blame, the better. Our proposed approach C-MPDM allows the robot to
modulate policy parameters appropriately so as to achieve low Deviation while avoiding
close encounters.

75

Figure 5.7: Robot trajectories from a real-world experiment. Two agents walk closely in
front of the robot as it navigates towards its goal. The agents arbitrarily change speed and
suddenly turn acutely near the robot’s goal (star). The arrows mark the general trajec-
tory of the pedestrians. Salient locations are marked by circles. The undesirable behavior
from MPDM with hand-crafted policies (Πhc) stems from switching between very distinct
policies (Left). At location 1, the MPDM chooses to overtake the agents at a High speed to-
wards the Left of the goal (see Sec. 5.4.1). However, the pedestrians also speed up slightly
and the robot still lags behind as it approaches location 2 at which point, in order to make
more Progress, the robot switches strategies and attempts to overtake from the other side
(towards the Right of the goal). As the robot approaches location 3, the agents start turn-
ing acutely. and in order to reduce Blame, rather than going straight towards the goal, the
robot tries to swerve around the agent from the Left of its goal. This extreme switch causes
the robot to deviate once again. By allowing smoother transitions in nominal speed and
heading, C-MPDM avoids unnecessary deviation (Right).

76

We compared C-MPDM with hand-crafted discrete policies (HC) based on the Blame

per meter traveled as well as the trajectory Deviation which we define as the ratio of the
extra distance traveled by the robot to the minimum (straight line) distance that the robot
would travel if there were no pedestrians. Using the 10 hand-crafted policies (the plan-
ning time was insufficient to evaluate the Follow-other policies), the robot often finds sub-
optimal policies resulting in larger trajectory Deviation. Our proposed method C-MPDM
(purple) is able to adjust its speed and direction at a much higher resolution and as a result,
finds policies that result in lower Blame and Deviation.

Fig. 5.7 shows the resultant trajectories from an experiment where two pedestrians walk
closely in front of the robot, but not directly towards the robot’s goal. The pedestrians
arbitrarily change speed along their path and suddenly turn acutely near the robot’s goal.
With a small set of discrete hand-crafted policies, MPDM is forced to make extreme choices
such as overtaking from the right or left, or going very slowly. Switching between these
policies can result in undesirable trajectories (Fig. 5.7). C-MPDM alleviates this problem
through continuous-valued parameterized policies, allowing the robot to modulate its speed
and heading.

In another real-world experiment, seven volunteers were asked to move between marked
points around an open space for 45 minutes. On several occasions, the volunteers were ad-
versarial towards the robot, trying to test its capabilities by suddenly changing direction,
blocking its path or jumping in front of it. We encourage the reader to see our video demon-
strating emergent behavior using C-MPDM1.

5.5 C-MPDM and MPEPC: A Comparative Study

Model Predictive Equilibrium-Point Control (MPEPC) is a state-of-the-art stochastic model
predictive control algorithm where several trajectories generated from a high-fidelity robot
model are quickly evaluated and the best trajectory is selected. While most other methods
for safe navigation in social environments rely on slow-moving robots and effectively del-
egate the responsibility of avoiding collision to people, MPEPC enables safe, comfortable
and customizable mobile robot navigation in dynamic social environments even at high
speeds [44].

In this section, we compare the performance of C-MPDM (our proposed approach) and
MPEPC on real robot platform navigating a semi-crowded, highly dynamic environment.
Both algorithms were implemented on our skid-steer robot equipped with a Velodyne VLP-
16 laser scanner. They share the same velocity controller and a common perception system

1The video is available online — https://goo.gl/WgXW55

77

https://goo.gl/WgXW55

Figure 5.8: Our skid-steer robot navigating among a group of pedestrians in an open space.
Both MPEPC and C-MPDM use the same perception system for localizing the robot and
tracking pedestrians. Top-Left: GUI of the system with observed agents are depicted by
gray objects. The yellow lines show the predicted trajectories for a single initial configura-
tion of the observed agents.

for localizing the robot and tracking pedestrians.
Our operating environment is an open space, freely traversed pedestrians while the

robot tries to reach a goal (Fig. 5.8). The main challenge in this environment stems from the
uncertainty associated with the inferred state of the agents (people); agents can randomly
slow down or come to a stop. Moreover, the complex multi-agent interactions and the
unconstrained nature of this domain makes the trajectories more dependent on pedestrian
configurations.

We ran structured real-world experiments, where two volunteers were asked to repeat
different challenging scenarios as well as unstructured experiments, where six volunteers
were asked to move spontaneously in the open space, changing speed and direction at will.
Both experiments involved numerous double-blind trials, where, in each trial, the planning
algorithm was chosen randomly and was unknown to the experimenter and all participants.
Before discussing experimental results, the following section provides some context by
highlighting key similarities and differences between MPEPC and C-MPDM.

78

5.5.1 Algorithmic Similarities and Differences

MPEPC is a state-of-the-art trajectory-optimization method uses receding-horizon model
predictive control (MPC) to find optimal control parameters for a finite time-horizon cost
function while satisfying kinodynamic constraints. Rather than optimizing over lower-
level control signals (e.g. linear and angular velocities), in MPEPC, a pose-stabilizing
feedback controller allows the robot to be controlled using an equilibrium target-point. This
equilibrium point control (EPC) greatly reduces the dimensionality of the search-space for
MPC’s constrained optimization allowing MPEPC to re-plan frequently and react to sudden
changes in the environment.

Both MPDM and MPEPC try to balance the robot’s progress towards its goal against
the inconvenience it causes to nearby pedestrians by moving too close to them. How-
ever, they differ in the possible future outcomes they consider while evaluating candidates.
MPEPC considers only the most likely outcome predicted based on the current position and
velocity estimates of nearby agents as well as static obstacles. The predicted trajectories
for the pedestrians do not capture the complex agent-agent interactions. MPEPC incorpo-
rates uncertainty through a decaying cost function around the predicted outcome. On the
other hand, in MPDM, the robot maintains a probabilistic estimate of possible initial con-
figurations and local-policies of other agents P (x0), and evaluates ego-policies by forward
simulating samples drawn from this distribution. Agent-agent interactions are captured
through repulsive forces in the SFM (social force model), and used for predicting future
outcomes. Due to these interactions, small changes in initial configurations can result in
very different outcomes. We hypothesized that MPEPC would perform worse than MPDM
when agents’ behaviors are coupled, since MPEPC does not model those inter-agent effects
(and MPDM does).

During each planning cycle, MPEPC evaluates hundreds of candidate trajectories for
a fixed time horizon TH , each of which can be executed by a high-fidelity lower level
controller. However, a high-fidelity robot model may not always be available (e.g. skid-
steer systems). On the other hand, the performance of MPDM is less sensitive to the fidelity
of the robot model since the planning process selects reactive policies rather than individual
trajectories.

While MPEPC chooses the trajectory with the lowest cost, in C-MPDM a planning pro-
cess chooses the behavioral policy with the best worst-case outcome. C-MPDM is a bilevel
optimization where the upper-level optimizer (the ego-robot) chooses the policy with the
most benign (low-cost) evaluation, and lower-level optimization (risk-aware policy evalu-
ation of an ego-policy) involves finding the most potentially dangerous (likely, high-cost)
outcome from all possible pedestrian configurations. As a result, MPEPC’s trajectory eval-

79

uation is much faster than MPDM’s policy-evaluation. MPEPC chooses locally-optimal
trajectories (via an equilibrium point) every 100ms. MPDM selects locally-optimal reac-
tive policies every 300ms, where each policy is a potential field formed by an attractive
force towards a sub-goal and repulsive force away from nearby static and dynamic obsta-
cles, which is updated on each new observation (every 20ms).

5.5.2 Structured Experiments

We present empirical results from four structured experiments described below. In each
experiment, volunteers were asked to repeat a fixed scenario while the robot made its way
towards its goal 15 meters away. The purpose of these structured experiments was to make
multiple runs as similar as possible.

1. Two pedestrians simultaneously cross the robot orthogonally. The pedestrians also
approach each other as the robot approaches them, increasing the uncertainty and the
scope for agent-agent interactions.

2. The pedestrians cross the robot’s trajectory obliquely, beginning from the same side
of the robot. This robot must anticipate how its interaction with the one pedestrian
can affect its interaction with the other pedestrian. The outcome of this scenario is
sensitive to the pedestrian velocities.

3. Both pedestrians walk in front of the robot, flanking it from either side while chang-
ing direction along the way in a zig-zag pattern.

4. One pedestrian is nearly stationary in the robot’s path, while the other pedestrian
walks past as the robot approaches.

Each of the above scenarios was repeated 12 times and at the beginning of each trial,
the robot randomly chose between MPEPC or C-MPDM. Neither the experimenter nor the
pedestrian knows which algorithm is running. Only during data analysis was the algorithm
revealed. We compared the performance of the trials based on the inconvenience caused to
other pedestrians while the robot was in motion (Blame per meter traveled) as well as the
time the robot took to reach its goal (Time To Goal).

Fig. 5.9 shows data from about 90 minutes of structured real-world experiments. In all
scenarios, the robot takes roughly 5s more time to reach its goal when executing MPEPC
as compared to C-MPDM (30% more Time to Goal). Furthermore, not only does C-MPDM
accumulate lower Blame than MPEPC, but it is also more robust (lower variance in Blame).

80

15 20 25 30 35
Time to Goal (s)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

B
la

m
e
 p

e
r
m

e
te

r
tr
a
v
e
lle

d
 (
1
/m

)

C-MPDM

(Our proposed

approach)

MPEPC

Better

Figure 5.9: Performance of C-MPDM (purple) and MPEPC (orange) on four types of re-
peatable scenarios represented by the different symbols as shown in the images on the right
as the robot moves towards its goal around 15 meters away. Data is collected from four re-
peatable experiments represented by different symbols. 1) Pedestrians crossing the robots
trajectory orthogonally (star) 2) Pedestrians crossing the robot’s trajectory obliquely, and
beginning from the same side of the robot (∆) 3) Pedestrians walking in front of the robot
while changing direction along the way (plus) and 4) One pedestrian is nearly stationary
in the robot’s path, while the other pedestrian walks past when the robot approaches as
shown in Fig. 5.10 (square). Each of the four experiments is repeated 12 times. For each
trial, the robot chooses C-MPDM or MPEPC at random (with equal probability) and we
measure the time taken for the robot to make it to its goal (Time to Goal) and the Blame per
meter traveled by the robot. Lower the Blame and lesser the Time to Goal, the better. We
can observe that C-MPDM is quicker than MPEPC and accumulates less Blame in all four
experiments.

In short, in all four scenarios, we observe that the robot is quicker and more reliable when
it executes C-MPDM than when it executes MPEPC.

Fig. 5.10 illustrates the difference in emergent behavior between MPEPC and MPDM
through one specific scenario where one pedestrian is nearly stationary in the robot’s path,
while the other pedestrian walked past as the robot approached the stationary pedestrian.
We notice that the optimal trajectory (in yellow) chosen by MPEPC changes dramatically
in successive planning cycles, while the policies elected by C-MPDM are more consistent
and result in better motion.

MPEPC assumes a simplistic constant-velocity model for the observed pedestrians.
However, in this scenario, the agents’ coupled interactions significantly affect the observed

81

Figure 5.10: Sequence of plans generated by MPEPC (Top) and C-MDPM (Bottom) for a
scenario where one pedestrian is nearly stationary in the robot’s path, while the other pedes-
trian walks past when the robot approaches the stationary pedestrian. The robot is trying to
reach its navigational goal (green dot). Top: We observe that the optimal trajectory chosen
by MPEPC (yellow) can be sensitive to the pedestrian configuration. As a result, MPEPC
switches between radically different ’optimal’ trajectories, making little progress along any
of the chosen trajectories. For example, after 1.9s, based on the most-likely estimate of the
oncoming pedestrian, MPEPC finds a trajectory between the two pedestrians. However, a
slight change in direction makes this trajectory less attractive at 2.5s. The sudden start-stop
behavior between 1.5 − 2.65s is undesirable. Bottom: In C-MPDM, the planning process
accounts for uncertainty in each pedestrian’s current velocity as well as intentions (future
speed and heading). and as a result, the elected policy is more robust to changes in the
pedestrian’s configuration. As the pedestrian approaches, the robot slows down at 0.5s and
stops at 1.3s, waiting for the pedestrian to pass before it continues towards its goal.

outcome (the pedestrian changes speed and direction on approaching the robot). There-
fore, the real outcome differs significantly from the anticipated outcome due to imperfect
modeling assumptions, and the optimal trajectory, being sensitive to pedestrian configu-
ration, changes significantly in successive planning cycles. Furthermore, when MPEPC
switches between radically different trajectories, our skid-steer robot’s kinematic model is
less accurate, undermining MPEPC’s assumption of having a high-fidelity robot model.
This instability in MPEPC’s chosen trajectory results in the undesirable behavior shown
in Fig. 5.10(a). At about t = 2s, a slight change in direction makes the previously cho-
sen trajectory less attractive, resulting in a sudden start-stop behavior between t = 1.5

and t = 3.5s. The robot makes nearly no progress towards its goal for five seconds
(t = 1.5s− 6.5s) and also inconveniences the oncoming pedestrian.

On the other hand, C-MPDM is more robust to model errors and therefore, it is more
consistent in its elected policy. C-MPDM accounts for uncertainty over the current ve-

82

locities and future intentions of pedestrians and the predicted outcomes capture coupled
interactions between the pedestrians and the robot. Our risk-aware planner anticipates po-
tentially dangerous future outcomes and elects the behavioral policy with the best worst-
case outcome. By executing a policy rather than a full trajectory, MPDM makes fewer
assumptions about the fidelity of the robot model. Fig. 5.10(b) shows that the policies
elected by C-MPDM are executed for a longer duration (consistent) despite small changes
in pedestrian configurations. The robot gently slows down before coming to a stop, allow-
ing the oncoming pedestrian to pass and once its path is clear, it heads towards its goal.
As a result, the oncoming pedestrian is not inconvenienced and C-MPDM saves the robot
about 3.5s as compared to MPEPC.

5.5.3 Randomized Double-Blind Trials

For our next experiment, we carried out fourteen trials where during each trial, six volun-
teers were asked to move spontaneously between markers placed around an open area as the
robot moved back-and-forth between two goals 15 meters apart for 4 minutes. Volunteers
were asked to change speed and direction at will. For each trial, the planner was chosen
randomly (with equal probability) between C-MPDM and MPEPC. The experiment was
double-blind; neither the experimenter nor the pedestrian knew which algorithm is run-
ning. After each trial, each volunteer were asked to rate (between 1 = Very Bad, 2 = Bad,
3 = Fair, 4 = Good, or 5 = Excellent) 1) how safe they felt around the robot (Safety) and
2) how human-like the emergent behavior of the robot was (Motion Quality) during the
trial. Along with the subjective scores, we also record the Blame per meter traveled as well
as the average time the robot took to reach its goal (Average Time To Goal) as objective
metrics for each trial.

We hypothesized that because C-MPDM captures agent-agent interactions and uncer-
tainty in pedestrian intentions directly in the decision-making process, it would outperform
MPEPC in scenarios where the agents’ behaviors are coupled. We test the following two
hypotheses using data collected from the trials:

1. (H1): C-MPDM outperforms MPEPC in the unscripted trials.

2. (H2): Pedestrians prefer C-MPDM over MPEPC across the different trials.

Fig. 5.11 shows the average subjective ratings given by the volunteers as well as the
objective performance for each trial. Interestingly, we observe a general agreement between
the objective and subjective evaluations for each trial, regardless of the algorithm being
executed. For example, according to both subjective and objective metrics, trials 6, 7,

83

Safety

M
o
ti
o
n
 Q

u
a
lit

y

Bad

Fair

Good

Excellent

Bad Fair Good Excellent

C-MPDM

(Our proposed

approach)

MPEPC
1

2

3

7

9

11

4

5

6

8 10

12

1314

a) Subjective Feedback

20 22 24 26 28 30 32 34 36 38 40

Average Time to Goal (s)

0

2

4

6

8

10

12

B
la

m
e
 p

e
r
m

e
te

r
tr
a
ve

lle
d
 (
1
/m

)

C-MPDM

(Our proposed

approach)

MPEPC

b) Objective Metrics

5

3

7

9

6
10

12

1

2

11

4

8

13 14

Better

Better

Figure 5.11: C-MPDM produces emergent behavior that is more reliable than MPEPC in
dynamic uncertain environments. We measure the subjective and objective performance of
the robot on fourteen double-blind trials with six volunteers in open environment. During
each trial, six volunteers were asked to move in an open space as the robot moved back-
and-forth between two goals 15 meters apart for 4 minutes. Top: Each volunteer rated
the robot’s Safety and Motion Quality on a scale from 1 (Very Bad) to 5 (Excellent). On
most runs, volunteers felt that C-MPDM (purple squares) produced better and more reliable
motion than MPEPC (orange squares). Bottom: The objective metrics of Blame per meter
traveled and Average Time to Goal also suggest that trials with C-MPDM (purple triangles),
the robot is generally safer (lower Blame) and almost always faster than trials with MPEPC
(orange triangles).

84

MPEPC C-MPDM

0

2

4

6

8

10

12

B
la

m
e
 p

e
r

m
e
te

r
tr

a
v
e
ll
e
d
 (

1
/m

)

MPEPC C-MPDM
20

25

30

35

40

A
v
g
.

T
im

e
 t

o
 G

o
a
l
(s

)

p < 0.017 p < 0.0005

b) Objective Metrics

MPEPC C-MPDM

Fair

Good

Excellent
A
v
g
.

M
o
ti

o
n
 Q

u
a
li
ty

MPEPC C-MPDM

Fair

Good

Excellent

A
v
g
.

S
a
fe

ty

p < 0.075p < 0.011

a) Subjective Feedback

Figure 5.12: Means and confidence intervals of measured objective metrics and subjective
feedback. The difference in performance across the various trials is statistically significant
and in support of our first hypothesis that C-MPDM outperforms MPEPC in our trials,
where the agents’ behaviors are coupled. Both the objective metrics (Blame and Average
Time to Goal) as well as the subjective feedback for Motion Quality have a p-value> 0.015.
The subjective metric of Safety provides weaker support for due to larger variance across
the trials (p-value = 0.075).

85

C-MPDM MPEPC

Fair

Good

Excellent
Safety Motion Quality

C-MPDM MPEPC

Fair

Good

Excellent

Figure 5.13: Volunteer feedback for MPEPC and C-MPDM, averaged across different tri-
als. Each colored line-segment denotes one volunteers’s ratings averaged across the trials
corresponding to C-MPDM and MPEPC. The slopes of most line-segments are negative,
indicating that each volunteer rated C-MPDM higher (on average) than MPEPC. Note that
the experiment was double-blind and neither the experimenter nor the pedestrian knew
which algorithm is running. The identity of the algorithm is only revealed after processing
the data after the experiment. The difference in perceived Motion Quality as well as Safety
is statistically significant, with a two-tailed p-value < 0.005 and < 0.05 respectively.

and 12 performed much better than trails 1, 2, 4, 8, 13, and 14. The objective metrics
suggest that C-MPDM results in motion that is generally safer (lower Blame) and almost
always faster than MPEPC. The subjective scores suggest that C-MPDM was generally
perceived to be safer and resulted in better emergent behavior than MPEPC in our operating
environment.

We used an unpaired t-test to compare the performance of both algorithms according to
average subjective and objective metrics. As shown in Fig. 5.12, the difference in perfor-
mance of the two algorithms across the various trials, is statistically significant in support
of our first hypothesis (H1). For both objective metrics (Blame and Average Time to Goal)
as well as the subjective metric of Motion Quality the performance difference is statistically
significant with a t-value > 2.8 and a p-value > 0.015. The subjective metric of Safety pro-
vides weaker support for our first hypothesis due to larger variance across the trials (t-value
= 1.95 and p-value = 0.075).

p-values To test our second hypothesis (H2), we average each volunteer’s ratings across
all trials as shown in Fig. 5.13. The different colored lines indicate the different volunteers.
The non-positive slopes indicate that all of the volunteers on average perceived C-MPDM
to be Safer and producing better Motion Quality than MPEPC. Using a paired sample t-
test, it was determined that the difference in perceived Safety between the two algorithms
was statistically significant with a t-value of 2.97 and a two-tailed p-value = 0.0437. The
difference in perceived Motion Quality was even more significant with a t-value of 4.8 and
a p-value = 0.0049.

86

After the double-blind trials, the volunteers were asked how many different algorithms
were showcased by the robot during the trials. Four volunteers thought there were two
systems - one that moved closer to them and was ‘harder to bully’ (C-MPDM) while the
other that would stop more often and seemed ‘more confused’ (MPEPC). Two volunteers
thought that there were three different systems; one in which the robot would sometimes
‘abruptly speed up in short-bursts’ (MPEPC). These testimonials show that even though
both C-MPDM and MPEPC are quite safe, and effective, they are perceived differently and
C-MPDM was preferred by volunteers in our experiments.

Discussion

Comparing motion planning algorithms in a dynamic social environment is challenging
since navigation itself is an ill-posed problem with no objective performance metrics defin-
ing ‘good behavior’, and environmental characteristics (e.g. pedestrian density, pedestrian
interactions, speed and size of the robot) heavily influence the emergent behavior. By using
the same physical platform, perception sub-system and lower-level velocity controller, we
ensure that C-MPDM and MPEPC differ only in their planning strategy.

We chose an outdoor environment to highlight the challenges that stem from the un-
certainty associated with the inferred state of the pedestrians as well as the complex multi-
agent interactions, which make future outcomes more dependent on pedestrian configura-
tions. Through a combination of structured and unstructured experiments, as well as sub-
jective and objective measures, we have demonstrated that by accounting for uncertainty
and coupling between the agent’ behaviors and anticipating potentially dangerous future
outcomes, C-MPDM is more reliable for autonomous navigation in dynamic, uncertain
environments than MPEPC.

5.6 Summary

In this chapter, we have extended MPDM, allowing ego-policies to have continuous-valued
parameters and reducing the need for carefully hand-engineered policies. C-MPDM rad-
ically improves the flexibility of MPDM while simultaneously satisfying real-time con-
straints by quickly finding promising parameters through an iterative gradient-based op-
timization. As a result, we can generate a continuum of risk-aware policies allowing the
robot to adapt better to the dynamic environment which is critical for real-time risk-aware
navigation, as demonstrated through our experimental results.

Our experiments show that for social environments, accounting for the coupled interac-

87

tions of agent behaviors while predicting future outcomes becomes critical. From the large
space of possible pedestrian configurations, C-MPDM uses gradient-based optimizations
to focus computational resources towards finding good ego-policy parameters now for po-
tentially dangerous future outcomes. This makes decision-making more robust to changes
in human motion and tracking errors. Through extensive experiments evaluated through
objective metrics and subjective feedback, we showed that C-MPDM produces emergent
behavior that is more reliable than MPEPC for autonomous navigation in dynamic envi-
ronments with large uncertainty.

88

CHAPTER 6

Conclusion

Mobile-robots have the potential to disrupt the way goods and people are transported. How-
ever, in order for autonomous robots to co-inhabit human spaces, the planning system must
be able to deal with the diverse possible outcomes in everyday environments. Sensor noise
and tracking errors, coupled with complex robot-agent and agent-agent interactions make
it difficult to predict future outcomes. Furthermore, in dynamic environments, the robot
must plan quickly in order to be able to react to sudden unexpected changes in the envi-
ronment. Planning actions quickly and reliably while accounting for uncertainty is a core
challenge faced by mobile robots and autonomous vehicles today. Too commonly, naviga-
tion systems don’t account for agent-agent interactions while predicting future outcomes.
Capturing these interactions and reasoning over them explicitly allows the robot to be si-
multaneously quick and reliable.

6.1 Contributions

Multi-Policy Decision Making (MPDM) is a principled framework for decision-making in
environments under uncertainty with extensively coupled interactions between agents. By
explicitly modeling reasonable behaviors of both the robot and other agents’ policies, we
make informed high-level behavioral decisions that account for the consequences of the
ego-robot’s actions. MPDM is a hybrid navigation system where a slower policy election
anticipates potentially influential future outcomes, captures pedestrian intentions and inter-
actions and discovers effective ego-policies. The chosen reactive policy is then executed
by the lower-level controller and is responsible for basic obstacle avoidance.

In chapter 3, we propose MPDM as a new method for navigation amongst pedestrians
in which the trajectory of the robot is not explicitly planned, but instead, a planning process
selects one of a set of closed-loop behaviors whose utility can be predicted through forward
simulation. In particular, we extend Multi-Policy Decision Making (MPDM) [40] to this

89

domain using the closed-loop behaviors Go-Solo, Follow-other, and Stop. By dynamically
switching between these policies, we show that we can improve the performance of the
robot as measured by utility functions that reward task completion and penalize inconve-
nience to other agents. We demonstrate the robustness of switching between higher-level
behaviors to sensor noise and study the effect of the conservatism of the perception mod-
ule’s state estimator through simulation experiments.

Our approach works well for navigating among pedestrians in an indoor hallway, where
the possible future outcomes are constrained by the two ends of the corridor. However, open
spaces present a much larger space of possible outcomes since pedestrians can change
direction at will. With increased uncertainty, we found that traditional MPDM methods
often underestimated the inconvenience caused to pedestrians while evaluating its candidate
policies, resulting in poor decision making.

Our next contribution resolves the following question: Can we reliably evaluate ego-
policies with few samples given the large space of possible outcomes? The key challenge
to reliable policy evaluation arises from the uncertainty associated with the inferred state
of the agents (people) and the complex multi-agent interactions which make the forward-
simulated trajectories sensitive to the initial configurations sampled. In our application, it
is especially difficult to sample bad outcomes because we assume that all agents follow
policies that tend to avoid collisions and dangerous scenarios in the first place. Sampling
randomly is likely to miss high-cost events, even if they are individually reasonably prob-
able (high probability density) because of the scarcity of such configurations in the state
space (low total probability mass of high-cost outcomes).

Rather than rely on random sampling, in chapter 4, we reformulate policy evaluation,
biasing sampling towards increasingly likely and high-cost outcomes. We propose an any-
time algorithm for finding increasingly influential outcomes through a gradient-based op-
timization where accurate gradients are computed efficiently by representing a forward
simulation as a deep network and enabling effective backpropagation. Through extensive
simulation as well as real-world experiments, we demonstrate a dramatic improvement in
reliability for the same number of candidate ego-policies being evaluated in real-time as
before.

Next, we resolve a core tension in MPDM type systems — it is desirable to add more
policies to the system to increase the expressivity of the system, however, this increases
computational cost. Chapter 5 achieves expressivity in a different way than previous
MPDM approaches: it allows policies to have one or more continuous parameters, and
then efficiently computes good values of those continuous parameters. In this way, MPDM
no longer requires a set of carefully hand-crafted policies. Rather, we are able to generate

90

promising context-specific ego-policies in real-time. Overall, this thesis paints the naviga-
tion problem in a new light, transforming a POMDP into a Stackelberg game or a bilevel
optimization.

6.2 Future Work

Multi-Policy Decision Making (MPDM) is a principled framework for decision-making
in environments under uncertainty where forward simulations capture coupled interactions
between agents’ behaviors. The coupled intent estimation and behavioral planning frame-
work leaves a lot of flexibility for the system designer. We believe that the ideas of rep-
resenting forward simulations as deep networks and computing gradients to discover in-
fluential agent configurations, as well as promising ego-policy parameters, can serve as a
general tool for coupled prediction and planning under uncertainty. In the remainder of this
section, we discuss some interesting extensions of MPDM.

6.2.1 Learning Policies

Rather than relying on human-designed local planning algorithms, the policies in MPDM
could be learned from data. One of the fundamental limitations of end-to-end learning is
that it is difficult to get the data, especially since actions change future observations. How-
ever, learning local policies such as following a pedestrian or coming to a stop gracefully
can generalize better with less data [67, 157, 158].

Multi-policy decision making provides a unique opportunity to combine these policies
from different sources for effective navigation. Our recurrent-network based representation
of a forward simulation allows learned policies to be directly incorporated into the MPDM
framework; the motion model from Fig. 4.3 would have to be replaced by the learned policy
network.

6.2.2 Parallelizing MPDM for Multi-Modal Uncertainty

The gradient-based approaches in this thesis discover local optima or local saddle points. In
more complex real-world applications such as autonomous driving, in addition to the cost
function, the posterior distribution P (x0) may also be multi-modal (a vehicle may yield
at a round-about, or merge with the traffic). With a multi-modal objective function, the
number of samples needed to reliably evaluate a policy grows with the number of modes.
Additionally, if the ego-robot has several distinct parameterized policies, the computational
requirement would correspondingly increase.

91

Fortunately, parallelizing MPDM can help scale the framework to more complex, real-
world domains. Not only can each ego-policy be evaluated independently, but the core
optimization algorithms can be run in parallel for different seed initial configurations. Fur-
thermore, the computation of accurate gradients through backpropagation can be paral-
lelized wherever possible.

6.2.3 MPDM with Explicit Communication

To date, MPDM policies have used only implicit communication– the information that is
exchanged between agents is limited to the physically visible actions that they take. There
are several situations where which might be difficult to get around by motion planning,
where ad-hoc communication might be tremendously useful. Honking is a good example,
where an existing “alphabet” of communication symbols (honking and not honking) are
already established and the meaning of those symbols–even if ambiguous– is not entirely
under our control.

Honking is a communication channel used by human drivers which communicates not
only state but also can influence behavior by drawing attention (“watch out, I’m here!”).
The main challenge is in modeling how other agents will react to such communication.
For instance, if acknowledged, honking can change an agent’s behavior, but it is not clear
how. Fortunately, MPDM is amenable to planning under uncertainty. Such an approach
would require us to find a set of policies that, when assigned to other agents, predict their
behavior both when a nearby agent is honking and when not. This is not fundamentally
different than what we already must do in MPDM, though collecting more data of agents
interacting while honking will be necessary in order for us to measure the accuracy of our
modeled policies.

92

BIBLIOGRAPHY

[1] A. I. Center, “Shakey the robot,” 1984.

[2] J. Enright and P. R. Wurman, “Optimization and coordinated autonomy in mobile
fulfillment systems.” 2011.

[3] T. Kruse, A. K. Pandey, R. Alami, and A. Kirsch, “Human-aware robot navigation:
A survey,” Robotics and Autonomous Systems, vol. 61, no. 12, pp. 1726–1743, 2013.

[4] J. A. Fodor, “The modularity of mind,” 1983.

[5] I. Goldstein and G. G. Hendrix, “The role of representation in artificial
intelligence(tutorial session),” in Proceedings of the 1976 Annual Conference, ser.
ACM ’76. New York, NY, USA: ACM, 1976, pp. 70–72, chairman-Fikes, Richard.
[Online]. Available: http://doi.acm.org/10.1145/800191.805529

[6] R. A. Brooks, “Intelligence without representation,” Artificial intelligence, vol. 47,
no. 1-3, pp. 139–159, 1991.

[7] R. C. Arkin, R. C. Arkin, et al., Behavior-based robotics, 1998.

[8] C. Fulgenzi, A. Spalanzani, and C. Laugier, “Probabilistic motion planning
among moving obstacles following typical motion patterns,” in Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2009,
pp. 4027–4033.

[9] A. Foka and P. Trahanias, “Probabilistic Autonomous Robot Navigation in Dy-
namic Environments with Human Motion Prediction,” International Journal of So-
cial Robotics, vol. 2, no. 1, pp. 79–94, 2010.

[10] J. J. Park, C. Johnson, and B. Kuipers, “Robot navigation with model predictive
equilibrium point control,” in Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ
International Conference on. IEEE, 2012, pp. 4945–4952.

[11] A. Somani, N. Ye, D. Hsu, and W. S. Lee, “DESPOT: Online POMDP planning
with regularization,” in Advances in Neural Information Processing Systems 26,
C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Weinberger, Eds. Curran
Associates, Inc., 2013, pp. 1772–1780.

93

http://doi.acm.org/10.1145/800191.805529

[12] B. D. Ziebart, N. Ratliff, G. Gallagher, C. Mertz, K. Peterson, J. A. Bagnell,
M. Hebert, A. K. Dey, and S. Srinivasa, “Planning-based prediction for pedestrians,”
in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2009, pp. 3931–3936.

[13] M. Kuderer, H. Kretzschmar, C. Sprunk, and W. Burgard, “Feature-based prediction
of trajectories for socially compliant navigation,” in Proc. of Robotics: Science and
Systems (RSS), 2012.

[14] M. Luber, L. Spinello, J. Silva, and K. O. Arras, “Socially-aware robot navigation:
A learning approach,” in Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2012, pp. 902–907.

[15] H. Kretzschmar, M. Spies, C. Sprunk, and W. Burgard, “Socially compliant mobile
robot navigation via inverse reinforcement learning,” The International Journal of
Robotics Research, 2016.

[16] V. Braitenberg, Vehicles, experiments in synthetic psychology. MIT Press, 1984.

[17] H. A. Simon, The sciences of the artificial, 1996.

[18] R. Brooks, “A robust layered control system for a mobile robot,” IEEE journal on
robotics and automation, vol. 2, no. 1, pp. 14–23, 1986.

[19] M. Wooldridge, An introduction to multiagent systems. John Wiley & Sons, 2009.

[20] D. Payton, “An architecture for reflexive autonomous vehicle control,” in Robotics
and Automation. Proceedings. 1986 IEEE International Conference on, vol. 3.
IEEE, 1986, pp. 1838–1845.

[21] A. Saffiotti, K. Konolige, and E. H. Ruspini, “A multivalued logic approach to inte-
grating planning and control,” Artificial intelligence, vol. 76, no. 1-2, pp. 481–526,
1995.

[22] R. C. Arkin, “Motor schemabased mobile robot navigation,” The International jour-
nal of robotics research, vol. 8, no. 4, pp. 92–112, 1989.

[23] D. Helbing and P. Molnár, “Social force model for pedestrian dynamics,” Physical
review E, vol. 51, no. 5, p. 4282, 1995.

[24] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile robots,” in
Robotics and Automation. Proceedings. 1985 IEEE International Conference on,
vol. 2. IEEE, 1985, pp. 500–505.

[25] J. Borenstein and Y. Koren, “Real-time obstacle avoidance for fast mobile robots
in cluttered environments,” in Robotics and Automation, 1990. Proceedings., 1990
IEEE International Conference on. IEEE, 1990, pp. 572–577.

94

[26] M. Svenstrup, T. Bak, and H. J. Andersen, “Trajectory planning for robots in dy-
namic human environments,” in Proceedings of the IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, 2010, pp. 4293–4298.

[27] G. Ferrer, A. Garrell, and A. Sanfeliu, “Social-aware robot navigation in urban en-
vironments,” in European Conference on Mobile Robotics, 2013, pp. 331–336.

[28] Y. Koren and J. Borenstein, “Potential field methods and their inherent limitations
for mobile robot navigation,” in Robotics and Automation, 1991. Proceedings., 1991
IEEE International Conference on. IEEE, 1991, pp. 1398–1404.

[29] D. Mehta, G. Ferrer, and E. Olson, “Autonomous navigation in dynamic social en-
vironments using multi-policy decision making,” in Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2016, pp. 1190–1197.

[30] P. Maes, “Situated agents can have goals.” 1990.

[31] J. K. Rosenblatt and D. Payton, “A fine-grained alternative to the subsumption ar-
chitecture for mobile robot control.”

[32] J. K. Rosenblatt, “Damn: A distributed architecture for mobile navigation,” Journal
of Experimental & Theoretical Artificial Intelligence, vol. 9, no. 2-3, pp. 339–360,
1997.

[33] S. Hanks and R. J. Firby, “Issues and architectures for planning and execution,” in
Proceedings of the Workshop on Innovative Approaches to Planning, Scheduling and
Control. Morgan Kaufmann, 1990, pp. 59–70.

[34] M. J. Mataric, “Behaviour-based control: Examples from navigation, learning, and
group behaviour,” Journal of Experimental & Theoretical Artificial Intelligence,
vol. 9, no. 2-3, pp. 323–336, 1997.

[35] M. J. Matarić and F. Michaud, “Behavior-based systems,” in Springer Handbook of
Robotics. Springer, 2008, pp. 891–909.

[36] J. H. Connell, “Sss: A hybrid architecture applied to robot navigation,” in Robotics
and Automation, 1992. Proceedings., 1992 IEEE International Conference on.
IEEE, 1992, pp. 2719–2724.

[37] R. C. Arkin, “Towards the unification of navigational planning and reactive control,”
1989.

[38] B. Pell, D. E. Bernard, S. A. Chien, E. Gat, N. Muscettola, P. P. Nayak, M. D. Wag-
ner, and B. C. Williams, “An autonomous spacecraft agent prototype,” Autonomous
Robots, vol. 5, no. 1, pp. 29–52, 1998.

[39] E. Gat, “Integrating planning and reacting in a heterogeneous asynchronous archi-
tecture for controlling real-world mobile robots.”

95

[40] A. G. Cunningham, E. Galceran, R. M. Eustice, and E. Olson, “MPDM: Multipol-
icy decision-making in dynamic, uncertain environments for autonomous driving,”
in Proceedings of the IEEE International Conference on Robotics and Automation,
Seattle, WA, USA, May 2015.

[41] E. Galceran, A. G. Cunningham, R. M. Eustice, and E. Olson, “Multipolicy decision-
making for autonomous driving via changepoint-based behavior prediction: Theory
and experiment,” Autonomous Robots, vol. 41, no. 6, pp. 1367–1382, August 2017.

[42] L. Brotcorne, M. Labbé, P. Marcotte, and G. Savard, “A bilevel model for toll op-
timization on a multicommodity transportation network,” Transportation Science,
vol. 35, no. 4, pp. 345–358, 2001.

[43] C. Jones and M. Morari, “Approximate explicit mpc using bilevel optimization,” in
Control Conference (ECC), 2009 European. IEEE, 2009, pp. 2396–2401.

[44] J. J. Park, “Graceful navigation for mobile robots in dynamic and uncertain environ-
ments.” 2016.

[45] C. Johnson and B. Kuipers, “Socially-aware navigation using topological maps and
social norm learning,” 2018.

[46] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: The kitti
dataset,” The International Journal of Robotics Research, vol. 32, no. 11, pp. 1231–
1237, 2013.

[47] D. Held, S. Thrun, and S. Savarese, “Learning to track at 100 fps with deep regres-
sion networks,” in European Conference on Computer Vision. Springer, 2016, pp.
749–765.

[48] D. M. Wolpert and Z. Ghahramani, “Computational principles of movement neuro-
science,” Nature neuroscience, vol. 3, no. 11s, p. 1212, 2000.

[49] C. Fulgenzi, C. Tay, A. Spalanzani, and C. Laugier, “Probabilistic navigation in
dynamic environment using rapidly-exploring random trees and gaussian processes,”
in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems, Nice, France, Sept. 2008, pp. 1056–1062.

[50] N. Du Toit and J. Burdick, “Robotic motion planning in dynamic, cluttered, un-
certain environments,” in Proceedings of the IEEE International Conference on
Robotics and Automation, Anchorage, AK, USA, May 2010, pp. 966–973.

[51] D. Vasquez, T. Fraichard, and C. Laugier, “Growing hidden markov models: An
incremental tool for learning and predicting human and vehicle motion,” The Inter-
national Journal of Robotics Research, vol. 28, no. 11-12, pp. 1486–1506, 2009.

[52] A. D. V. Govea, Incremental learning for motion prediction of pedestrians and vehi-
cles. Springer Science & Business Media, 2010, vol. 64.

96

[53] I. Pérez-Hurtado, J. Capitán, F. Caballero, and L. Merino, “An extension of ghmms
for environments with occlusions and automatic goal discovery for person trajectory
prediction,” in Mobile Robots (ECMR), 2015 European Conference on. IEEE, 2015,
pp. 1–7.

[54] M. W. Turek, A. Hoogs, and R. Collins, “Unsupervised learning of functional cat-
egories in video scenes,” in European Conference on Computer Vision. Springer,
2010, pp. 664–677.

[55] A. Alahi, V. Ramanathan, and L. Fei-Fei, “Socially-aware large-scale crowd fore-
casting,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2014, pp. 2203–2210.

[56] S. Yi, H. Li, and X. Wang, “Understanding pedestrian behaviors from stationary
crowd groups,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2015, pp. 3488–3496.

[57] G. Arechavaleta, J.-P. Laumond, H. Hicheur, and A. Berthoz, “An optimality princi-
ple governing human walking,” IEEE Transactions on Robotics, vol. 24, no. 1, pp.
5–14, 2008.

[58] A. Bera, T. Randhavane, R. Prinja, and D. Manocha, “Sociosense: Robot navigation
amongst pedestrians with social and psychological constraints,” in Intelligent Robots
and Systems (IROS), 2017 IEEE/RSJ International Conference on. IEEE, 2017, pp.
7018–7025.

[59] K. M. Kitani, B. D. Ziebart, J. A. Bagnell, and M. Hebert, “Activity forecasting,” in
European Conference on Computer Vision. Springer, 2012, pp. 201–214.

[60] T. Fernando, S. Denman, S. Sridharan, and C. Fookes, “Soft+ hardwired attention:
An lstm framework for human trajectory prediction and abnormal event detection,”
Neural Networks, 2018.

[61] T. Fernando, S. Denman, A. McFadyen, S. Sridharan, and C. Fookes, “Tree memory
networks for modelling long-term temporal dependencies,” Neurocomputing, vol.
304, pp. 64–81, 2018.

[62] F. Bartoli, G. Lisanti, L. Ballan, and A. Del Bimbo, “Context-aware trajectory pre-
diction,” arXiv preprint arXiv:1705.02503, 2017.

[63] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and S. Savarese, “So-
cial lstm: Human trajectory prediction in crowded spaces,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 961–971.

[64] M. Pfeiffer, G. Paolo, H. Sommer, J. Nieto, R. Siegwart, and C. Cadena, “A data-
driven model for interaction-aware pedestrian motion prediction in object cluttered
environments,” in 2018 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2018, pp. 1–8.

97

[65] R. Hug, S. Becker, W. Hübner, and M. Arens, “On the reliability of lstm-mdl models
for pedestrian trajectory prediction.”

[66] F. Farina, D. Fontanelli, A. Garulli, A. Giannitrapani, and D. Prattichizzo, “When
Helbing meets Laumond: the headed social force model,” in IEEE Conference on
Decision and Control (CDC), 2016, pp. 3548–3553.

[67] Y. F. Chen, M. Everett, M. Liu, and J. P. How, “Socially aware motion planning
with deep reinforcement learning,” in Intelligent Robots and Systems (IROS), 2017
IEEE/RSJ International Conference on. IEEE, 2017, pp. 1343–1350.

[68] S. Petti and T. Fraichard, “Safe motion planning in dynamic environments,” in Pro-
ceedings of the IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, Edmonton, AB, Canada, Aug. 2005, pp. 2210–2215.

[69] T. Ohki, K. Nagatani, and K. Yoshida, “Collision avoidance method for mobile
robot considering motion and personal spaces of evacuees,” in Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Tai-
wan, Oct. 2010, pp. 1819–1824.

[70] J. Choi, G. Eoh, J. Kim, Y. Yoon, J. Park, and B.-H. Lee, “Analytic collision an-
ticipation technology considering agents’ future behavior,” in Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Tai-
wan, Oct. 2010, pp. 1656–1661.

[71] J. van den Berg, S. J. Guy, M. Lin, and D. Manocha, “Reciprocal n-body collision
avoidance,” Robotics Research, Springer Tracts in Advanced Robotics, vol. 70, pp.
3–19, 2011.

[72] S. J. Guy, J. Chhugani, C. Kim, N. Satish, M. Lin, D. Manocha, and P. Dubey,
“Clearpath: highly parallel collision avoidance for multi-agent simulation,” in Pro-
ceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer An-
imation. ACM, 2009, pp. 177–187.

[73] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile robots,” The
international journal of robotics research, vol. 5, no. 1, pp. 90–98, 1986.

[74] E. A. Sisbot, L. F. Marin-Urias, R. Alami, and T. Simeon, “A human aware mobile
robot motion planner,” IEEE Transactions on Robotics, vol. 23, no. 5, pp. 874–883,
2007.

[75] W. H. Huang, B. R. Fajen, J. R. Fink, and W. H. Warren, “Visual navigation and
obstacle avoidance using a steering potential function,” Robotics and Autonomous
Systems, vol. 54, no. 4, pp. 288–299, 2006.

[76] O. Brock and O. Khatib, “High-speed navigation using the global dynamic window
approach,” in Robotics and Automation, 1999. Proceedings. 1999 IEEE Interna-
tional Conference on, vol. 1. IEEE, 1999, pp. 341–346.

98

[77] D. Ferguson, T. M. Howard, and M. Likhachev, “Motion planning in urban environ-
ments,” Journal of Field Robotics, vol. 25, no. 11-12, pp. 939–960, 2008.

[78] M. Werling, J. Ziegler, S. Kammel, and S. Thrun, “Optimal trajectory generation for
dynamic street scenarios in a frenet frame,” in Proceedings of the IEEE International
Conference on Robotics and Automation, Anchorage, AK, USA, May 2010, pp.
987–993.

[79] W. Xu, J. Wei, J. Dolan, H. Zhao, and H. Zha, “A real-time motion planner with
trajectory optimization for autonomous vehicles,” in Proceedings of the IEEE Inter-
national Conference on Robotics and Automation, Saint Paul, MN, USA, May 2012,
pp. 2061–2067.

[80] J. Hardy and M. Campbell, “Contingency planning over probabilistic obstacle pre-
dictions for autonomous road vehicles,” IEEE Transactions of Robotics, vol. 29,
no. 4, pp. 913–929, 2013.

[81] G. Ferrer and A. Sanfeliu, “Multi-objective cost-to-go functions on robot navigation
in dynamic environments,” in Proceedings of the IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, 2015, pp. 3824–3829.

[82] P. Stein, A. Spalanzani, V. Santos, and C. Laugier, “Leader following: A study on
classification and selection,” Robotics and Autonomous Systems, vol. 75, Part A, pp.
79 – 95, 2016.

[83] M. Kuderer and W. Burgard, “An approach to socially compliant leader following
for mobile robots,” in International Conference on Social Robotics. Springer, 2014,
pp. 239–248.

[84] P. Trautman, J. Ma, R. M. Murray, and A. Krause, “Robot navigation in dense human
crowds: Statistical models and experimental studies of human–robot cooperation,”
The International Journal of Robotics Research, vol. 34, no. 3, pp. 335–356, 2015.

[85] T. Erez, Y. Tassa, and E. Todorov, “Infinite-horizon model predictive control for
periodic tasks with contacts,” Robotics: Science and systems VII, p. 73, 2012.

[86] J. H. Lee, “Model predictive control: Review of the three decades of development,”
International Journal of Control, Automation and Systems, vol. 9, no. 3, pp. 415–
424, 2011.

[87] P. Trautman and A. Krause, “Unfreezing the robot: Navigation in dense, interacting
crowds,” in Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems, Taipei, Taiwan, Oct. 2010, pp. 797–803.

[88] K. Kim, D. Lee, and I. Essa, “Gaussian process regression flow for analysis of mo-
tion trajectories,” in Proceedings of the IEEE International Conference on Computer
Vision, Barcelona, Spain, Nov. 2011, pp. 1164–1171.

99

[89] J. Joseph, F. Doshi-Velez, A. S. Huang, and N. Roy, “A Bayesian nonparametric
approach to modeling motion patterns,” Autonomous Robots, vol. 31, no. 4, pp. 383–
400, 2011.

[90] G. S. Aoude, B. D. Luders, J. M. Joseph, N. Roy, and J. P. How, “Probabilistically
safe motion planning to avoid dynamic obstacles with uncertain motion patterns,”
Autonomous Robots, vol. 35, no. 1, pp. 51–76, 2013.

[91] Q. Tran and J. Firl, “Modelling of traffic situations at urban intersections with prob-
abilistic non-parametric regression,” in Proceedings of the IEEE Intelligent Vehicles
Symposium, Gold Coast City, Australia, June 2013, pp. 334–339.

[92] ——, “Online maneuver recognition and multimodal trajectory prediction for in-
tersection assistance using non-parametric regression,” in Proceedings of the IEEE
Intelligent Vehicles Symposium, Dearborn, MI, USA, June 2014, pp. 918–923.

[93] P. Abbeel, D. Dolgov, A. Y. Ng, and S. Thrun, “Apprenticeship learning for motion
planning with application to parking lot navigation,” in Intelligent Robots and Sys-
tems, 2008. IROS 2008. IEEE/RSJ International Conference on. IEEE, 2008, pp.
1083–1090.

[94] B. D. Ziebart, A. L. Maas, A. K. Dey, and J. A. Bagnell, “Navigate like a cabbie:
Probabilistic reasoning from observed context-aware behavior,” in Proceedings of
the 10th international conference on Ubiquitous computing. ACM, 2008, pp. 322–
331.

[95] P. Henry, C. Vollmer, B. Ferris, and D. Fox, “Learning to navigate through crowded
environments,” in Robotics and Automation (ICRA), 2010 IEEE International Con-
ference on. IEEE, 2010, pp. 981–986.

[96] B. Kim and J. Pineau, “Socially adaptive path planning in human environments using
inverse reinforcement learning,” International Journal of Social Robotics, vol. 8,
no. 1, pp. 51–66, 2016.

[97] B. Okal and K. O. Arras, “Learning socially normative robot navigation behaviors
with bayesian inverse reinforcement learning,” in Robotics and Automation (ICRA),
2016 IEEE International Conference on. IEEE, 2016, pp. 2889–2895.

[98] M. Kuderer, S. Gulati, and W. Burgard, “Learning driving styles for autonomous
vehicles from demonstration,” in Proceedings of the IEEE International Conference
on Robotics and Automation, 2015, pp. 2641–2646.

[99] L. Ran, Y. Zhang, Q. Zhang, and T. Yang, “Convolutional neural network-based
robot navigation using uncalibrated spherical images,” Sensors, vol. 17, no. 6, p.
1341, 2017.

[100] L. Tai, G. Paolo, and M. Liu, “Virtual-to-real deep reinforcement learning: Con-
tinuous control of mobile robots for mapless navigation,” in Intelligent Robots and

100

Systems (IROS), 2017 IEEE/RSJ International Conference on. IEEE, 2017, pp.
31–36.

[101] P. Mirowski, R. Pascanu, F. Viola, H. Soyer, A. J. Ballard, A. Banino, M. Denil,
R. Goroshin, L. Sifre, K. Kavukcuoglu, et al., “Learning to navigate in complex
environments,” arXiv preprint arXiv:1611.03673, 2016.

[102] J. Ho and S. Ermon, “Generative adversarial imitation learning,” in Advances in
Neural Information Processing Systems, 2016, pp. 4565–4573.

[103] L. Tail, J. Zhang, M. Liu, and W. Burgard, “Socially compliant navigation through
raw depth inputs with generative adversarial imitation learning,” in 2018 IEEE Inter-
national Conference on Robotics and Automation (ICRA). IEEE, 2018, pp. 1111–
1117.

[104] L. Tai, J. Zhang, M. Liu, J. Boedecker, and W. Burgard, “A survey of deep network
solutions for learning control in robotics: From reinforcement to imitation,” arXiv
preprint arXiv:1612.07139, 2016.

[105] DARPA, “DARPA Urban Challenge,” http://archive.darpa.mil/grandchallenge/,
2007.

[106] M. Montemerlo et al., “Junior: The Stanford entry in the Urban Challenge,” Journal
of Field Robotics, vol. 25, no. 9, pp. 569–597, 2008.

[107] I. Miller et al., “Team Cornell’s Skynet: Robust perception and planning in an urban
environment,” Journal of Field Robotics, vol. 25, no. 8, pp. 493–527, 2008.

[108] C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, M. N. Clark, J. Dolan,
D. Duggins, T. Galatali, C. Geyer, M. Gittleman, S. Harbaugh, M. Hebert, T. M.
Howard, S. Kolski, A. Kelly, M. Likhachev, M. McNaughton, N. Miller, K. Peter-
son, B. Pilnick, R. Rajkumar, P. Rybski, B. Salesky, Y.-W. Seo, S. Singh, J. Snider,
A. Stentz, W. . Whittaker, Z. Wolkowicki, J. Ziglar, H. Bae, T. Brown, D. Demitrish,
B. Litkouhi, J. Nickolaou, V. Sadekar, W. Zhang, J. Struble, M. Taylor, M. Darms,
and D. Ferguson, “Autonomous driving in urban environments: Boss and the Urban
Challenge,” Journal of Field Robotics, vol. 25, no. 8, pp. 425–466, 2008.

[109] C. H. Papadimitriou and J. N. Tsitsiklis, “The complexity of Markov decision pro-
cesses,” Mathematics of Operations Research, vol. 12, no. 3, pp. 441–450, 1987.

[110] O. Madani, S. Hanks, and A. Condon, “On the undecidability of probabilistic plan-
ning and related stochastic optimization problems,” Artificial Intelligence, vol. 147,
no. 1–2, pp. 5–34, 2003.

[111] S. Thrun, “Monte Carlo POMDPs,” Proceedings of the Advances in Neural Infor-
mation Processing Systems Conference, pp. 1064–1070, 2000.

101

[112] H. Kurniawati, D. Hsu, and W. Lee, “SARSOP: Efficient point-based POMDP plan-
ning by approximating optimally reachable belief spaces,” in Proceedings of the
Robotics: Science & Systems Conference, Zurich, Switzerland, June 2008.

[113] D. Silver and J. Veness, “Monte-carlo planning in large POMDPs,” in Advances
in Neural Information Processing Systems 23, J. Lafferty, C. Williams, J. Shawe-
Taylor, R. Zemel, and A. Culotta, Eds. Curran Associates, Inc., 2010, pp. 2164–
2172.

[114] H. Bai, D. Hsu, and W. S. Lee, “Integrated perception and planning in the continuous
space: A POMDP approach,” International Journal of Robotics Research, vol. 33,
no. 9, pp. 1288–1302, 2014.

[115] J. Wei, J. M. Dolan, J. M. Snider, and B. Litkouhi, “A point-based MDP for robust
single-lane autonomous driving behavior under uncertainties,” in Proceedings of the
IEEE International Conference on Robotics and Automation, Shanghai, China, May
2011, pp. 2586–2592.

[116] S. Brechtel, T. Gindele, and R. Dillmann, “Probabilistic MDP-behavior planning for
cars,” in Proceedings of the IEEE Intelligent Transportation Systems Conference,
2011, pp. 1537–1542.

[117] S. Candido, J. Davidson, and S. Hutchinson, “Exploiting domain knowledge in plan-
ning for uncertain robot systems modeled as pomdps,” in Proceedings of the IEEE
International Conference on Robotics and Automation, Anchorage, AK, USA, May
2010, pp. 3596–3603.

[118] T. Lee and Y. J. Kim, “Massively parallel motion planning algorithms under uncer-
tainty using POMDP,” International Journal of Robotics Research, vol. 35, no. 8,
pp. 928–942, 2016.

[119] R. He, E. Brunskill, and N. Roy, “Efficient planning under uncertainty with macro-
actions,” Journal of Artificial Intelligence Research, vol. 40, pp. 523–570, 2011.

[120] T. Bandyopadhyay, K. Won, E. Frazzoli, D. Hsu, W. Lee, and D. Rus, “Intention-
aware motion planning,” in Proceedings of the International Workshop on the Algo-
rithmic Foundations of Robotics, ser. Springer Tracts in Advanced Robotics, E. Fraz-
zoli, T. Lozano-Perez, N. Roy, and D. Rus, Eds. Springer Berlin Heidelberg, 2013,
vol. 86, pp. 475–491.

[121] S. Brechtel, T. Gindele, and R. Dillmann, “Probabilistic decision-making under un-
certainty for autonomous driving using continuous POMDPs,” in Proceedings of the
IEEE Intelligent Transportation Systems Conference, 2014, pp. 392–399.

[122] N. Ye, A. Somani, D. Hsu, and W. Lee, “DESPOT: Online POMDP planning with
regularization,” vol. 58, pp. 231–266, 2017.

[123] Y. Luo, H. Bai, D. Hsu, and W. S. Lee, “Importance sampling for online planning
under uncertainty,” in Workshop on Algorithmic Foundations of Robotics, 2016.

102

[124] H. Bai, S. Cai, D. Hsu, and W. Lee, “Intention-aware online POMDP planning for
autonomous driving in a crowd,” in Proc. IEEE Int. Conf. on Robotics & Automation,
2015.

[125] G. Ferrer, A. Garrell, F. Herrero, and A. Sanfeliu, “Robot social-aware navigation
framework to accompany people walking side-by-side,” Autonomous Robots, pp.
1–19, 2016.

[126] H. Bai, S. Cai, N. Ye, D. Hsu, and W. S. Lee, “Intention-aware online pomdp plan-
ning for autonomous driving in a crowd,” in Robotics and Automation (ICRA), 2015
IEEE International Conference on. IEEE, 2015, pp. 454–460.

[127] M. Lauri and R. Ritala, “Planning for robotic exploration based on forward simula-
tion,” Robotics and Autonomous Systems, vol. 83, pp. 15–31, 2016.

[128] E. Galceran, A. G. Cunningham, R. M. Eustice, and E. Olson, “Multipolicy decision-
making for autonomous driving via changepoint-based behavior prediction,” in Pro-
ceedings of the Robotics: Science & Systems Conference, Rome, Italy, July 2015.

[129] ——, “Multipolicy decision-making for autonomous driving via changepoint-based
behavior prediction: Theory and experiment,” Autonomous Robots, pp. 1–16, 2017.

[130] D. A. Pomerleau, “ALVINN: an autonomous land vehicle in a neural network,” in
Advances in Neural Information Processing Systems, 1989.

[131] K. J. Hunt, D. Sbarbaro, R. Żbikowski, and P. J. Gawthrop, “Neural networks for
control systems: a survey,” Automatica, vol. 28, no. 6, pp. 1083–1112, 1992.

[132] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of deep visuo-
motor policies,” Journal of Machine Learning Research, vol. 17, no. 39, pp. 1–40,
2016.

[133] H. von Stackelberg, The Theory of the Market Economy. Oxford University Press,
1952.

[134] A. Sinha, P. Malo, A. Frantsev, and K. Deb, “Multi-objective stackelberg game be-
tween a regulating authority and a mining company: A case study in environmental
economics,” in Evolutionary Computation (CEC), 2013 IEEE Congress on. IEEE,
2013, pp. 478–485.

[135] A. U. Raghunathan and L. T. Biegler, “Mathematical programs with equilibrium
constraints (mpecs) in process engineering,” Computers & chemical engineering,
vol. 27, no. 10, pp. 1381–1392, 2003.

[136] H. I. Calvete, C. Galé, and M.-J. Oliveros, “Bilevel model for production–
distribution planning solved by using ant colony optimization,” Computers & op-
erations research, vol. 38, no. 1, pp. 320–327, 2011.

103

[137] P. Hansen, B. Jaumard, and G. Savard, “New branch-and-bound rules for lin-
ear bilevel programming,” SIAM Journal on scientific and Statistical Computing,
vol. 13, no. 5, pp. 1194–1217, 1992.

[138] L. Vicente, G. Savard, and J. Júdice, “Descent approaches for quadratic bilevel pro-
gramming,” Journal of Optimization Theory and Applications, vol. 81, no. 2, pp.
379–399, 1994.

[139] K. J. Arrow, L. Hurwicz, H. Uzawa, and H. B. Chenery, “Studies in linear and non-
linear programming,” 1958.

[140] A. Cherukuri, B. Gharesifard, and J. Cortes, “Saddle-point dynamics: conditions for
asymptotic stability of saddle points,” SIAM Journal on Control and Optimization,
vol. 55, no. 1, pp. 486–511, 2017.

[141] J. Wang and N. Elia, “A control perspective for centralized and distributed convex
optimization,” in Decision and Control and European Control Conference (CDC-
ECC), 2011 50th IEEE Conference on. IEEE, 2011, pp. 3800–3805.

[142] D. Richert and J. Cortés, “Robust distributed linear programming,” IEEE Transac-
tions on Automatic Control, vol. 60, no. 10, pp. 2567–2582, 2015.

[143] X. Zhang and A. Papachristodoulou, “A real-time control framework for smart power
networks with star topology,” in American Control Conference (ACC), 2013. IEEE,
2013, pp. 5062–5067.

[144] E. Olson, J. Strom, R. Morton, A. Richardson, P. Ranganathan, R. Goeddel, M. Bu-
lic, J. Crossman, and B. Marinier, “Progress toward multi-robot reconnaissance and
the magic 2010 competition,” Journal of Field Robotics, vol. 29, no. 5, pp. 762–792,
2012.

[145] A. S. Huang, E. Olson, and D. C. Moore, “LCM: Lightweight communications and
marshalling,” in Intelligent robots and systems (IROS), 2010 IEEE/RSJ international
conference on. IEEE, 2010, pp. 4057–4062.

[146] S. M. Ross, A course in simulation. Prentice Hall PTR, 1990.

[147] R. Korn, E. Korn, and G. Kroisandt, Monte Carlo methods and models in finance
and insurance. CRC press, 2010.

[148] D. Mehta, G. Ferrer, and E. Olson, “Fast discovery of influential outcomes for
risk-aware MPDM,” in Proceedings of the IEEE International Conference on
Robotics and Automation, 2017, https://april.eecs.umich.edu/papers/details.php?
name=mehta2017icra.

[149] ——, “Backprop-MPDM: Faster risk-aware policy evaluation through efficient gra-
dient optimization,” in Proc. IEEE Int. Conf. on Robotics and Automation, 2018.

104

https://april.eecs.umich.edu/papers/details.php?name=mehta2017icra
https://april.eecs.umich.edu/papers/details.php?name=mehta2017icra

[150] B. Colson, P. Marcotte, and G. Savard, “An overview of bilevel optimization,” An-
nals of operations research, vol. 153, no. 1, pp. 235–256, 2007.

[151] J. P. Hanna, P. S. Thomas, P. Stone, and S. Niekum, “Data-efficient policy evaluation
through behavior policy search,” arXiv preprint arXiv:1706.03469, 2017.

[152] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust region policy
optimization,” in International Conference on Machine Learning, 2015, pp. 1889–
1897.

[153] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and
K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,” in In-
ternational conference on machine learning, 2016, pp. 1928–1937.

[154] R. F. Stengel, Optimal control and estimation. Courier Corporation, 2012.

[155] E. Todorov and W. Li, “A generalized iterative LQG method for locally-optimal
feedback control of constrained nonlinear stochastic systems,” in Proceedings of the
American Control Conference. IEEE, 2005, pp. 300–306.

[156] R. Tedrake, I. R. Manchester, M. Tobenkin, and J. W. Roberts, “LQR-Trees: Feed-
back motion planning via sums-of-squares verification,” The International Journal
of Robotics Research, vol. 29, no. 8, pp. 1038–1052, 2010.

[157] R. Goeddel, “Policy-based planning for robust robot navigation,” Ph.D. dissertation,
University of Michigan, Ann Arbor, USA, October, 2018.

[158] J. Hwangbo, I. Sa, R. Siegwart, and M. Hutter, “Control of a quadrotor with re-
inforcement learning,” IEEE Robotics and Automation Letters, vol. 2, no. 4, pp.
2096–2103, 2017.

105

	Table of Contents
	List of Figures
	Abstract
	Introduction
	Motivation
	Intelligence and Emergent Behavior in Mobile Robots
	Behavior-Based (Reactive) Robotics
	Hybrid Planners
	MPDM as a Behavioral Planning Framework

	MPDM for Navigating Dynamic, Social Environments
	Discovering Influential Outcomes
	Continuously Parameterized Policies
	Contributions

	Background
	Predicting Pedestrian Motion
	Planning in Dynamic Environments
	Classical Motion-Planning Based Approaches
	Reactive Planners
	Trajectory Optimization Over Longer Time Horizons
	Learning-Based Approaches

	MPDM Approximates a POMDP

	Multi-Policy Decision Making for autonomous navigation in dynamic social environments
	Introduction
	Contributions
	Method
	Candidate Policies
	Prediction using Forward Simulation
	Cost Function
	Sampling-Based Multi-Policy Decision Making

	Results
	Simulation
	Real-World Experiments

	Summary

	Risk-Aware Multi-Policy Decision Making
	Introduction
	Contributions
	Backprop-MPDM
	Network Architecture
	Enabling Effective Backpropagation

	Results
	Efficiency of Search
	Increasing the Number of Candidate Policies
	Real-World Experiments

	Summary

	C-MPDM: Continuously-parameterized risk-aware MPDM by quickly discovering contextual policies
	Introduction
	Contributions
	Method
	Results
	Simulation Experiments
	Real-World Experiments

	C-MPDM and MPEPC: A Comparative Study
	Algorithmic Similarities and Differences
	Structured Experiments
	Randomized Double-Blind Trials

	Summary

	Conclusion
	Contributions
	Future Work
	Learning Policies
	Parallelizing MPDM for Multi-Modal Uncertainty
	MPDM with Explicit Communication

	Bibliography

