
Positive and Negative Obstacle Detection using the HLD Classifier

Ryan D. Morton and Edwin Olson

Abstract— Autonomous robots must be able to detect haz-
ardous terrain even when sensor data is noisy and incomplete.
In particular, negative obstacles such as cliffs or stairs often
cannot be sensed directly; rather, their presence must be
inferred. In this paper, we describe the height-length-density
(HLD) terrain classifier that generalizes some prior methods
and provides a unified mechanism for detecting both posi-
tive and negative obstacles. The classifier utilizes three novel
features that inherently deal with partial observability. The
structure of the classifier allows the system designer to encode
the capabilities of the vehicle as well as a notion of risk, making
our approach applicable to virtually any vehicle. We evaluate
our method in an indoor/outdoor environment, which includes
several perceptually difficult real-world cases, and show that
our approach out-performs current methods.

I. INTRODUCTION

Robots in complex environments encounter hazardous
terrain in the form of positive and negative obstacles. Positive
obstacles are objects that extend ‘up’ from the ground, such
as walls. Negative obstacles occur when the ground drops
off, presenting a falling or tipping hazard for the robot, i.e.
the edge of a cliff (see Fig. 1). The terrain classification task
is to detect these obstacles and output a map, typically a
2D grid, that will be used by the robot’s path planner as
the final word regarding the safe/dangerous regions in the
robot’s vicinity.

In the process of detecting obstacles and drivable terrain,
robots have incomplete information regarding the surround-
ing terrain due to sensor sparseness and occlusions (see
Fig. 2). In fact, negative obstacles are not directly observable
from most sensor configurations and must be inferred; for
example, by using the change in height and the interven-
ing distance between the two closest observations, from
the upper and lower surfaces; we term these the h and l
features, respectively. Additionally, the data density returned
from most sensors varies according to the geometry of the
sensor configuration, e.g., see the 3D point cloud’s line-like
structure in Fig. 2. This leads to the third feature, d, based
on the point density in the vicinity of each discretized cell.

We present a new terrain classifier that uses the h, l, and
d features to detect both positive and negative obstacles even
with incomplete information. The classifier generalizes some
previous methods, which we show are special cases of the

Ryan D. Morton is a Student rmorton@umich.edu
Edwin Olson is an Assistant Professor ebolson@umich.edu
Computer Science and Engineering, University of Michigan, 2260 Hay-

ward Street, Ann Arbor, Michigian
This research was supported in part by the Ground Robotics Reliability

Center (GRRC) at the University of Michigan, with funding from govern-
ment contract DoD-DoA W56H2V-04-2-0001 through the US Army Tank
Automotive Research, Development, and Engineering Center.
UNCLASSIFIED: Dist. A. Approved for public release

(a) Positive Obstacle (b) Negative Obstacle

Fig. 1. Positive vs. Negative Obstacles. (a) A positive obstacle extends
upward from the ground while in (b) the negative obstacle drops off and
occludes the immediately adjacent terrain. Both obstacle types can be
parameterized by h and l.

proposed HLD classifier. The primary contributions of this
paper include a new terrain classifier that:

• Detects both positive and negative obstacles
• Handles partial observability
• Gives designers ability to manage risk via a notion of

classification confidence
• Subsumes and outperforms previous methods
In the next section we discuss related work in terrain

classification. The h, l, and d features are described in
detail in Section III. The HLD classifier and confidence-
based classification are shown in Section IV, followed by an
evaluation in Section V.

II. RELATED WORK

Many robot terrain classification methods detect obstacles
using features similar to h, l, and d. The first method,
termed bucket model, discretizes the world into cells and
analyzes the data within each cell independently [1], [2],
[3]. The simplest such method thresholds the h within a
cell. Although more complicated statistics could be used,
e.g., variance or plane-normal direction, none allow inter-cell

Fig. 2. Partial Observability. The 3D point cloud (left) shows how
unobserved regions come from both sensor sparsity and occlusions, such
as the untraversable 12 cm curb (negative obstacle).

inference and thus cannot detect negative obstacles unless the
grid cells are excessively large. However, increasing the grid
cell size causes obstacles to dilate and grow out into drivable
terrain. Minimization of obstacle dilation is a major criteria
of the terrain classification task, as robots must often work
in already constricted environments, e.g., a 50 cm wide robot
attempting to fit through a 70 cm doorway.

Inter-cell inference can be added with a simple extension
to the bucket model by thresholding the h between nearby
cells. We term this method the flat model approach because
it ignores l (distance has no impact on the classification) and,
thus, models terrain as flat [4], [5]. The constant slope model
uses both the h and l features to model drivable terrain as
a linear function (hmax(l) = ml + b for some constants m
and b), thus, allowing inclined terrain [6], [7]. These binary
classification approaches allow inference between cells and
thus, through unobserved regions, but fail to model the risk
associated with doing so.

A notion of confidence has been used before in a few
areas of terrain classification. For example, in [8] a notion of
confidence is used based on color features. In [9], confidence
is associated with a complete feature, for example during
learning, rather than during the classification process as used
here. In [10], kernels and visibility are used to classify rough
terrain by bounding the best and worst case for terrain in
unobserved regions.

Other methods look at the drivability of occlusions for
terrain analysis. Potential negative obstacles are classified by
modeling occlusions and propagating information through
unobserved regions via an expensive ray-casting operation
in [11]. However, the robot must wait until it is closer to
conduct a mobility assessment and has separate detectors for
positive and negative obstacles. The HLD classifier allows
analysis that is agnostic to the position of the robot and
handles both positive and negative obstacles through explicit
use of unobserved regions. A principal component analysis
based approach to obstacle detection is used in [12] with a
measure of surface roughness. Although they use a notion
of distance disturbance, h, l, and d are not used.

Some robot systems have been deployed in constrained
environments that simplify the terrain classification problem.
For example, work in the high-speed road driving arena has
allowed robotic cars to drive successfully on roadways [1],
[2], [13], [14]. However, a robot traveling between the lane
markers on a maintained road can assume that it will not
encounter a dangerous negative obstacle. Similarly, indoor-
only robots generally only detect positive obstacles [15],
[16] or move so slowly that they can simply look down
with a proximity sensor to detect negative obstacles. Plane-
fitting techniques ([17], [18]) have been shown to work
well in environments where planes are good approximators
of the underlying terrain, but often have difficulty with
negative obstacles. We desire a classifier for environments
with missing information, no road signs, and dangerous
negative obstacles.

III. THE HLD FEATURES

The steps to classify a 3D point cloud with the HLD
algorithm are 1) discretize the world, 2) run the feature
detectors on each cell, and 3) classify each cell based on
the model. Each 3D point is added to the respective 2.5D
cell in the discretization while each cell keeps track of the
number of observations and its observed zmin, zmax, and
zavg . We use the terms z and zavg interchangeably.

Each cell has a single d feature value, which measures
the point density near the cell. However, a cell may have
multiple (h, l) pairs, each corresponding to a path, of length
l, through the cell with a h = ∆height between two nearby
observed cells.

A. Message Passing and the h and l Features

We propagate information to account for missing data in
the world, thus, allowing inference using observations from
nearby cells. The h and l features require cells to receive
information from nearby cells in order to infer the terrain
between them. The actual information propagated between
cells always originates as the zavg value of an observed cell
and only propagates between direct neighbors and through
unobserved regions, see Fig 3(c).

Every observed cell will generate the (h, l, d) tuple (zmax

- zmin, 0, d) to later be used for classification. In addition,
the cell initiates message passing by sending its zavg value
to its neighbors. The message passing scheme is broken
into two steps for computational efficiency. First, information
propagates once from each observed cell to its 4-connected
neighbors. Next, s - 1 iterations of information propagation
from each unobserved cell to its 4-connected neighbors. The
number of propagation steps s is set by the designer for the
desired propagation distance in order to ensure geometric
detection of expected obstacles, e.g., ability to detect a 12 cm
curb from a distance of 1.5 m. See Algorithm 1 for the
pseudo-code for the message passing scheme.

Every cell on the propagated path between cells A and
B needs to know h = |zavgA - zavgB | and l, which equals

(a) Message length (l) (b) Observed z values (c) Paths through cell

(d) MinAt[] and MaxAt[] (e) Worst-cast (h, l) pairs

Fig. 3. Message Passing Example (gray = observed, white = unobserved,
yellow = cell in question). Propagation distances are shown in (a) (white
font indicates observed cells within 6 propagation steps) and z values in
(b). (c) shows a subset of information paths through the yellow cell. (d) and
(e) show the information that is propagated to the yellow cell.

Algorithm 1 Message passing for h and l features
1: {Initialize and send from observed cells}
2: for each observed cell c do
3: c.minAt[0] = c.zavg
4: c.maxAt[0] = c.zavg
5: for each neighbor cell (n) of c do
6: n.minAt[1] = min(n.minAt[1], c.minAt[0])
7: n.maxAt[1] = max(n.maxAt[1], c.maxAt[0])
8: end for
9: end for

10: {Propagate through unobserved cells}
11: for i = 2 : number of propagations do
12: for each unobserved cell c do
13: for each n ∈ (4-connected) neighbor of c do
14: n.minAt[i] = min(n.minAt[i], c.minAt[i-1])
15: n.maxAt[i] = max(n.maxAt[i], c.maxAt[i-1])
16: end for
17: end for
18: end for

the propagation distance based Manhattan distance but only
through unobserved regions. But, to efficiently implement the
message passing algorithm, the only information propagated
between cells is the maximum and minimum observed z
values at each discretized distance from the cell. For ex-
ample, the yellow cell in Fig. 3(a) must know both the
minimum and maximum z values among all the observed
cells 1 unit away; similarly for distances of 2, 3, etc. as
shown in Fig. 3(d). Thus, each cell needs to store two arrays
representing the minimum and maximum z values at each
discretized distance; we call these minAt[i] and maxAt[i],
respectively. Then the cell’s actual value for h at a distance
of l is

h(l) = max
i+j=l

(maxAt[i] - minAt[j]) (1)

Thus, with s propagation steps, a cell may have up to 2s
total (h, l, d) tuples, where the d is the same in each. The
complexity of each full round of message passing is O(sn),
where n is the number of cells.

B. d Feature

The density feature at a cell should be a function of the
observations in the region around the cell. We found that
the best formulation for d is the sum of the nearby observa-
tions (out to the propagation radius of the message passing
scheme) weighted by a zero-mean Gaussian distribution on
distance, parameterized by σ.

C. Discretization Size

The underlying terrain is best fit with small grid cells, yet
often detection capabilities decrease as the cells get smaller.
Smaller cells result in more cells, more inter-cell inferences,
and, generally, more unobserved cells. However, since the
actual distances between observations do not change (except
for discretization errors) the detections with the HLD clas-
sifier are not affected. Thus, the only effects of grid cell size

on the HLD terrain classifier are computational. Specifically,
an arbitrarily small grid cell can be used (within computation
limits).

IV. HLD CLASSIFICATION

A. Binary Classification with a Confidence

Each 3D sweep is analyzed and produces a terrain map.
These maps are combined by compositing consecutive maps
into a larger map, which is sent to the path planner. This final
map can be easily thresholded into a binary map, detailing
each cell as drivable or as an obstacle. The individual maps
must be aligned via the simultaneous localization and map-
ping (SLAM) system but they need not be binary themselves.
In fact, if they are binary then the composition step is very
tricky or trivial, e.g., always picking most recent data over
older data. Instead, we adopt a notion of confidence to
augment the binary classification for each cell. To accomplish
this we propose a real valued output at each cell; positive for
obstacles and negative for drivable terrain, with magnitude
signaling the confidence. The notion of confidence affects
two distinct pieces of the overall system: compositing the
individual terrain maps into the final output map and during
classification of individual cells from a single 3D sweep.

The idea behind using confidence during composition is
that when deciding between two classifications for a cell,
each from a different 3D sweep, we accept more confident
one. For example, if a cell is classified as drivable with
confidence 80% from one 3D sweep but the next sweep
declares it as an obstacle with 1% confidence, we keep the
former and output the cell as drivable (see Fig. 4).

The confidence is also used to classify individual cells
from a single 3D sweep due to each cell having multiple (h,
l, d) tuples. The cell is annotated pessimistically, via the max
operator, based on the values in the model. The max operator
ensures the safety of the robot by taking any hazardous
evidence over evidence of drivability. Thus, individual 3D
scans mark cells pessimistically (the most unsafe evidence

(a) t = 0 (b) t = 1 (c) t = 2 (d) t = 3 (e) t = 4 (f) t = 5

(g) Conglomerate Map (h)

Fig. 4. Map Composition. The sequential maps (a)-(f) are merged into a
composite map (g) using the single scan confidence values (color scheme
shown in (h) with the robot trajectory in white).

(a) Model Generation (b) Expanded 3D Table (c) Key

Fig. 5. HLD Classification Model. (a) Tuning the HLD model is based on
the kinematics of the robot. (b) The full 3D table comes from the kinematics
and confidence loses due to changes in l and d.

in that scan) while the compositing process uses the most
confident evidence.

B. Classification Model

Designers have the ability to tailor the HLD terrain classi-
fier specifically to their robot, risk level, and environment via
the classification model. The actual encoding of the model
can take many forms such as a parametric function, 3D
table, or some other factorization. The classification model
represents the classification and confidence throughout the
feature-space.

For this work we used a 3D table with real values, notated
as HLD(h, l, d), for example the graphical depiction shown
in Fig. 5(b). The generation of the model comes primarily
from the kinematics of the robot. For example, a single HL
slice of the table may look like Fig. 5(a) if a robot can
go over 10 cm curbs and handle terrain up to some max-
slope. The complete 3D table can be generated by copying
this slice or by a more complicated mechanism. In Sec. V-
A we describe the generation of our model in more detail.
The process of HLD model generation as explained here
requires an expert. However, fundamentally it is a direct
consequence of the vehicle capabilities. The slice shown in
Fig. 5(a) would result in a binary classifier and the expert
need only modify the model to account for the confidence
in the binary classification w.r.t. changes in l and d.

Interestingly, the bucket, flat, and constant slope models
are special cases of the HLD classifier. These methods are
binary by convention, produce no confidence estimate, and
do not depend on d. Thus, the slices shown for each method’s
model in Fig. 6 are the same for all values of d.

C. Classifying Individual Cells

After detecting the h, l, and d features at each cell we use
the model to classify the cell. The only special case is when
the density is zero (no observations nearby) resulting in a
value of 0; zero confidence. For all other cells, the assigned
value is computed via direct observations and messages
received during message passing. All the paths through cell

c and their values can be computed using the initialized
values in the minAt[] and maxAt[] arrays at the cell. The
features are l = i + j and a h = c.maxAt[j] - c.minAt[i].
Thus, the value for a particular path is HLD(c.maxAt[j]
- c.minAt[i], i + j, c.d), see Algorithm 2. The cell’s final
value is the maximum, or most unsafe, of the individual path
values.

Algorithm 2 Classification
1: for each cell c do
2: if c.d == 0 then
3: c.val = 0
4: continue
5: end if
6: c.val = −∞
7: if c.observed then
8: c.val = HLD(c.zmax− c.zmin, 0, c.d)
9: end if

10: {Pessimistically mark cell from (h, l, d) tuples}
11: for each initialized c.minAt[i], c.maxAt[j] pair do
12: val = HLD(c.maxAt[j]− c.minAt[i], i+ j, c.d))
13: c.val = max(c.val, val)
14: end for
15: end for

V. EVALUATION

To evaluate the HLD method we first describe our test-
ing apparatus (our robot) and give additional details about
the alternate methods. Then we explain some perceptually
challenging environments in order to illustrate the qualita-
tive differences between the methods. Finally, we show a
quantitative error analysis with a ground truth dataset.

A. Testing Apparatus and Method Parameters

The 4-wheeled skid-steered robots used for evaluation can
safely traverse 20◦ inclines and overcome 10 cm vertical dis-
continuities. The robot uses an actuated 2D LIDAR (Hokuyo
30LX) that returns a 3D point cloud every 1.25 seconds (see
Fig. 7). This particular sensor configuration gives line-like
returns, which often contain large unobserved regions, even
on flat ground.

We discretize the world into 5 cm cells and produce 15×
15m maps, centered about the robot, from each 3D sweep.
The same discretization is used for the composite map sent
to the path planner. We set the propagation distance to 40 cm
(or 8 steps) for the feature detectors and set σ = 0.1m for
the d feature.

(a) Bucket Model (b) Flat Model (c) Slope Model

Fig. 6. Alternate Method Classification Models. Showing a single slice of
possible HLD representations for the bucket, flat, and slope models; none
have a dependence on d. (blue = drivable, red = obstacle)

(a) Robots (b) Sensorhead

Fig. 7. Robot Testbed. The robots (a) use an actuated 2D LIDAR (b) which
cause the line-like structure shown in Fig. 2.

(a) Bucket Model (b) Flat Model (c) Slope Model (d) HLD

Fig. 8. Negative Obstacle - Curb. (gray=unknown, black=drivable, and
red=obstacle). The bucket and constant slope models fail to detect the 12 cm
negative obstacle. (scene shown in Fig. 2)

For our HLD model we use a 3D table discretized h into
250 bins ∈ [0, 25 cm], l into 200 bins ∈ [0, 50 cm], and d
into 100 bins ∈ [0, 1]. The kinematics of the robot and the
designer specified risk associated with missing information
were used to generate the hand-tuned model, as shown in
Fig. 5. To generate our model we began by simply putting the
physical abilities of the robot into an HL slice, as shown in
Fig. 5(a). We then decaying the confidence linearly with l to
create the d = 1 slice (top slice shown in Fig. 5(b)). Finally,
the additional slices (for values of d) were generated by
decaying the confidence quadratically w.r.t. d. The decrease
in confidence associated with l and d depended upon the
capabilities of our robot, our sensor configuration, and our
confidence in the particular region of the feature-space.

We compare our tuned HLD model against the bucket,
flat, and constant slope models. Since these are special cases
of the HLD classifier, we implement them with the models
depicted in Fig. 6. Each of these models use a h threshold
of 10 cm and the constant slope model uses 20◦ for the
additional slope parameter.

B. Qualitative Classification Comparison

We compare these methods on a variety of indoor/outdoor
environments that include both positive and negative obsta-
cles. Qualitatively, the algorithms all properly detect large
vertical surfaces (e.g. walls) and flat surfaces near the robot
(e.g. sidewalks). However, negative obstacle and inclined
terrain handling differed between the algorithms.

Negative obstacles must be detected at a safe distance or
else the robot could be endangered. Thus, for our robot,
we need to detect the negative obstacle before the robot is
within 0.5 m (the distance traveled during one 3D sweep).
The bucket model did not detect a single negative obstacles
at this distance. Small, yet still dangerous, negative obstacles

(a) Camera View (b) 3D Point Cloud

(c) Bucket Model (d) Flat Model (e) Slope Model (f) HLD

Fig. 9. Inclined Terrain (15◦ ramp). The flat model hallucinates obstacles,
while the other methods properly mark the ramps as drivable. The colors
of the points in (b) represents various heights in the overhead view.

were correctly classified by both the flat model and HLD
method but not by the constant slope method. For example,
the constant slope method could not detect the 12 cm curb
in Fig. 8, because the unobserved region was approximately
20 cm wide and at that distance only curbs taller than
(tan(20◦)20 + 10) = 17 cm can be detected. The slope
model can only detect the curb as an obstacle when the
robot is 18 cm from the curb (for our sensor position), but
this is too late for an autonomous robot with a scanning
sensor. The constant slope method can be tuned to detect
the curb by lowering either the 20◦ slope or the 10 cm
vertical obstacle threshold, which causes other undesirable
side-effects as explained below.

We tested the algorithms on inclined terrain, specifically
ramps with slopes up to 15◦ (see Fig. 9). These traversable
inclines are challenging for the flat model. The constant
slope model can handle the inclines, but not with the values
tuned for the 12 cm curb. The performance of the bucket
method on ramps is very sensitive to discretization size;
the algorithm worked with 5 cm cells, but hallucinations
prevented traversal with 10 cm cells. However, the 5 cm cells
lowered the obstacle detection rate elsewhere (e.g. curbs and
small obstacles). The HLD method successfully classifies
the 15◦ inclines and begins detecting slopes as obstacles
when the slope increases toward 20◦.

Overall, only the HLD method handles each of these
perceptually challenging situation with a single model. Each
of the other methods could be tuned to handle individual
challenges, however, no single parameter tuning could handle

TABLE I
QUALITATIVE ANALYSIS ON PERCEPTUALLY DIFFICULT TERRAIN

Flat Walls 12 cm Neg. curb 15◦ ramp
Bucket model Yes Yes No Yes

Flat model Yes Yes Yes No
Slope model Yes Yes No Yes

HLD Yes Yes Yes Yes

TABLE II
QUANTITATIVE ANALYSIS ON ALL DATASETS

Obstacle Drivable
True False True False

Bucket model 0.91 0.09 0.74 0.24
Flat model 0.78 0.22 0.85 0.15

Constant Slope 0.84 0.16 0.83 0.17
HLD model 0.87 0.13 0.97 0.03

the complete set, see Table I.

C. Quantitative Classification Comparison

We hand-labeled 30 ground truth maps from data gathered
around the University of Michigan campus. See Table II for
the class accuracy data for the 2.7 million data points from
these 30 labeled maps.

The bucket model only marks obstacles detectable within
single cells, which are generally vertical in nature. Because
of the small grid size (5 cm) these typically correlate with
actual obstacles in the real world. Thus, the fact that the
bucket model has the highest true-obstacle rate is expected.
Each of the other methods infer obstacles between cells and,
thus, have higher error rates on obstacle detections, due to the
inevitable incorrect inferences. The error rates for drivable
terrain show that the tuned HLD model greatly outperforms
the other models with only 3% error. This result is also
expected based on how closely the model reflects the actual
abilities of the robot.

D. Run-time Analysis

Since we implemented the previous methods via the HLD
terrain classifier shown in this paper, we do not provide run-
time analysis for those methods. However, the HLD method
completes the terrain analysis for 5 cm cells over a 15 ×
15m area in 280 ms (average). These test ran on a Core 2
Duo processor at 2.4Ghz with 4GB of RAM running single-
threaded in Java. The run-time compared nearly one-to-one
with the 260 ms classifier used for Team Michigan’s MAGIC
2010 classifier, which was based on the constant slope model
and thus did not detect negative obstacles. Further run-time
optimizations are desired, but for a small time premium our
system gained the ability to detect negative obstacles.

VI. CONCLUSION

The HLD terrain classifier defines a new feature-space
that allows detection of both positive and negative obstacles
using a unified mechanism. The h, l, and d features are
efficiently computed from 3D point cloud data on a robot
operating in complex indoor/outdoor urban environments.
Additionally, the new method generalizes and outperforms
common approaches on several common mobile robot terrain
topologies and this illustrates the versatility of our method.
A single HLD model, properly set for the capabilities and
risk level for our robot, was sufficient to handle these percep-
tually difficult terrain classification problems. However, this
expressivity comes at a cost of need to specify the model,
which currently requires an expert.

REFERENCES

[1] F. von Hundelshausen, M. Himmelsbach, F. Hecker, A. Mueller, and
H. Wuensche, “Driving with tentacles: Integral structures for sensing
and motion,” Journal of Field Robotics, vol. 25, no. 9, pp. 640–673,
2008.

[2] J. Leonard, J. How, S. Teller, M. Berger, S. Campbell, G. Fiore,
L. Fletcher, E. Frazzoli, A. Huang, S. Karaman, O. Koch, Y. Kuwata,
D. Moore, E. Olson, S. Peters, J. Teo, R. Truax, M. Walter, D. Barrett,
A. Epstein, K. Maheloni, K. Moyer, T. Jones, R. Buckley, M. Antone,
R. Galejs, S. Krishnamurthy, and J. Williams, “A perception driven
autonomous urban vehicle,” Journal of Field Robotics, vol. 25, no. 10,
September 2008.

[3] D. Kim, J. Sun, S. Oh, J. Rehg, and A. Bobick, “Traversability
classification using unsupervised on-line visual learning for outdoor
robot navigation,” in Robotics and Automation, 2006. ICRA 2006.
Proceedings 2006 IEEE International Conference on. IEEE, 2006,
pp. 518–525.

[4] T. Hong, M. Abrams, T. Chang, and M. Shneier, “An intelligent world
model for autonomous off-road driving,” Computer Vision and Image
Understanding, 2000.

[5] P. Bellutta, R. Manduchi, L. Matthies, K. Owens, and A. Rankin,
“Terrain perception for DEMO III,” in Intelligent Vehicles Symposium,
2000. IV 2000. Proceedings of the IEEE. IEEE, 2000, pp. 326–331.

[6] L. Matthies, A. Kelly, T. Litwin, and G. Tharp, “Obstacle detection for
unmanned ground vehicles: A progress report,” in Intelligent Vehicles’
95 Symposium., Proceedings of the. IEEE, 1996, pp. 66–71.

[7] H. Schafer, A. Hach, M. Proetzsch, and K. Berns, “3d obstacle
detection and avoidance in vegetated off-road terrain,” in Robotics
and Automation, 2008. ICRA 2008. IEEE International Conference
on. IEEE, pp. 923–928.

[8] J. Lalonde, N. Vandapel, D. Huber, and M. Hebert, “Natural terrain
classification using three-dimensional ladar data for ground robot
mobility,” Journal of Field Robotics, vol. 23, no. 10, pp. 839–861,
2006.

[9] M. Hebert and N. Vandapel, “Terrain classification techniques from
ladar data for autonomous navigation,” in Collaborative Technology
Alliances Conference. Citeseer, 2003.

[10] R. Hadsell, J. Bagnell, and M. Hebert, “Accurate rough terrain
estimation with space-carving kernels,” in Proc. of Robotics: Science
and Systems (RSS). Citeseer, 2009.

[11] N. Heckman, J. Lalonde, N. Vandapel, and M. Hebert, “Potential neg-
ative obstacle detection by occlusion labeling,” in Intelligent Robots
and Systems, 2007. IROS 2007. IEEE/RSJ International Conference
on. IEEE, 2007, pp. 2168–2173.

[12] F. Neuhaus, D. Dillenberger, J. Pellenz, and D. Paulus, “Terrain
drivability analysis in 3D laser range data for autonomous robot
navigation in unstructured environments,” in Emerging Technologies &
Factory Automation, 2009. ETFA 2009. IEEE Conference on. IEEE,
2009, pp. 1–4.

[13] S. Thrun, M. Montemerlo, and A. Aron, “Probabilistic terrain analysis
for high-speed desert driving,” in Proceedings of the Robotics Science
and Systems Conference, Philadelphia, PA. Citeseer, 2006.

[14] C. Urmson, J. Anhalt, M. Clark, T. Galatali, J. P. Gonzalez, J. Gowdy,
A. Gutierrez, S. Harbaugh, M. Johnson-Roberson, H. Kato, P. L. Koon,
K. Peterson, B. K. Smith, S. Spiker, E. Tryzelaar, and W. R. L.
Whittaker, “High speed navigation of unrehearsed terrain: Red team
technology for grand challenge 2004,” Robotics Institute, Pittsburgh
and PA, Tech. Rep. CMU-RI-TR-04-37, June 2004.

[15] S. Thrun, “Learning metric-topological maps for indoor mobile robot
navigation* 1,” Artificial Intelligence, vol. 99, no. 1, pp. 21–71, 1998.

[16] H. Surmann, A. N
”uchter, and J. Hertzberg, “An autonomous mobile robot with a 3D
laser range finder for 3D exploration and digitalization of indoor
environments,” Robotics and Autonomous Systems, vol. 45, no. 3-4,
pp. 181–198, 2003.

[17] R. Manduchi, A. Castano, A. Talukder, and L. Matthies, “Obstacle de-
tection and terrain classification for autonomous off-road navigation,”
Autonomous Robots, vol. 18, no. 1, pp. 81–102, 2005.

[18] A. Murarka and B. Kuipers, “A stereo vision based mapping algorithm
for detecting inclines, drop-offs, and obstacles for safe local naviga-
tion,” in Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ
International Conference on. IEEE, 2009, pp. 1646–1653.

