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Abstract— Collisions play a crucial role in nature. While
some natural systems utilise collisions to achieve collective
behaviours such as cell migration, most robot systems avoid
them. There have been a few studies on collisions with swarm
robots. Robot behaviours were collision dependent, however,
physical collisions were still avoided. Robots detected close
field objects with proximity sensors and accounted them for
collisions. However, true collisions cause physical interactions
amongst robots and their immediate environment; collision
chains might even displace many robots at the time and
possibly change the outcome of an experiment; approximating
collisions neglects their physical impact on the real world. In
this work, we introduce the HoverBot system. HoverBots are
floating circuit boards capable of autonomous movement by
energising their planar coils to interact with permanent magnets
that are embedded into the arena surface. HoverBots embrace
physical interactions with other robots or objects. We show how
HoverBots utilise magnetic field readings from a Hall-effect
sensor to detect collisions and briefly discuss how collisions
could be used to map environments.

I. INTRODUCTION

A. Collisions in Biological Systems

There are several examples in nature, where collisions
occur amongst biological agents. For example, ants phys-
ically interact with one another while building streets or
proceeding to raids, fish mildly collide during rapid school-
ing manoeuvres [1], and people collide while navigating
through crowds [2]. Some studies indicate a major influence
of collisions on collective behaviours. For example, research
on cell migration suggests that cell migration itself is an
emergent behaviour, whereas it is evoked by inelastic col-
lisions between neighbouring cells [3]. Collective migration
of eukaryotic cells plays a fundamental role in tissue growth,
wound healing and immune response. A study on granular
media makes comparisons to biologically inspired interacting
agents and shows that simple inelastic collisions between
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Fig. 1. Demonstration. Red and blue trajectories depict HoverBot’s
movements over time. (A) Two HoverBots circle in formation until they are
unsynchronized; (B) two HoverBots move randomly and collide; (C) two
HoverBots collide frontally with one another; (D) one HoverBot collides
with a passive HoverBot.

self-propelled agents can provide a wide range of self-
organised collective behaviours [4].

B. Collisions in Swarm Robotics

While collisions naturally occur in nature, most robot
systems avoid collisions to keep the robot and its immediate
environment safe; collision avoidance becomes an integral
part of the robot design; resources are spend on sensors and
low-level control schemes. Since swarm robotics is heavily
inspired by natural systems, and natural systems do not
necessarily avoid collisions, we belief there is an increasingly
growing narrative for research on collision-based swarm
robotic behaviours. We will briefly cover the swarm robotic
studies that focused on collisions. Kernbach et al. and
Schmickl et al. worked on the re-embodiment of biological
aggregation behaviours of honeybees. They show how to take
advantage of collisions to develop scalable robot behaviours.
In their work, swarm robots converge to light sources without
requiring inter-robot communication. Concretely, they mini-
mize sensing and computation by evaluating robot data only
once per collision; more frequent collisions lead to more
data evaluations [5][6]. Mayaa et al. harnessed collisions to
help localise a robot within an arena. The arena was divided
into differently sized segments, whereas each segment was
inhabited by differently sized robot groups. Robots used



Fig. 2. The HoverBot system. A) The HoverBot is displayed in detail in the top left corner. It consists of a low-cost microcontroller, an infrared transceiver
and a Hall-effect sensor. Permanent magnets are embedded into the platform and air holes are drilled through the surface as exemplary indicated through
red circles. We placed AprilTags on a HoverBot as well as in three of the four corners of the magnet-levitation table. This setup allows us to keep track of
HoverBot’s position during experiments. B) The bottom side of the HoverBot is displayed in the top right corner. A HoverBot possesses five planar coils
that it uses to manoeuvre two-dimensionally on the magnet-levitation table. We installed four fans, one on each side, to supply HoverBots with a constant
airflow beneath their contact surface.

Fig. 3. Conceptual system overview. An air blower forces air into
the magnet-levitation table creating a pressure differential between the
inside and outside of the table. Air streams through the porous surface of
the magnet-levitation table creating air-cushions beneath HoverBots which
makes the robots levitate. HoverBots energise their planar coils and interact
with the embedded magnets to move two-dimensionally.

collision detection as information source to determine their
locations [7].

C. Approximating Collisions

In these studies, robot behaviours were collision depen-
dent, however, physical collisions were still avoided. Robots
detected close field objects with proximity sensors and
accounted them for collisions. However, true collisions cause
physical interactions amongst robots and their immediate
environment; collision chains might even displace many
robots at the time and possibly change the outcome of an
experiment; approximating collisions neglects their physical
impact on the real world.

D. Physical Collisions

The impact of a collision is dependent on the momentum
of the robot ~P = m×~V , whereas fast velocities ~V or heavy

masses m increase momentum. We consider scenarios in
which robots move or rest. If two robots move and collide the
total momentum is dependent on the velocity vectors of the
robots. If one robot collides with a resting robot, the moving
robot has to overcome the static friction of the resting robot
to make it move.

Collisions are influenced by robot locomotion. In descend-
ing order starting with the most commonly used locomotion
strategy, we look into the various strategies and discuss how
they might influence collisions : i) wheeled locomotion ii)
slip-stick locomotion iii) active low-friction locomotion [8].
Wheeled robots are faster and heavier than robots that use
slip-stick or active low-friction locomotion, therefore their
momentum is greater. However, wheeled robots are also more
difficult to move due to their mass and corresponding static
friction. Robots that use slip-stick locomotion are light and
their velocities low causing small momentum which might be
not sufficient to overcome the static friction of resting robots
of their kind. Robots that use active low-friction locomotion
are also light and their velocities (currently) low, however,
they are visually frictionless. In this scenario, a collision
between resting and moving robots results in movement as
illustrated in Figure 1D. In the following section we review
active low-friction locomotion and its first implementation,
the HoverBot system.

II. THE HOVERBOT SYSTEM

A. Active Low-friction Locomotion
To move - on land, in water, or in the air - always

requires an expenditure of energy. Reducing the resistance to
motion, namely, friction, allows a greater range of travel for
a given input of energy [9]. However, instead of enhancing
locomotion, we enable locomotion by reducing friction.

HoverBot is a simple robot that is only capable of ma-
noeuvring if it is supplied with a constant air flow beneath



Fig. 4. Magnetic Field Profiles. These are examples of magnetic field
measurements (signatures) measured by a HoverBot during movement and
show A) successful movement and B) collision. The time series are distinct,
they vary in time and magnitude.

its contact surface. HoverBot’s working principle is shown
in Figure 3. The air flow reduces the friction between robot
and table allowing relatively weak forces to be used for
locomotion. Specifically, we embedded permanent magnets
into a levitation table. HoverBot possesses planar coils which
interact with these permanent magnets, resulting in two-
dimensional locomotion. Such forces would be insufficient if
friction had not been reduced. This concept relaxes actuator
boundaries allowing a significant simplification of the robot’s
actuation and control system. This locomotion strategy is
called active low-friction locomotion and is further discussed
in our publication [8].

B. The Magnet Levitation Table

The table supplies an air flow beneath HoverBot’s contact
surface creating an air cushion that reduces friction between
robot and locomotion substrate. The differential pressure
that is required to lift a HoverBot can be estimated by the
following equation [10]:

∆P = (P2−Pamb)≥
M×g
π×R2 . (1)

Equation 1 implies that an increase in robot weight M or
a reduction of its surface area π×R2 can be encountered by
an increase in differential pressure ∆P.

The permanent magnets that are embedded into the top
surface serve a double purpose, they: (1) act as magnetic
anchors that a HoverBot utilizes to maneuver and (2) give
rise to a magnetic field with a discrete regular pattern
of features which HoverBot is capable of sensing with
its Hall-effect sensor. All magnets were assembled mono-
directionally: north-pole facing up.

C. The HoverBot

HoverBot consists of a single four-layer Printed Circuit
Board (PCB), shown in Figure 2, and a detachable 300
mAh lithium polymer battery. The bottom layer comprises
five planar actuation coils. Each HoverBot has a diameter
of 39 mm and weighs 19.4 g with, and 7.4 g without,
a battery. HoverBot possesses a low-power microcontroller
(Atmel’s SAMD21E series), programming and debug ports,

Fig. 5. Classifier Parameters. Each datapoint consists of a mean value and
standard deviation. These values are stored in the microcontroller’s memory
and used for online classification.

an infrared transceiver, a Hall-effect sensor, and a transistor
circuit.

From the outset, the HoverBot system was designed for
manufacturability: HoverBots only require electronics com-
ponents that are surface mountable, only require connecting a
battery to a robot as an assembly step, use low-cost actuators
and associated circuitry, do not require actuator calibration
and move precisely on a discrete grid. For more details,
please refer to our publication [8].

III. DETECTING COLLISIONS WITH HOVERBOTS

HoverBots mainly consist of glass-reinforced epoxy lam-
inate (FR4) which makes them very robust and difficult to
break. HoverBots effortlessly collide with objects or other
robots. Sometimes a collision impacts the trajectory of a
HoverBot. Figure 1 illustrates a series of demonstrations in
which robots collided with one another. While HoverBots
embrace collisions, they are also capable of detecting them.
HoverBots possess a single Hall-effect sensor and they utilise
the magnetic field readings that occur during their movement
to detect collisions.

A. Event Dependent Magnetic Field Measurements

HoverBots hover on air cushions and pull themselves to-
wards magnetic anchors that are embedded into the arena sur-
face. When HoverBots move, they measure time-dependent
magnetic fields. Amongst other, it is possible to associate
successful movements and collisions with distinct magnetic
field measurements (signatures). Figure 4 shows examples
of collision and successful movement signatures; they differ
both in time and magnitude.

B. Time Sequence Classification

We group signatures into classes (here: collisions and
successful movements) and then use signal processing tech-
niques to learn offline representations for each class. Of-
fline representations are essentially averaged versions of



Fig. 6. The detection rate increases with the number of datapoints but
starts stagnating once it exceeds 20. In the bottom right corner, we give an
example of a confusion matrix for 20 datapoints. Legend: TP=True Posi-
tive, FN=False Negative, FP=False Positive, TN=True Negative, TPR=True
Positive Ratio, FPR=False Positive Ratio.

signatures. While this averaging process is non-trivial when
performed on variable-length signatures and might deserve
an entire discussion by itself, this work presented here
intends to give an overview of the HoverBot system, its
capabilities and how it could serve the narrative of collision
dependent robot behaviours. Therefore, we do not discuss
the technicalities of the averaging process but refer to the
key literature of our approach including our manuscript that
is currently under review for publication [11][12][13].

Figure 5 shows the offline representations of the collision
and successful movement classes having averaged a total
of 259 signatures. The representations consist of a number
of (mean µ - standard deviation σ ) tuples, whereas the
number of tuples is dependent on the number of datapoints
per signature. HoverBot is capable of measuring dozens
of magnetic field measurements per second, however, the
magnetic field itself does not change that quickly. Once Hov-
erBot measures a new magnetic field time series, it computes
the Mahalanobis distances between the new measurements
xk and the representations µk σk for 1) collision and 2)
successful movement, whereas fewer data-points k ∈ K lead
to less computation.

d(µk,σk,xk) =

√
K

∑
k=1

(xk−µk)2

σk
(2)

The Mahalanobis distance basically measures how many
standard deviations σ is a point x away from the mean
value µ [14]. We classify new measurements according
to the minimum-distance class, which corresponds to the
maximum-likelihood.

C. Detection Rate

The success rate of our classification is dependent on the
number of data points per signature. While the detection rate

Fig. 7. A robot moves randomly in the environment; the bottom row
shows its position, the top row its observations. A collision is accounted for
by adding 1, a successful movement by subtracting 1 from its observation
matrix. Positive accumulations are illustrated in gray-scale (collisions), neg-
ative accumulations in green-scale (successful movements). Over iterations,
the arena object can be identified in the robot’s observations. The robot uses
a dynamically growing memory array to keep track of its observations; it
is able to map environments without prior knowledge of their size.

increases with the number of datapoints, the detection rate
starts stagnating once it exceeds 20 datapoints per signature.
Figure 6 shows the detection rate as function of the number
of datapoints per signature sample and gives a confusion
matrix example for 20 datapoints. The successful movement
detection rate is the true-positive and the collision detection
rate the false-positive-rate of the confusion matrix. If signa-
tures only contain a few datapoints, the corresponding class
representations only contain a few datapoints too; the class
representations lose their distinctiveness and the detection
rate decreases.

HoverBots are capable of detecting physical collisions
without requiring tactile sensors by analysing magnetic field
measurements.

IV. COLLISION MAPPING

While Kernbach and Schmickl et al’s work is on collision-
triggered search and Mayaa et al’s work on collision-based
localisation, we would like to hint briefly at the opportunity
of using collisions for mapping environments.

A collision can indicate a dynamic (e.g. robot) or static
(e.g. wall) obstacle. Robots can record collisions to build
maps of their environment. The most trivial case might be a
standard version of occupancy grid mapping in which robots
know their pose, keep record of empty and occupied grid
cells by detecting collisions, and store their observations in
memory. For a better understanding, we performed a very
basic simulation of a single robot that randomly collides
with objects and builds a collision map which is illustrated
in Figure 7. The simulated agent detects collisions with
uncertainty; over time, the actual environment appears, the
robot revisits cells and statistically detects more collisions
correctly than wrong.

The combination of i) detecting collisions to infer infor-
mation from the environment and ii) utilising the physical
impact of collisions to push agents towards new solution
spaces seems very useful for the development of new robot
behaviours and the study of emergence. Active low-friction
locomotion may play a unique role in collision research since



it facilitates a collision-friendly environment by eliminating
frictional resistance.
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