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1. Introduction
Many robotics applications require the robot to build a map
of its environment. We consider the problem of Simulta-
neous Localization and Mapping (SLAM), i.e., building a
map of an environment while exploring it for the first time.
SLAM algorithms approach this by identifying features in
the environment (e.g., the corner of a desk) and determining
the relative positions of features. A robot’s sensors are im-
perfect, so the relative position of one feature to another is
almost always considered probabilistically– typically with
a Gaussian distribution.

We can think about the map as a graph: features are nodes
in the graph, and measurements which relate two features
are edges. Each edge represents a rigid-body transforma-
tion and its uncertainty. We make the realistic assumption
that each edge represents an independent constraint.

The heart of the SLAM problem is to determine the “best”
map, the physical locations of features such that the con-
straints have maximum probability. We consider the case
where the features are locations visited by the robot; as
shown by (Montemerlo, 2003), positions of other features
can be efficiently computed once the robot trajectory is
known.

The classical method for SLAM problems is the Extended
Kalman Filter (EKF). However, the EKF has several unde-
sirable aspects: for N features it is O(N2) in space and
time. It also performs poorly in the presence of highly
non-linear constraints. The latter is true because the EKF
commits to a linearization point at the time each constraint
is incorporated; if the point at which the linearization oc-
curred was inaccurate, linearization errors are introduced
that cannot be undone later. In the SLAM problem, the ori-
entation of the robot appears in most of the constraint equa-
tions in sine and cosine operations, which result in sub-
stantial linearization errors when the heading is not well-
known. Sparse Extended Information Filters (SEIFs) also
suffer from linearization errors, and incur O(N3) costs
when computing the state estimate.

In this paper, we present an algorithm for optimizing pose
graphs that is dramatically faster than the published state of
the art. The improved performance arises from two sepa-
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Figure 1. Sample synthetic problem. 3500 nodes with 2100 addi-
tional loop closures (A is 10500× 10500, J is 16797× 10500).
Poses are shown as dots, lines represent constraints. Subplot (a)
shows the ground truth map, (b) shows the simulated corrupted
raw data, (c) shows the result of Duckett’s Gauss-Siedel after 30
seconds of CPU time, and (d) shows the results of our method
after convergence (about 10 seconds). The convergence rates for
this experiment are shown in Fig. 3



rate ideas:

• The use of a different state representation which leads
to a Jacobian that is better-suited to local iterative
methods

• A variant of Stochastic Gradient Descent (SGD), a lo-
cal iterative optimization method which escapes local
minima more readily than Gradient Descent, Conju-
gate Gradient Descent, or Gauss-Seidel. Our variant
exploits additional information available in the SLAM
problem, allowing Newton steps rather than simple
gradient steps.

2. Derivation
The maximum likelihood map can be incrementally com-
puted using an iterative numerical approach. This approach
has a number of distinct advantages: memory grows only
as O(N + E) (for N features and E edges), it can relin-
earize observations as the state estimate changes, and the
incremental nature of the optimization means that an ap-
proximate map is always available for online path planning
and exploration. The full state covariance never needs to
be explicitly computed, however it can be reconstructed if
necessary. A family of such approaches has been studied
before (Duckett et al., 2000) and improved (Frese et al.,
2005).

Before proceeding, we show how the graph can be opti-
mized by solving a linear problem (Ax = b).

If x is the state vector representing robot poses, and f()
represents the constraint equations with expected values u
and variances Σ, we can write:

−log P (x) ∝ (f(x)− u)T Σ−1(f(x)− u) (1)

We proceed by linearizing f(x) = F |x + J |x∆x, using
matrices F |x and J |x. At any particular iteration, we will
simply write F and J , and will use d = ∆x. We also set
r = u− F , the residual. Eqn 1 then becomes:

−log P (x) ∝ (Jd− r)T Σ−1(Jd− r)
= dT JT Σ−1Jd− 2dT JT Σ−1r + rT Σ−1r

We wish to improve our map by finding a d that maximizes
the probability. Differentiating with respect to d and setting
to zero, we find that:

(JT Σ−1J)d = JT Σ−1r (2)

This is the elementary Ax = b linear algebra problem. If
we solved for d directly (via inversion of A, or better by
LU decomposition), we would have the method of nonlin-
ear least squares. However, the size of A makes a direct
solution impractical. Instead, we will estimate d.

When the state estimate is corrupted by significant noise,
the local gradient will typically not point in the direction
of the global minimum. Consequently, gradient methods
typically fail to achieve a satisfactory solution.

In the SLAM problem, individual constraints all result in
quadratic surfaces, ideal for optimization. It is only the sum
of a number of constraints that leads to difficulties, so we
propose using iterative methods that operate on only one
constraint at a time. The optimal d can be written in terms
of the sums of individual constraints by rewriting Eqn. 2
as:

d = (JT Σ−1J)−1
∑

JT
i Σ−1

i ri (3)

Naturally, we still cannot invert the information matrix
(JT Σ−1J), but we can approximate the inverse using its
diagonal elements; this approximation preserves the local
gradient of the cost function. This is roughly equivalent to
Jacobi Preconditioning, which uses the same approxima-
tion.

The canonical Stochastic Gradient Descent algorithm iter-
atively evaluates the gradient for each constraint (one con-
straint per iteration) and moves x in the opposite direction
at a rate proportional to the learning rate. In the SLAM
context, we can do better; we know what step size corre-
sponds to a Newton step– a step that obliterates the resid-
ual of a given constraint. We still employ a learning rate
parameter in order to ensure convergence, but the Newton
step serves as an upper bound. While extensive research
has been done in the area of learning rate schedules, we
have found that a simple harmonic series (1/t) as originally
suggested by (Robbins & Monro, 1951) works well.

3. State Space Representation
Previous authors used the absolute global position for their
state space; i.e., the state vector was composed of (x, y, θ)
values. The Jacobian of a rigid-body constraint between
two poses is consequently sparse, acting like a “spring”
connecting just those two poses. However, in addition to
a loop-closure constraint, there is a segment of the robot’s
path that connects any two poses. For example, in Fig. 2,
a loop constraint exists between poses A and D, but there
is an additional path between A and D that goes through
poses B and C.

If we alter the relative alignment of poses A and D in order



Figure 2. A simple pose graph. Optimizing constraint 4 typically
has an effect on nodes B and C, in addition to A and D. Our pro-
posed state space representation causes this dependency to appear
in the Jacobian of constraint 4. This leads to more rapid conver-
gence when using local iterative methods.

to reduce the error of constraint 4, poses B and C will also
adjust position so that the total error will be reduced (due
to the effects of constraints 1, 2, and 3.) Iterative methods,
which use only a subset of the constraint information on
each step, are unlikely to properly adjust B and C when
they adjust constraint 4, since the effects of constraint 4 on
nodes B and C appear in different rows of the Jacobian.
This means that iterative updates to the state vector will be
of poorer quality.

The Jacobian is a function of not just the constraint, but also
the state space representation. If we change the state space
representation, we can achieve a Jacobian that does cap-
ture the impact of moving two distant nodes on the nodes
between them.

We use the incremental global position state space, in
which the position of nodes is given relative to the previ-
ous node in the robot’s trajectory, i.e.:

x =




x0

y0

θ0

x1 − x0

y1 − y0

θ1 − θ0

...




(4)

The relative position of two nodes is now a function of all
the incremental positions between them, so each row of the
Jacobian now incorporates “springs” for all of the interme-
diate nodes. When J is premultiplied by the approximate
inverse of the information matrix (from Eqn. 3), the “stiff-
nesses” of the intermediate linkages is set according to the
strength of all the constraints which involve each node.

4. Results
With the incremental state space representation, the New-
tonized Stochastic Gradient Descent algorithm estimates
search directions d much more effectively, leading to rapid
convergence, as illustrated in Fig. 1. Gauss-Seidel con-
verges much more slowly.
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Figure 3. Convergence rates for Duckett’s Gauss-Seidel approach
and our method. Our method rapidly escapes local minima, con-
verging quickly to a low-error solution.

Results of our algorithm are shown in Fig. 1. When the
input graph is noisy, our method converges much more
quickly than Gauss-Seidel relaxation, as shown in Fig. 3.

5. Conclusion
We have presented an iterative method for rapidly optimiz-
ing pose graphs, even in the presence of substantial initial-
ization noise. This method shows promise in solving one of
the open problems in SLAM: optimizing pose graphs after
accumulating substantial error.
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