
Recognizing Places with Weak Evidence

Edwin Olson EOLSON@MIT.EDU

MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar Street, Cambridge MA, 02139 USA

1. Introduction
A central problem in robot navigation is recognizing when
a robot is somewhere that it has been before. Without “loop
closing”, the robot’s position uncertainty increases without
bound; consequently navigation, map-building, and other
common robot tasks become impossible.

In the presence of globally-unique features (RFID tags em-
bedded in the environment, for example), closing the loop
is trivial. More commonly, however, evidence of a loop
closure is weak. Planar laser scanners are a typical robotic
sensor, producing cross-sectional maps of environments
(see Fig. 1). Unfortunately, indoor environments tend to
be composed of similar-looking elements (corners, walls,
etc.), leading to many false matches.

Figure 1. Three laser scans from CSAIL-G7. Some environments
present rich alignment cues (left; an elevator lobby). Incorrect
matches arise from both spartan areas (middle; a corridor) and
from repetitive/cluttered areas (right; a cubical farm).

We present an algorithm that considers groups of several
dozen loop closure hypotheses and robustly rejects the in-
correct hypotheses. This paper’s central contribution is
showing how to map the loop-closing problem onto the
Single Cluster Graph Partitioning (SCGP) problem, which
has an efficient solution (Olson et al., 2005).

We present results using laser data, including a data set col-
lected at CSAIL and a standard mapping benchmark data
set. We have only explored laser data, but our approach
may be relevant to other sensing modalities as well.

2. Approach
The motion of a robot is well-represented by a graph whose
nodes represent positions where the environment was ob-

Figure 2. Place recognition. A robot determines that it is near a
previously-visited location and attempts to align laser scans from
nearby poses, generating a number of hypotheses (left). Any two
hypotheses form a loop whose cumulative rigid-body transforma-
tion should be the identity matrix (right); this allows us to test two
hypotheses for consistency.

served, and whose edges represent the physical motion be-
tween nodes (i.e., rigid-body transformations with covari-
ances); see Fig. 2a. As the robot moves around, it builds
an acyclic chain graph by connecting sensor observations
(nodes) with edges according to the robot’s dead-reckoning
sensors (e.g., wheel odometry).

Recognizing a place is equivalent to adding a new edge to
the graph; this makes the graph cyclic. Cycles make the
position of the nodes over-determined, which prevents po-
sition uncertainty from increasing without bound and al-
lows SLAM algorithms to produce good maps (Olson et al.,
2006).

Using a conservative model of the robot’s dead-reckoning
error, we can compute the set of nodes that might be within
sensor range of any other node. Our approach attempts to
align the laser scans of all such pairs of nodes, producing a
large set of graph edges– many of which are incorrect.

The essential idea of the approach is that we can compute
the consistency of any two hypotheses by considering the
loop that they form (in conjunction with portions of the
trajectory prior), as in Fig. 2b. The product of the rigid-
body transformations around any loop should be the iden-
tity transform. Consequently, we can compute a pairwise



consistency metric: the probability that the loop is the iden-
tity matrix assuming that both hypotheses are true.

True hypotheses tend to be mutually consistent. In contrast,
false hypotheses are not generally consistent, since the par-
ticular failure mode affecting one matching operation tends
to change from one hypothesis to another. Consequently,
we can look for correct hypotheses by searching for a sub-
set of hypotheses that are maximally consistent.

One reasonable metric for the mutual consistency of a set
of hypotheses is the average consistency, the sum of all the
pairwise consistencies of the subset divided by the number
of hypotheses in that set. Let A be a matrix such that Ai,j

is the pairwise consistency of hypotheses i and j, and let
u denote an indicator vector such that if ui = 1 then hy-
pothesis i is in the subset. Average consistency can then be
written:

c̄ =
uT Au

uT u
(1)

We have previously shown how to compute an indicator
vector u which approximately maximizes this expression
(Olson et al., 2005). Briefly, u is a discretization of the
dominant eigenvector of A.

3. Results
Once a set of true hypotheses has been identified, the hy-
potheses can be added to the graph and a SLAM algorithm
used to generate an improved map.

a. b.

Figure 3. Place recognition example. The same physical place is
visited several times; before (top) and after (bottom) automatic
loop closure.

We ran our algorithm on a data set collected from
CSAIL-G7 (Fig. 3 and 4), as well as the benchmark
SLAM data set collected at the Intel Research Center
(Fig. 5). The quality of the maps are obviously im-
proved. Animations of our algorithms are available at:
http://rvsn.csail.mit.edu/eolson/loopclosing.

4. Related Work
Loop-consistencies were used to validate hypotheses in
(Bosse, 2004), but without the batch outlier rejection pre-
sented here.

Figure 4. Map of CSAIL G7. Our algorithm enables high-quality
maps of environments without human assistance.

Figure 5. Intel research center. A standard robotics data set before
and after automatic loop closures.

Random Sample Consensus (RANSAC) could be em-
ployed in this domain. RANSAC repeatedly selects a hy-
pothesis and counts the number of other hypotheses that are
consistent with the model, using a user-tuned consistency
threshold. The hypothesis with the most votes “wins”. This
is equivalent to picking only one “true” hypothesis by pick-
ing the one with the greatest row-sum in matrix A.

In contrast, our approach returns a set of multiple “true”
hypotheses (each hypothesis with a relative confidence in-
dicator), and considers the entire network of pairwise con-
sistencies (rather than just one row at a time) in order to
produce a better answer. Despite these advantages, our ap-
proach has the same run-time complexity as RANSAC.
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