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Abstract— We present a system capable of simultaneously esti-
mating the position of an Autonomous Underwater Vehicle (AUV)
and the positions of stationary range-only beacons. Notably,
our system does not require beacon positions a priori, and our
system performs well even when range measurements are severely
degraded by noise and outliers. We present a powerful outlier
rejection method that can identify groups of range measurements
that are consistent with each other, and a method for initializing
beacon positions in an EKF. We have successfully applied our
algorithms to real-world data and have demonstrated a SLAM
system whose navigation performance is comparable to that of
systems that assume known beacon locations.

Index Terms— Outlier Rejection, Simultaneous Localization
and Mapping (SLAM), Extended Kalman Filter (EKF), Long
Baseline (LBL) Navigation, clustering, active exploration

I. INTRODUCTION

Stationary acoustic transponder beacons (also known as
Long Baseline, or LBL, beacons) are commonly used as
navigational aids in AUV systems (Fig. 1). The distance to
a beacon can be measured by sending an acoustic signal and
waiting for the beacon’s response. In typical experiments, the
locations of the beacons are carefully surveyed, allowing the
position of the AUV to be easily determined by trilateration.

In this paper, we consider an AUV navigating in a field
of beacons whose locations are initally unknown. There are a
number of important applications:
• Unsurveyed beacons: In some applications, it is imprac-

tical or impossible to survey beacons. For example, the
beacons could be deployed by other autonomous vehicles,
or dropped by an airplane.

• Beacon movement detection and recalibration: Most nav-
igation systems assume that each beacon remains at its
surveyed location. It is important to be able to detect
whether a beacon has become unanchored, and ideally,
determine the beacon’s new position.

We present a system that performs range-only Simultane-
ous Localization and Mapping (SLAM), i.e., depends only
on range measurements to features in the environment. The
chief contributions of this paper are an application of graph
partitioning to range-measurement outlier rejection and a
method for determining when to instantiate new features into
a navigation filter.

We demonstrate how these methods can be combined into a
complete navigational system based on the Extended Kalman
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Filter (EKF), and show navigational results from data collected
by an Odyssey III AUV during the GOATS’02 experiment off
the coast of Italy. In these experiments, four LBL beacons were
deployed. The beacons were carefully surveyed, providing a
reliable ground-truth.

Range-only measurements often lead to ambiguities that
can only be resolved by manuevering the AUV. Given two
candidate locations for a beacon, we show how to optimally
disambiguate the two possibilities by modifying the AUV
trajectory.

Fig. 1. Caribou AUV. Our experiments used an Odyssey-III class vehicle
equipped with DVL/LBL/GPS and INS. The primary payload of Caribou was
a synthetic aperture sonar (SAS), not pictured. While we did not use data
from the SAS, our algorithms were designed to cope with the interference it
caused.

II. PREVIOUS WORK

The problem of navigating with range-only data has not
been studied extensively, but several authors have approached
the problem. Newman and Leonard approached range-only
SLAM by casting the problem as a nonlinear optimization
over a search space including not just the beacon locations,
but also the AUV’s position at each point in time [1]. As
the authors acknowledge, the algorithm is prone to divergence
due to the search’s random initialization. Consequently, their
approach did not robustly deal with ambiguities, such as those
arising from baseline crossings.

Kantor [2] addresses the problem in a terrestrial setting,
briefly discussing the case of unknown beacon locations.
However, he assumes that the beacon locations are approx-
imately known, and does not discuss the case when no prior
is available.

Most systems incorporate some type of outlier rejection
strategy. When priors on beacon locations are available, ex-
tremely unlikely measurements can be discarded. Other meth-
ods include searching for intervals of data that are relatively
smooth and continuous (and thus presumably not caused by
noise), and using these intervals to help interpret noisier
intervals [1].
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Our outlier rejection method uses a form of spectral graph
partitioning. Shi’s Normalized Cuts [3] and Ding’s MinMax-
Cuts [4] are typical approaches. These approaches attempt to
find balanced clusters, but the problem of outlier rejection is
more akin to finding one cluster amidst noise. In this paper,
we make use of Single Cluster Graph Partitioning (SCGP), a
consistency-based clustering technique that is well-suited to
outlier rejection. We developed SCGP to support a number of
other clustering applications; the method is described in detail
elsewhere [5].

Our method for initializing feature locations is reminiscent
of Hough transforms. Hough transforms have previously been
used to classify sonar returns from point and line features by
Tardós [6]. Hough-style voting was also used by Wijk [7].

III. NOISE IN LBL DATA

Most navigation systems use a Kalman filter for state
estimation. Kalman filters produce optimal estimates when
measurement noise is Gaussian and stationary, but their per-
formance can be poor when the noise is more complex.

LBL data is corrupted by a number of non-Gaussian and
non-stationary noise processes (see Fig. 2). After removing
outliers, the inliers are often far more Gaussian in distribution,
allowing better performance from a Kalman filter.

Fig. 2. LBL Range Data. The range data for each beacon is corrupted by
large amounts of noise. Some outliers come in bursts (A) and have slowly
varying range measurements that mimic valid data.

One significant source of error is the variable speed of sound
in water. A measured range will exhibit error that is both a
function of the environment (since sound speed varies with
temperature and pressure along the acoustic path) and of the
true range itself (since small variations in sound speed have a
cumulative effect over the total acoustic path length).

Multipath is another significant source of non-Gaussian
noise. In typical LBL operation, the acoustical energy from
the transmitter travels in a straight line to the AUV. Multipath
occurs when the receiver is triggered by an indirect path rather
than the direct path. (For example, a pulse could travel from
the beacon, reflect off the ocean surface or floor, then travel to
the AUV.) Whether or not this happens is primarily a function
of environmental conditions. These conditions change slowly

(a)

(b)

Fig. 3. LBL Range Error. (a) Range measurements normalized by the true
range. (b) Absolute error. In both views of the data, a Gaussian noise model
fits poorly due to the large number of outliers.

since the AUV moves at a low speed. As a result, multipath
errors can affect several successive measurements. These in-
direct range measurements may have very little variance, and
their rate of change may correlate very well to the vehicle’s
estimated motion. Since multipath noise arises from an integer
number of reflections from a small number of surfaces, the
resulting noise is multimodal.

The AUV may also be operating in a noisy environment.
If multiple vehicles are present, one might receive an LBL
response caused by another vehicle’s request. Finally, the
AUV’s payload can also interfere; a high intensity acoustic
device like a Synthetic Aperture Sonar (SAS) can either mask
or falsely trigger an LBL response. Closer examination of Fig.
2 shows that there is little noise until about 300 seconds into
the mission, when the SAS was activated.

We characterized the noise of raw range measurements
by collecting range data for an entire mission (Fig. 3). We
modeled the error in two ways: as multiplicative noise and as
additive noise. The multiplicative noise model is applicable
to speed of sound errors, while the additive model better de-
scribes multipath and other noise sources. While the dominant
mode of the noise distributions can be readily approximated
by a Gaussian, there is considerable probability mass in the
tails which cannot.

IV. SPECTRAL GRAPH PARTITIONING FOR OUTLIER
REJECTION

Our approach for identifying outliers in range data is
to represent a set of measurements as a graph, and apply
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graph partitioning algorithms to identify sets of consistent
measurements. We associate each measurement with the vehi-
cle’s dead-reckoned position at the time of the measurement.
If we consider only the planar motion of the AUV, each
measurement can be drawn as a circle in the plane, centered
at the vehicle’s position with a radius equal to the measured
range. The beacon is constrained to lie on a circle with this
radius (see Fig. 4). In the general 3D case, the beacon lies
on a sphere, and our methods extend naturally to this case,
though we have implemented only the 2D case.

Fig. 4. Measurement consistency. Range measurements can be described
as circles in the plane centered at the vehicle’s position. For any given
measurement, the beacon must be located on the circle. Measurements are
consistent if the circles intersect (left). (The AUV’s heading is not used.)

Consider a set of range measurements Mi : 1 ≤ i ≤ N .
We say that two measurements are consistent if both can be
explained by a beacon at some particular location. In other
words, if the circles describing the measurements intersect
(within some tolerance), they are consistent.

We can form an undirected graph from pairwise consis-
tencies. Each measurement becomes a vertex in the graph;
consistent measurements are connected by an edge (Fig. 5).

The problem of outlier rejection can then be posed as a
graph partitioning problem: divide the graph into two sets of
vertices by cutting edges such that inliers are in one partition,
and outliers are in the other. Inliers will tend to be highly
consistent with each other, whereas outliers will have only
random consistency with other measurements.

A graph resulting from eight hypothetical measurements,
including three outliers, is shown in Fig. 5. Note that only the
connectivity of the graph is relevant; the position of the nodes
relative to each other has no meaning. In the example, nodes
1-5 are well-connected to each other. This means that they
are consistent with each other, and are therefore less likely
to be the result of noise. Nodes 6-8, while connected to the
other nodes, are less likely to be inliers. A good partition of
this graph would be cut A; it separates the highly connected
measurements from those that are poorly connected. Cut B
is poor since it would divide a large number of consistent
measurements. Cut C is poor since it would leave several
unlikely measurements (6 and 8) classified as inliers.

We construct an N × N adjacency matrix A by setting
Aij = 1 iff Mi and Mj are consistent.

Aij =





1 i 6= j, Mi and Mj are consistent
k i = j, with arbitrary constant k
0 otherwise

(1)

Fig. 5. Simplified Partitioning Problem. Each measurement is a node in
the graph, and edges connect consistent measurements. The outlier rejection
problem is to find a graph partition that separates well-connected vertices
(inliers) from poorly-connected vertices (outliers).

The diagonal elements of A can be set to any constant k
without changing the solution.

Our consistency metric for two measurements leads to a
symmetric adjacency matrix A. For our notional problem, it
is:

A =




0 1 0 1 1 0 0 0
1 0 1 1 0 1 0 0
0 1 0 1 1 0 0 0
1 1 1 0 1 0 0 0
1 0 1 1 0 0 0 1
0 1 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0




(2)

Let u be an N×1 indicator vector with each element either
0 or 1; if ui = 1 then measurement Mi is an inlier. In single-
cluster graph partitioning [5], the quality of the cut is given
by the scalar-valued function:

r(u) =
uT Au

uT u
. (3)

The product uT Au is twice the number of edges within
the inlier cluster. The denominator, uT u, is simply the total
number of vertices classified as inliers. Thus the metric r(u)
computes the average connectivity of the inliers; it will be
large for sets of highly consistent measurements, and small for
sets of inconsistent measurements. For our notional problem,
we can compute the metric r(u) for each cut in Fig. 5.

Cut A Cut B Cut C
1.6 0.5 1.4

Cut A, the intuitively correct cut, has the highest score. Cut
B, which breaks a great deal of connectivity, has a very low
score. Cut C, while not optimal, scores relatively high because
it preserves almost all of the connectivity. Cut C does more
poorly than A, however, because it includes nodes 6 and 8 as
inliers, which have lower connectivity than nodes 1-5. This
reduces the average connectivity.

Average inlier connectivity is a good metric for outlier
rejection. Consider an incremental argument: given a set of
inliers u, measurement Mi should be added if it is at least as
well connected to the inliers as the inliers are connected to
themselves. If this is true, adding Mi to u will increase r(u).
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The challenge is to find an indicator vector u that maximizes
r(u). This is a hard problem for discrete-valued u. However,
if we allow the indicator value to be continuous-valued, we
can readily compute the solution.

Consider the gradient of r(u), remembering that A is
symmetric:

∇r(u) =
AuuT u− uT Auu

(uT u)2
=

Au− ru

uT u
(4)

Setting the gradient to zero yields the extrema of r(u):

Au = ru. (5)

This is an eigenvector problem: the product Au must be in
the same direction as u, scaled by a factor r. We know all of
the solutions to equation 5; they are the eigenvalues/vectors
of matrix A.

Our goal is to maximize r, so we pick r to be the largest
eigenvalue and u to be the corresponding eigenvector. For
the problem in Fig. 5, the eigenvector u is plotted in Fig.
6. The indicator values for the inlier measurements (1-5) are
significantly larger than those for the outliers (6-8).

The metric r(u) is also the Rayleigh quotient of matrix A,
whose extrema values have previously been known [8].

Smaller eigenvalues of A correspond to alternative cuts with
lower scores. Since A is symmetric, the cuts are orthogonal:
they provide radically different interpretations of the data. If
the first and second eigenvalue are similar in magnitude, it
means that two orthogonal cuts are of similar quality. If the
data is composed of a single set of interconnected inliers plus
random outliers, this should not occur since two orthogonal
cuts cannot similarly separate the inliers from outliers. Using
this fact, we can perform a sanity check on our data; if the
first and second eigenvalue are similar in magnitude, the data
must be considered suspect.

Fig. 6. First eigenvector of A, u ∈ <8. The continuous indicator vector
is the first eigenvector of A. Large values indicate that the corresponding
measurement is an inlier; small values indicate outliers.

At this point, we have the optimal u that maximizes
r(u). The vector u, however, is continuous-valued, while the
inlier/outlier classification problem is discrete-valued.

Consider the discrete-valued indicator vector v(t), which is
the vector u thresholded by the scalar t:

vi(t) =
{

1 if ui ≥ t
0 otherwise (6)

We wish to find the optimal threshold, topt:

topt =
max
t ∈ u

v(t)T u

v(t)T v(t)
. (7)

Maximizing the dot product of v(t) and u yields the vector
v(t) that is closest to the direction of u. This maximization
problem can be solved in a O(N log N) time by evaluating
v(t) with t equal to each element of u. If the elements of u
are sorted, each trial adds only one element to the inlier set,
allowing v(t) to be updated in O(1) time; the cost of sorting
the elements dominates.

The algorithm presented here does not guarantee that the
final indicator vector v(topt) is globally optimal. This algo-
rithm computes the optimal continuous indicator vector, and
then computes the optimal discretization of that vector. It
is possible that some other discrete vector, which does not
correspond to any thresholding t of u, is actually optimal.
This is more likely to occur when the inlier elements of u have
widely varying values; this corresponds to the direction of u
having varying magnitudes in each dimension. In this case,
v(t) will not be able to approximate u very well since each
component of v(t) must be either zero or one. In practice,
however, not only do the inlier elements of u have similar
magnitude (they typically intersect roughly the same number
of other measurements), but the discrete vector v(t) performs
well.

Outlier rejection performance can be improved by incorpo-
rating a priori knowledge of the noise characteristics into the
threshold. The continuous vector u provides a score for each
measurement; if the number of inliers is known a priori, we
can simply select the measurements with the largest scores.
If the number of inliers was smaller than expected, then
this procedure will permit outliers in the output. A more
conservative approach is to use the discretized set determined
by topt if it is smaller.

A typical result on 25 real range measurements is shown in
Fig. 7. Several extreme outliers are outside of the plot area.
In this case, over 25% of the measurements are outliers, and
every measurement is correctly classified. Some of the outliers
are consistent with inliers; however their connectivity is so
low in the graph that they are assigned small indicator values.
Also note that the algorithm works for the case of unconnected
graphs.

As mentioned above, measurements are also considered
consistent if they intersect within some tolerance. The toler-
ance is an important consideration for good outlier rejection.
Given no noise and accurate vehicle positions, inliers always
intersect. Now consider two measurements made in quick
succession, with noise. If noise makes the first measurement
range a bit too large and the second measurement a bit too
small, it is possible that the circles will not intersect. The
algorithm works best if inliers have as much connectivity to
other inliers as possible; adding a small intersection tolerance
helps improve their connectivity. Outliers are typically so
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different from inliers that this tolerance rarely changes the
graph’s connectivity.

Fig. 7. Outlier Rejection Result. Twenty-five measurements are plotted,
showing both inliers and outliers. Measurements that were consistent with
many other measurements were classified as inliers.

Fig. 8. Data from Fig. 2 After Outlier Rejection. The filtered data is dra-
matically cleaner than the input data, and no beacon location information was
required. The raw measurements were filtered in blocks of ten measurements
(about 30 seconds) each.

An important benefit of our outlier rejection algorithm
is its ability to incorporate information about the vehicle’s
motion. For example, if the measured range to a beacon
increased slowly over time, with very little apparent noise,
most algorithms would classify those measurements as inliers.
However, those measurements could be spurious; if the vehicle
was stationary, for example, then the range should be constant.
Our algorithm can reject this sort of noise, since it incorporates
knowledge of the vehicle’s trajectory.

A. Computation in Blocks

The heart of the outlier rejection algorithm is the adjacency
matrix A. When testing two measurements for consistency,
we determine whether two circles (centered at the vehicle’s
estimated locations) intersect. However, if the measurements
in A span a large time interval, accumulation of navigational
errors can cause measurements to appear consistent when they
are not and vice versa.

The maximum acceptable time interval is dependent on
the quality of navigation information available. With Doppler
velocity logs (DVL) and a fluxgate compass, time windows of
up to 10 minutes are practical. We have gotten good results
using both DVL/compass and compass alone (using thrust
control to estimate forward speed).

Of course, if high-precision inertial devices are used, or if
the vehicle can use GPS, accumulation of navigation error is
not a significant issue.

Processing the data from Fig. 2 in blocks of ten measure-
ments produces the improved data in Fig. 8.

B. Comparison to other spectral partitioning methods

A number of similarly motivated partitioning methods exist
([3], [4]). These algorithms also compute a graph partition
through essentially the same mechanism described here. How-
ever, they are fundamentally different in their formulation: they
are designed to cluster data that contains two different sets
of consistent data. This is a different problem than finding a
single set of consistent data amidst noisy outliers. This fact
accounts for the different objective function r(u) used in this
paper.

C. Computational Optimization

Ultimately, our method must compute the dominant eigen-
vector of a potentially large matrix. From an implementation
standpoint, several optimizations can be employed to reduce
the computational burden.

As already discussed, outlier rejection should be done on
modestly-sized sets of measurements. Since the size of matrix
A is determined by the number of measurements, controlling
the block size has a direct impact on computational require-
ments.

A fortuitous advantage of the average inlier connectivity
metric is that the solution is the largest eigenvalue. The largest
eigenvalue can be found in a fast iterative manner via the
Power Method [8]. For any vector x not perpendicular to
the largest eigenvector u, the direction of Anx approaches
u as n → ∞. In practice, x converges to a sufficiently good
approximation of u in a few iterations.

Other spectral partitioning algorithms have eigenvalue so-
lutions as well, but their solution is found in different eigen-
values that are more costly to compute.

Considering the low rate at which an AUV receives LBL
data (each beacon is queried roughly every five seconds), an
AUV is typically starved for data and has CPU time to spare.
Even though spectral outlier rejection is more expensive than
other methods like gating, it makes sense to trade CPU time
for higher-quality outlier rejection and thus higher quality
navigation.

D. Extension to Multiple Vehicles

It is possible to extend the spectral outlier rejection to
multiple vehicles. In fact, the algorithm makes no assumptions
about how many vehicles are operating; it assumes only that
approximate vehicle positions are available for each range
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(a)

(b)

(c)

Fig. 9. Beacon Localization Using Voting. Using the inliers computed by our spectral outlier rejection algorithm, we compute possible beacon locations by
finding the pairwise intersections of a set of measurements. Each of these intersections is a vote in a two-dimensional accumulator. The figure shows the votes
in Euclidean space (left) and the vote density (right) at three different times during the vehicle’s mission. The two most prominent peaks are extracted from
the accumulator and are used to label the vote plot. In (a) and (b), the vehicle trajectory was essentially straight, leading to an even distribution of votes. In
(c), the vehicle trajectory was no longer straight, leading to a dominant peak in the accumulator. This allowed the beacon to be initialized in the navigation
filter.
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measurement. A consistency matrix A can be computed re-
gardless of how many vehicles were involved in data acquisi-
tion. The algorithm is entirely unchanged; it identifies a single
set of inliers.

In order for multiple vehicles to make use of share data, they
must have estimates of their positions in a common coordinate
frame. If they know their starting positions, then they can share
data immediately. Otherwise, the vehicles must independently
localize at least two beacons in order to define a new common
coordinate system. Once this is achieved, they can collaborate
on localizing beacons.

It is not necessary to do outlier rejection on vehicles before
trying to fuse the data. Groups of vehicles in very noisy
environments might not be able to individually discern inliers
from outliers, but taken collectively, their data might be usable.
We hope to experimentally verify the performance of the
algorithm on multiple vehicles.

An interesting scenario with multiple vehicles involves a
command/control vehicle that autonomously deploys a beacon
field. All of the vehicles use range measurements to establish
a common coordinate system without the use of GPS or a
priori beacon locations. Sensing platforms can identify targets
of interest and relay the information to other vehicles. Since
no surveying of the operational area is required, the vehicles
could conceivably be deployed without any human support.

V. ESTIMATING LBL BEACON LOCATIONS

Once beacon range measurements have been filtered, leav-
ing only reasonably reliable data, the actual locations of the
beacons must be determined. Three perfect measurements
(made from non-collinear positions) uniquely determine a bea-
con location. However, the measurements are contaminated by
noise, and three range measurements rarely intersect exactly.

Our approach, once again, is to consider pairs of measure-
ments. A pair of measurements is not sufficient to constrain a
beacon’s location to a point; two circles have two point inter-
sections and thus two possible solutions. However, provided
the vehicle is not traveling in a straight line, some solutions
will occur more often than others.

We use a voting scheme implemented with a two-
dimensional accumulator similar to that used in a Hough
transform [9]. The physical world is discretized into a two-
dimensional grid, with each grid cell corresponding to a
rectangular area in the world. Each consistent measurement
pair “votes” for its two solutions. Ideally, solutions that are
near each other should end up in the same cell, even in the
presence of noise. This can be accomplished by choosing a
grid size that matches the total uncertainty, range plus dead-
reckoning uncertainty. Once all votes have been added to the
accumulator, we can search the accumulator for the cell with
the greatest number of votes.

If a beacon happens to lie near a cell boundary, it is possible
that the votes for solutions around it will fall into different
cells. In the worst case, the votes for similar solutions could
be evenly split into four different cells, making it likely that
none of the cells would be noticed when the accumulator is
searched.

Fortunately, there is a simple solution: when voting, vote
for a cell and all of its neighbors. At the expense of smearing
the peak, this approach eliminates the risk of a peak being
hidden due to the discretization of grid boundaries.

Our implementation finds the two largest peaks in the
accumulator. After finding the first peak, all votes for that cell
are removed from the accumulator so that the second peak can
be found without influence from the first.

The number of votes for each peak serves as a confidence
metric. If the ratio of votes between the first and second peak
exceeds a threshold, then the first peak is declared to be the
(approximate) beacon location. If the vote ratio is less than
the threshold, then both peaks are still plausible solutions;
no decision will be made until more range measurements are
available. This process is illustrated in Fig. 9. Empirically,
we found a vote ratio of about two to be sufficiently high to
virtually guarantee that the correct peak is selected. Higher ra-
tios increase confidence, of course, but they can unnecessarily
delay making a decision.

Finding a solution as early as possible is highly advanta-
geous for two reasons. First, it becomes difficult to reliably
estimate measurement intersections for long time windows
due to accumulating dead-reckoning error. The ability to
make decisions based on smaller sets of data mitigates this
problem. Second, until the AUV localizes a few beacons, it
must rely on dead-reckoning for navigation. During this time,
the global translational/rotational misalignment between the
vehicle’s coordinate frame and the global frame will increase.

In very large environments the memory requirements of
a simple accumulator can be an impediment, especially if
beacon positions in 3D must be determined. Examination
of Fig. 9 shows that the accumulator is sparsely populated.
Consequently, an H-tree (or octree in 3D) would greatly reduce
the memory requirements.

VI. SLAM WITHOUT PRIOR BEACON LOCATIONS

Once beacons have been approximately located, a conven-
tional Extended Kalman Filter (EKF) can be used to jointly
refine both vehicle position and beacon locations as additional
measurements arrive. We have implemented our entire system
on data gathered during the GOATS’02 experiment.

As opposed to systems in which beacon locations are known
a priori, the beacon locations become part of the filter state
and the covariance matrix is appropriately enlarged. A simple
state vector incorporating one beacon location is shown below,
where the AUV is located at (rx, ry), the beacon at (bx, by)
and the AUV’s orientation is rt.

xn =




rx

ry

rt

bx

by




(8)

When we receive a new range measurement zn to the
beacon, we perform a Kalman update step. The first stage
is to estimate the range to the beacon from our current state.

ẑn =
[
(rx − bx)2 + (ry − by)2

] 1
2 (9)
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The EKF also requires the Jacobian J of zn (the partial
derivatives of zn with respect to each state variable). After
some algebra, we see that:

Hn = J (zn) =




(rx − bx)/ẑn

(ry − by)/ẑn

0
−(rx − bx)/ẑn

−(ry − by)/ẑn




. (10)

Given a model of the measurement noise variance R, the
Kalman gain Kn can be computed:

Kn = PnHT
n (HnPnHT

n + R)−1. (11)

The usual EKF time update steps are used unchanged. With
x the state vector and P the covariance:

xn+1 = xn + Kn(zn − ẑn) (12)

Pn+1 = (I −KnHn)Pn (13)

Unlike many navigation filters, we require the ability to
dynamically increase the amount of state. When a new beacon
is localized, the state vector x and covariance matrix P must
be extended to incorporate information about the beacon. The
initial estimate for the beacon’s location is the output of the
ROBL beacon localization algorithm (see Section V).

It might be tempting, if the number of beacons is known
in advance, to “preallocate” room in the state and covariance
matrix for them. When a beacon is first localized, the state
could be initialized with a synthetic observation. This is a
recipe for disaster. A Kalman update step must not be used
to initialize a new feature since the Kalman update equations
perform a linearization around the current state. In the case of
a preallocated state, the “current state” is meaningless, and a
linearization around it is unlikely to produce good results.

Consider the moment when a new beacon is first initialized.
The error in the beacon estimate is strongly correlated with
the error in the AUV’s state since the AUV’s state was used
to estimate the beacon’s position. Thus, the covariance for the
beacon is initialized to be equal to that of the AUV. If an
additional uncertainty N from the beacon localization phase
is available (for example, the covariance of the points in the
grid cell), it can be added to the covariance matrix as well.
The result of initializing a new beacon b2 is

xn =




rx

ry

rt

b1x

b1y



−→ xn+1 =




rx

ry

rt

b1x

b1y

b2x

b2y




(14)

Pn =
(

C(r, r) C(r, b1)
C(b1, r) C(b1, b1)

)
−→

Pn+1 =




C(r, r) C(r, b1) C(r, r)
C(b1, r) C(b1, b1) C(b1, r)
C(r, r) C(r, b1) C(r, r) + N




(15)

Fig. 10. Dead-Reckoned Path. The dead-reckoned path that we used to
bootstrap our SLAM filter was relatively poor. It was constructed from DVL
and an uncalibrated fluxgate compass. The baseline path was computed by a
causal EKF filter using known beacon locations.

We have applied our algorithm to a dataset collected on an
Odyssey III class vehicle during the GOATS’02 experiment.
We used DVL/INS data for our dead-reckoned trajectory. The
compass was poorly calibrated, resulting in a poor dead-
reckoned path (see Fig. 10).

The path begins with a very long, almost straight segment.
For beacons lying off the line of travel, this is a particularly
difficult situation, since two solutions are always possible (one
on either side of the vehicle). Due to this difficulty, it takes
four minutes to localize the first beacon. All four beacons are
localized eleven minutes into the mission.

Once several beacons are localized, the entire trajectory of
the AUV, including the initial portion during which only dead-
reckoning was possible, can be recomputed. The coordinate
frame of the AUV will differ from the global coordinate frame
by a rigid-body transformation, i.e., a simple translation and
rotation. If the vehicle’s initial position in the global frame is
known, the magnitude of this translation and rotation is de-
termined by the amount of dead-reckoning error accumulated
prior to the localization of the beacons.

The results of the experiment are shown in Fig. 11. The
global translation/rotation offset (which amounted to 17 meters
and a few degrees of heading error) have been manually
removed to allow the estimated path to be easily compared
to the baseline path. The baseline path was generated by a
causal EKF filter that used the surveyed beacon locations.

After global alignment, the beacon localization error was
extremely low. One of the estimated beacon locations was used
to determine the global translation error. The errors for the
remaining beacons were:

Beacon 1 Beacon 2 Beacon 3
2.89 m 2.52 m 1.85 m

Since the global translational/rotational offset was estimated
using ground-truth beacon positions, the beacon localization
error is somewhat underestimated. However, due to the close
agreement of the two vehicle tracks, the degree of over-fitting
is arguably small.

Animations of both the beacon localization process
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Fig. 11. SLAM filter results. Our SLAM filter’s performance (labeled ROBL
EKF) favorably compares to the performance of a baseline filter that uses prior
beacon location information. A modest global translation/rotation error was
manually corrected to allow a better comparison between the two computed
trajectories. The error at the beginning of the path corresponds to dead-
reckoning error accumulated before any beacons were localized.

and operation of the ROBL EKF filter are available at
http://rvsn.csail.mit.edu/robl.

VII. OPTIMAL EXPLORATION

The number of measurements needed to localize a beacon
is strongly dependent on the path of the AUV. Moving in a
straight line does not provide sufficient information to localize
a beacon: two possible solutions, one on each side of the
vehicle, result. The vehicle must turn and travel in another
direction to disambiguate the two solutions. In this section, we
derive the AUV paths that, at any instant in time, optimally
disambiguate the two possible solutions.

Suppose that an AUV makes a few observations of a new
beacon while travelling in a roughly straight line, and that it
has two possible solutions for the beacon’s location, points A
and B.

If the AUV were to continue travelling in the same direction
(i.e., without turning), future range observations would be
equally consistent with both point A and B, since both A
and B will continue to be equally far away from the AUV.
Instead, the AUV should move so that point A and point B are
different distances from the AUV. To maximize the amount of
knowledge about which point is more likely, the AUV should
move so as to maximize the absolute difference in range to
points A and B.

Given points A, B, and the AUV’s position R, the magni-
tude of the difference in range between R and A and R and
B is given by:

r =
∣∣∣
[
(Ax −Rx)2 + (Ay −Ry)2

] 1
2 − (16)

[
(Bx −Rx)2 + (By −Ry)2

] 1
2

∣∣∣
The gradient ∇(r) is the direction of greatest increase.
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Fig. 12. Exploration Gradient. If a beacon’s location is believed to be
either (-1,0) or (1,0), then the best disambiguating motion is a function
of the AUV’s position. The vehicle maximizes the difference between the
range measurements by traveling along the arrows. The length of the arrows
indicates how rapidly the difference in range changes.

∇(r) = α

(
Bx −Rx

|B −R| −
Ax −Rx

|A−R|
)

x̂ + (17)

α

(
By −Ry

|B −R| −
Ay −Ry

|A−R|
)

ŷ

α = 2 sign(|A−R| − |B −R|)
An example gradient field with A = (−1, 0) and B = (1, 0)

is plotted in Fig. 12. The arrows indicate the direction in which
the vehicle should travel to maximize r. The length of the
arrows indicate how rapidly r changes as the AUV moves.

Choosing an exploration strategy becomes particularly in-
teresting when several beacons are simultaneously localized.
Combining the gradient fields for each beacon would allow
better path planning.

Better performance can be expected by employing an active
exploration algorithm. Fewer measurements will be needed to
find a solution, which means that lower-quality dead reckoning
can be used. In addition, locating beacons earlier would reduce
the magnitude of the global translation/rotation error resulting
from navigating without fixed reference points.

VIII. CONCLUSION

We have described a system capable of performing local-
ization without relying on surveyed beacon locations. Filtering
noise in LBL data can be a major challenge, prompting our
development of a outlier rejection algorithm based on spectral
graph partitioning.

We showed how to compute likely beacon locations. An
important feature of our method is its ability to discern whether
more than one location is likely.

Using our outlier rejection and feature initialization al-
gorithms, we implemented a SLAM filter and demonstrated
it on data collected during the GOATS’02 experiment. The
estimated vehicle path is close to the baseline path, which
was computed using known beacon locations. In addition, we
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localized all four beacons to within a few meters of their
surveyed positions.

The ability to localize a beacon is tightly coupled to the
path traveled by the AUV. We showed how the AUV’s path
should be chosen to optimally resolve ambiguous data.

In the future, we plan to deploy our exploration ideas on a
real vehicle. We are also interested in replacing the Extended
Kalman Filter (EKF) with an Unscented Kalman filter [10] or
particle filter which should be less vulnerable to the effects of
linearization.
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