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Abstract— Place recognition is a fundamental but challenging
perceptual problem. One common application is robot mapping:
recognizing places allows the trajectory of a robot to be over-
constrained, allowing better maps to be produced. Similar looking
(but physically distinct) environments can result in false positives,
a problem exacerbated by the large positional uncertainties that
can accumulate from dead-reckoning. A classic approach is based
on associating observations with specific landmarks, i.e., explicit
global data association. Good results, however, typically require
jointly assigning several observations, leading to computationally
expensive algorithms.

In this paper, we describe an alternative approach that is based
on local matching. These local matches are derived from a set of
easily computed pose-to-pose matches. Outliers and ambiguous
cases are rejected using SCGP, a spectral clustering algorithm.
We argue that when the spatial extent of a locally unambiguous
match is large in comparison to the robot’s positional uncertainty,
the match becomes a reliable place recognition. We illustrate our
method on a real dataset with significant perceptual ambiguity,
evaluating the robustness of the method using ground-truth data.

I. INTRODUCTION

Place recognition is a key problem for many mobile robot
applications. It plays a central role in map building: each place
recognition gives information about the robot’s trajectory,
allowing optimization algorithms to compute better maps.

Many map building systems recognize places by recog-
nizing landmarks. As the robot makes new observations of
landmarks, the robot must associate the observation data with a
particular landmark. This is known as data association. When
landmarks are highly-distinctive (such as wireless networking
base stations that broadcast a globally unique id [?]), data
association is straight-forward. More commonly, however,
observations of different landmarks can be similar. To a laser
scanner, for example, all the corners in a room look about the
same.

Unfortunately, data association errors can be catastrophic:
even a single error can create a “wormhole”, leading to a poor
map. The reliability of data association is commonly increased
by jointly considering an ensemble of observations: a “con-
stellation” of observations is significantly less ambiguous than
a single observation in isolation. While reliability increases
with the size of the constellation, so does the computational
cost. Given N observations, each of which could be any of
M different landmarks, there are MN possible joint data
associations to consider. Even with efficient search methods

Fig. 1. Posterior Map. Once loop closures have been obtained using our
method, a posterior map can be easily computed. Top: an overhead view
of the graph. Bottom: the trajectory is plotted with height corresponding to
time. Each red line represents a loop closure; the high density of loop closures
significantly over-constrains the robot trajectory, allowing a good posterior to
be computed.

like JCBB [?], the cost quickly becomes prohibitive. Further,
these approaches generally require a full covariance matrix to
be maintained so that the probability of joint assignments can
be computed. In large maps, this can be expensive both in
terms of memory and computational requirements.

In this paper, we describe an alternative way of recognizing
places that avoids performing explicit global data association
and thus avoids the challenges associated with it. Our method



finds parts of the environment that locally resemble each other.
These local matches are inexpensive to compute in comparison
to global data association. Pose-to-pose matches are a special
case of local matches; in this paper, we will build spatially-
extended local matches by combining sets of pose-to-pose
matches.

Local matching methods are susceptible to false positives
due to the fact that different places can have similar appear-
ances. The main contribution of this paper is a principled
means of determining whether a local match is globally cor-
rect. Our approach incorporates outlier and ambiguity testing
based on Single Cluster Graph Partitioning (SCGP) [?]. Like
CCDA [?], SCGP uses a pair-wise consistency graph, but is
algorithmically more similar to other spectral methods [?], [?].

Our approach does not explicitly associate observations to
globally-known features. Instead, the local matches encode
correspondences from which the global identity of features
can be determined. Consequently, in the context of data asso-
ciation, our method is best described as an implicit method.
In general, however, the data associations are not of direct
interest: it is the posterior map that is desired.

We are not the first to attempt to circumvent the difficult
data-association problem. Cummins and Newman describe a
scheme that is based solely on local sensor data [?] as do
Ho and Newman [?]. In the absence of some knowledge of
position, however, it is difficult to determine what constitutes
absolute evidence of being in a particular place. In this paper,
we argue that the amount of evidence required to reliably
determine that two places are identical should scale with the
robot’s positional uncertainty.

Our approach is similar in several ways to that of Gutmann
and Konolige [?], in that we attempt to find local matches
within a search are provided by a prior and combine multi-
ple sensor scans to yield larger (and less ambiguous) local
matches. Rather than correlating matches over relatively large
submaps, we show how ambiguity can be detected from an
ensemble of smaller pose-to-pose matches. We also address
the issue of how large a local match must be in order for a
loop closure to be reliable.

We demonstrate our place recognition method on the DLR
“circles” dataset [?]. In this dataset, sensor observations consist
solely of sparse (and indistinguishable) point features (see
Fig. 2). The limited sensing scheme makes false matches
very common: it is easy to find two or three circles that
seem to “line up”. Even in the presence of this extreme
environmental ambiguity, our method is able to reject incorrect
local matches. The dataset also provides ground-truth data
associations, making it possible to quantitatively evaluate the
reliability of our local matching system.

This paper begins with a high-level overview of our ap-
proach (Section II). Next, we describe our pose-to-pose match-
ing algorithm, which uses a RANSAC variant incorporating
negative information (Section III). These pose-to-pose matches
are grouped into local matches, allowing the rejection of
outliers and the detection of multiple ambiguous solutions
(Section IV). We subject these local matches to a geometrical

Fig. 2. DLR “circles” example data. White circles were manually distributed
in an office environment (top). These circles were automatically extracted
using computer vision methods (bottom). The resulting dataset was annotated
with the ground-truth identity of each detected circle [?]. Note that ground-
truth positions were not available.

test that ensures that the matches are large enough to resolve
the positional uncertainty of the robot (Section V). Finally,
Section VI presents results of our method applied to the DLR
circles dataset.

II. METHOD OVERVIEW

Suppose that a robot has constructed two local maps of its
environment (A and B) at different points along its trajectory,
and suppose that these two maps are locally consistent (i.e.,
they match). We wish to determine whether A and B represent
the same location, or whether they are two physically distinct
(but similar-looking) places.

We begin by assuming that we have some prior knowledge
of the relative position of the two environments, as would be
provided by a simultaneous mapping and localization (SLAM)
algorithm. This allows us to compute a bounding ellipse
relative to area B in which area A must be found. Naturally,
if B is not contained within this ellipse, B cannot be the same
location as A.

The more interesting case is when local map B is within the
ellipse that contains local map A. The main idea of this paper
is that a local match is globally consistent if two conditions
are satisfied. The first condition requires that the local match
cover a spatial area that is comparable in size to the uncertainty
ellipse. If the uncertainty ellipse is large enough to contain
two or more identical-looking regions that might match area
A, then we cannot be sure that area A is the same as area B.
Conversely, if the uncertainty ellipse is only large enough to
hold one “copy” of the locally matched region, then A and B
must be the same location, since two distinct regions of that
size could not both exist within the uncertainty ellipse.



In order for the above argument to hold, a second (more
subtle) condition must be satisfied. Suppose, for example, that
the area being matched is self-similar: it is then possible for
multiple overlapping matches to exist within the uncertainty
ellipse. A simple example would be an environment containing
a picket fence: many overlapping local matches are possible
due to the repeated fence posts, and each of these local
matches can be large. In other words, the local match must be
locally unambiguous: within the area of the local match, there
must not be other conflicting matches of similar size.

III. POSE-TO-POSE MATCHING

When a new set of observations arrive, we begin by iden-
tifying all the previous poses that might have overlapping
sensor data. Rather than maintain a covariance matrix over all
poses, we use a Dijkstra projection [?], [?] which computes
the minimum uncertainty path from the robot’s current position
to all earlier nodes. These projections, along with conservative
upper bounds on their uncertainty, can be rapidly computed.
Since a covariance matrix is not needed by our method,
applications are free to use highly-efficient non-linear SLAM
methods [?], [?] that do not estimate it.

For each earlier node that could plausibly have overlapping
sensor data (using a Mahalanobis distance threshold of 3 and
a nominal sensor range of 4m), we attempt to compute a local
match. Let us denote the two robot poses being matched as a
and b.

The pose-to-pose is generated via RANSAC: two points
are randomly selected from both a and b, and using Horn’s
algorithm [?], a rigid-body transformation is computed that
optimally aligns those points. For each point in a, we compute
the distance to the closest point in b, and vice versa. Let the
minimum distance for point ai be dist(ai). We also incorpo-
rated a negative information penalty P , described below. The
probabilistically motivated consensus score S is then:

S =
∑

i∈a

e−βdist(ai)
2
+

∑

j∈b

e−βdist(bj)
2 − P (1)

The parameter β was set to 10.0 in our experiments. We
also reject any rigid-body transformations that are more than
three Mahalanobis distances away from the Dijkstra-projection
prior. The rigid-body transformation achieving the highest
consensus score S becomes a pose-to-pose match hypothesis,
and is subject to further filtering as subsequent sections will
describe. We call them hypotheses in order to emphasize the
fact that they may be incorrect.

When there is environmental ambiguity (like a picket fence),
the pose-to-pose matching will generate many different and
incompatible solutions. This is due to the fact that each pose-
to-pose match is independently computed by a greedy local
optimization. The ambiguity of the environment is implicitly
encoded in the dissonances of the pose-to-pose matches, and
is detected in Section IV.

A. Negative Information
The data in the circles dataset is highly ambiguous: indi-

vidual features are indistinguishable and it is often possible

to find erroneous rigid-body transformation that align two or
more points reasonably well. However, it is rare to fail to
detect a feature if one is present. Consequently, we estimate
which landmarks should be visible and penalize alignments
that result in missing features.

To do this, we must first estimate the size and shape of the
overlapping views from the two poses. Of course, we would
need to know the relative positions of the two poses in order
to compute this exactly, and this is information is unknown.

The RANSAC method computes scores assuming that two
pairs of features match. In other words, if a given RANSAC
iteration is correct, the sensor range overlap must include at
least the points upon which the alignment is conditioned. Thus,
we model the overlapping sensor range as the smallest circle
that includes both points. Each unmatched observations within
these circles incurs a penalty of 1.0 (equivalent to the score
resulting from a single good match.) In our experiments, the
use of negative information significantly improved hypothesis
generation.

IV. LOCAL MATCHING

Pose-to-pose match hypotheses are grouped together to
form hypothesis sets such that each set contains topologically
similar hypotheses, as described in [?]. In short, the hypotheses
in a single set relate two small pieces of the trajectory—
i.e., a single loop closure. From this hypothesis set, we will
construct a single local match. By combining multiple pose-to-
pose matches into a single local match, we increase the spatial
extent of the match: this is necessary in order to resolve large
positional uncertainties.

Fig. 4. Pair-wise hypothesis test. A loop of rigid-body constraints can be
formed given two hypotheses and two short segments from dead-reckoning.
If the hypotheses are consistent, the composition of the four rigid-body
transformations should be close to the identity transform.

For each pair of hypotheses, we can construct a loop of
rigid-body constraints (see Fig. 3). This loop incorporates two
additional rigid-body constraints derived from dead-reckoning.
Since the constraints form a loop, the composition of their
rigid-body transforms should be the identity matrix. Each
rigid-body transformation is associated with a covariance
matrix, allowing us to compute the probability that the loop
is the identity matrix: high probabilities indicate pair-wise
consistency of the two hypotheses.

We construct a consistency matrix A by computing the pair-
wise consistency of each pair of hypotheses. Using SCGP [?],
we can compute subsets of the hypotheses that are mutually
self-consistent. Each of these subsets represents a local match.



Fig. 3. Pose-to-Pose matching. We use RANSAC to find a pair of points from each pose (labeled a and b) that best align the ensemble of points. The two
large circles indicate the estimated sensor range. The ellipse indicates the positional uncertainty of the two poses. Points which are successfully matched are
labeled with a plus sign; those that have no counterpart incur a penalty, and are labeled with a negative sign.

SCGP produces a confidence metric for each subset. En-
vironmental ambiguity can be detected when the best local
match has a similar confidence measure as the next best
match. In the case of a picket fence, for example, multiple
local matches with similar confidence will be detected. In our
experiments, we require that the confidence of the best match
be twice that of the next best match: this ensures that the local
match is locally unambiguous.

In our approach, we do not attempt to fuse the various pose-
to-pose matches comprising a local match into a single rigid-
body constraint. Instead, the local match is represented by
the entire set of pose-to-pose matches. If a local match is
ultimately accepted by our algorithm, all of its pose-to-pose
matches are individually incorporated into the posterior map.

V. GLOBAL CONSISTENCY

In the previous step, SCGP identified local matches that are
locally unambiguous. This satisfies one of the two conditions
described in Section II. Before accepting a local match,
however, we must satisfy the other condition, namely that
only one local match can fit within the positional uncertainty
ellipse.

In principle, testing this condition would require computing
the worst-case packing of the local maps. The required size of
the local match would thus be a complicated function of the
shape of that local match.

In practice, we have used a simple (but easier to compute)
approximation instead. We compare the maximum dimension
of this local match to the length of the major axis of the
covariance ellipse. If the matched region is over half as large
as the uncertainty, then it is unlikely that the uncertainty ellipse
could contain two matching environments. This approximation
could erroneously accept local matches in some cases. Long
skinny hallways, for example, can be packed very closely
together: more than one “copy” of a hallway might fit within
the uncertainty ellipse even though the match has a large

bounding dimension. In practice, this theoretical problem does
not appear to be an issue, but a better means of estimating the
worst-case packing remains an area of future work.

If a local match is too small in comparison to the positional
uncertainty, we continue to add pose-to-pose matches until it
is satisfies the global consistency condition. In practice, it is
necessary to limit the number of hypotheses in a single set
in order to bound the computational complexity of the SCGP
filtering. If the limit (40 in our experiments) is exceeded before
the match is sufficiently large, we discard every other hypoth-
esis in order to make room for additional hypotheses. This
“sparsifies” the hypothesis set without significantly shrinking
its physical size.

When the prior uncertainty is very large, the local matches
must also be large. Finding local matches becomes more
difficult, in part because our current approach assumes that the
dead-reckoning is of reasonable quality over the scale of local
matches. Worse, a local match may be missed if the robot takes
substantially different paths through an environment during
different visits. However, we believe our method is appli-
cable to many practical scenarios. Even with relatively poor
odometry, sufficiently large local matches can be achieved for
most indoor environments. Outdoors, even intermittent GPS
reception will bound the prior uncertainty to reasonable levels.

VI. RESULTS

We tested our algorithm on the DLR “circles” dataset, using
it to identify loop closures. These loop closures classically
represent difficult data association problems.

A total of 4644 pose-to-pose hypotheses belonging to 278
potential local matches were generated, 2043 of which were
accepted. We instrumented our algorithm to remember which
data associations were used to generate each hypothesis. Using
ground truth data, we can determine whether each hypothesis
(generated by RANSAC) was the result of “good” or “bad”
data associations. The performance of our algorithm on a



Hypothesis Outcome Good Assoc. Bad Assoc.
Accepted Hypotheses 2043 0
Rejected (small set) 714 32

Rejected (ambiguous) 1168 105
Rejected (inconsistent) 544 38

Fig. 5. Hypothesis Error Rates. The “good” and “bad” columns denote
hypotheses arising from correct (and incorrect) data associations, based on
ground truth data. Most importantly, the algorithm exhibits no false positives.
However, a large number of false positives are present due to the noise in
the observations: this noise can result in poor hypotheses even when the data
associations are correct. The numbers above reflect individual pose-to-pose
matches; these were grouped into a total of 278 local matches.

typical run is tabulated in Fig. 5. Notably, there were no false
positives.

Since our algorithm includes randomized components, the
performance varies from run to run. False positive rates are
consistently low (usually zero), though failures do occasionally
occur. These appear to be the result of repeated iterations
of RANSAC yielding similar (but incorrect) pose-to-pose
matches. These incorrect matches can form a self-consistent
local match. We believe these failures can be avoided by
preventing multiple pose-to-pose matches from using the same
pair of data associations. Even when a failures occurs, it
generally has a minuscule effect on the quality of the posterior
map. This is because the errors are rare, small in magnitude,
and generally surrounded by dozens of correct matches that
mitigate their effect.

Our false negative rate, based on Fig. 5 appears to be quite
high. Indeed, a significant number of good hypotheses are
rejected. However, the numbers are not as bad as they appear:
observation noise can cause hypotheses to be poor even if the
data association is correct. Since our pair-wise consistency test
is based on the agreement of the rigid-body transformations
(and not the data associations), these poor hypotheses are
frequently rejected.

A total of 199 seconds of CPU time (on a 2.4GHz In-
tel processor) were required for feature matching (including
RANSAC) and hypothesis filtering. Similarly good loop-
closing results can be obtained even when the original dataset
is decimated, but with much lower computational costs.

VII. CONCLUSION

This paper presented a place recognition algorithm based
on local matches rather than explicit data association. We have
described specific conditions under which these local matches
can be trusted to be globally consistent. We evaluated our
algorithm on a perceptually challenging dataset, showing that
our algorithm can reliably close loops.

A disadvantage of the local matching approach is that it
requires that matches can be computed using only locally-
available information. This in turn requires that observation
noise be sufficiently low to generate decent matches and that
it be possible to generate a rigid-body transformation given
a pair of observations. When these conditions are satisfied,
however, our local matching approach is fast, reliable, and
fairly easy to implement.
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