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Abstract— Computing the “average” orientation of lines and
rotations is non-trivial due to the need to account for the
periodicity of rotation. For example, the average of +10 and
+350 degrees is 0 (or 360) degrees, not 180. This problem arises
in many disciplines, particularly those in which empirically
collected data is processed or filtered.

In this paper, we review a common but sub-optimal method
for computing average orientation and provide a new geometric
interpretation. We also propose a new method which provides
additional insights into the geometry of the problem. Our
new method also produces significantly more accurate results
in the regime of operation usually encountered in robotics
applications. We characterize this regime and provide guidance
regarding which method to use, and when.

I. INTRODUCTION

Given a set of orientations (perhaps the direction of a

noisy compass over time), it is often desirable to compute

the average orientation. This is not a trivial operation due

to the periodicity of rotations. For example, when averaging

rotations of +10 degrees and +350 degrees, we want to obtain

an answer of 0 (or 360) degrees, rather than 180 degrees. As

the number of inputs increases, it becomes more difficult to

account for the 2π periodicity of rotations.

Computing average orientations arises in many disciplines.

In the specific case of the authors, it arose in the case of

a difficult Simultaneous Localization and Mapping (SLAM)

problem for which the initial solution was very noisy, but for

which the orientation of the robot was known accurately for

a handful of poses (due to GPS). Without a reasonable ini-

tialization (generally considered to mean heading errors less

than π/4), many SLAM algorithms are prone to divergence

due to the fact that the Jacobians do not necessarily point in

the direction of the global minimum [1]. By interpolating the

orientation of the known points along the robot trajectory, the

stability of the method is improved. This operation requires

computing weighted averages of the GPS headings.

Closely related to the idea of an “average orientation”

is that of a “canonical orientation”. In feature descriptor

algorithms like SIFT [2] and SURF [3], a histogram of

directions is used to find a canonical orientation to describe

a pixel patch. The same idea has been applied to LIDAR

data [4]. An average orientation could serve a similar role and

would have the potential advantage of avoiding quantization

noise resulting from constructing the histogram.

Average orientation also arises in evaluation metrics; in

judging the performance of a mapping or localization system,

it can be useful to characterize the average heading error of

Fig. 1. Arc versus chord distance. Given an estimate of average orientation

θ̂ and an observation θi, we can consider two distance measures: the arc
length (d) and the chord length (c).

the system [5]. The average orientation error also arises in

the context of evaluating the dead-reckoning performance of

both robotic systems [6] and humans [7]. Human perception

of orientation also makes use of directional statistics [8].

More broadly, computing average orientation arises in

animal behavior (such as the behavior of homing pigeons),

geology (the directions of particles in sediments), meteo-

rology (the direction of the wind), etc. These and other

examples are discussed in [9], [10].

Computing averages of orientations falls into the subject

of directional statistics, which despite having several well-

written texts [9], [10], is largely treated in an ad-hoc fashion

by most application-oriented papers.

This paper begins with a review and analysis of the widely

used “vector sum” algorithm. We provide a new geometric

interpretation of the algorithm that makes it easier to under-

stand the consequences of its underlying approximations.

The central contribution of this paper is a new method for

computing average orientation, which we describe in both

probabilistic and geometric terms. Our evaluation demon-

strates that, for many applications, our approach computes

better estimates than the vector sum algorithm.

Finally, we discuss an important variant of the average

orientation problem that arises when working with undirected

lines. These problems have a periodicity of π, rather than 2π.

We show how both methods can be adapted to this domain,

and compare their performance.



II. THE VECTOR SUM METHOD

The vector sum method is the typical approach used

to compute average orientation. We will first describe the

method, review its properties, then give a new geometric

interpretation.

A. Method

Suppose we are given a set of direction measurements θi
for i ∈ [1, N ]. We first compute the unit vector for each

measurement, then sum those vectors:

x =
∑

i

cos(θi) (1)

y =
∑

i

sin(θi)

Now, we compute the angle of the vector sum using the

four-quadrant arc tangent; this will be our estimate of the

mean orientation:

θ̄ = arctan(y, x) (2)

This method produces “reasonable” results, however the

specific properties of this method are not obvious. Many

application-oriented papers employ this approach without

any additional consideration. One might ask: Is the method

optimal? What objective function does the method optimize?

In particular, many applications assume that angular mea-

surements are contaminated with additive Gaussian noise,

i.e., that there is some true orientation θ̂ and that the obser-

vations are of the form θi = θ̂ + wi, where wi ∼ N(0, σ2).
As we will show in the following sections, the vector sum

method is not always an appropriate method under these

assumptions. But first, we’ll need to review some of the

essential ideas in directional statistics.

B. The wrapped normal distribution

Let us consider more carefully the properties that a prob-

ability distribution should have in the case of circular data.

Specifically, because an orientation of θ is indistinguishable

from a rotation of θ + 2π, the probability density f must

satisfy:

f(θ) = f(θ + 2π) (3)

Further, suppose we observe θi. This observation is indis-

tinguishable from θi+2π, and θi+4π, etc. Our distribution

should account for this ambiguity.

For example, suppose that we are observing orientations

with a mean value of µ = 45 degrees, corrupted by Gaussian

noise wi with variance σ2. If we observe a value of 50

degrees, it is possible that we have observed a value in

which wi = 5, but it is also possible that wi = 365, or

more generally, wi = 5+2πk for any integer k. All of these

events (for different values of k) map to the same observed

value, thus the density associated with an observation is the

sum of the densities for every value of k:

f(θ) =
1

σ
√
2π

∞
∑

k=−∞

e−(θ+2πk−µ)2/2σ2

(4)

Intuitively, we can imagine the usual Gaussian distribu-

tion “wrapped” around the unit circle. Since the Gaussian

distribution has infinite support, it wraps around an infinite

number of times, adding to the density at every orientation as

it goes around. Since the density of a Gaussian distribution

drops off rapidly with distance from the mean, the density

is generally dominated by the first few wraps (and often just

the first wrap).

As in the non-circular case, we require that a density

integrate to 1; however, we only consider an interval of 2π
degrees; any contiguous interval of 2π degrees (by Eqn. 3)

will do:
∫ π

−π

f(x)dx = 1 (5)

The wrapped normal distribution represents the most rig-

orous way of representing circular data contaminated by

Gaussian noise, however it is analytically difficult to work

with. This is because the density includes a sum; when

computing the maximum likelihood value of µ given a set

of observations, we typically take the logarithm in order

to simplify the expression and solve for µ. However, the

summation prevents us from doing this.

C. The von Mises distribution

There exists a probability distribution such that, if wi is

distributed according to it, the vector sum method is optimal.

This distribution is the von Mises distribution [9]. This

distribution is also sometimes called the Circular Normal

distribution, but we will not use that name here as it implies

a closer relationship to the Normal (Gaussian) distribution

than actually exists.

The von Mises distribution is:

f(θ, µ) =
1

2πI0(κ)
eκcos(θ−µ) (6)

The κ parameter determines the spread of the distribution,

and plays the same role as 1/σ2 in a Gaussian distribution.

The leading term is simply for normalization; Io(κ) repre-

sents the modified Bessel function of the first kind and zero

order. For our purposes here, only the exponential term is

interesting, since it determines the shape of the distribution.

It is obvious that it is not of the same form as a Gaussian

distribution, which would have a quadratic loss of the form

e(θ−µ)2/σ2

.

The properties of the von Mises distribution are not obvi-

ous upon inspection. In contrast, the maximum likelihood

of the Gaussian distribution’s mean value µ is the one

that minimizes the squared distance between the mean and

each point. From a geometric point of view, what property

does the maximum likelihood solution of the von Mises

distribution have?

D. Geometric Interpretation

As we saw above, the vector sum algorithm computes the

optimal estimate of θ assuming that the noise is governed

by the von Mises distribution. It is not clear, however, what

this means in terms of the geometry of the points around



the unit circle. In this section, we derive a useful geometric

interpretation.

Let us again consider observations θi for i ∈ [1, N ]. The

unit vectors corresponding to each observation lie on the

unit circle. Now, let us find a θ̂ that minimizes the squared

distance between θ̂ and each of the θis.

The challenge is to define distance in a way that is

computationally convenient. The length of the arc between

θ̂ and θi would be exactly right if we assume our noise

is normally distributed and that there was no “wrapping”

(i.e., that the noise was bounded by π degrees); see Fig. 1.

However, the arc distance is difficult to incorporate into a

closed-form solution.

Alternatively, we can use the chord distance (again, see

Fig. 1). The chord distance and arc distance are approxi-

mately the same when θ̂ and θi are nearby. Thus, we can

approximate the maximum likelihood µ (assuming Gaussian

noise) by minimizing the squared chord distance.

Using basic trigonometry, the vector ri between the unit

vectors corresponding to θ̂ and θi is:

ri =

[

cos(θ̂)

sin(θ̂)

]

−
[

cos(θi)
sin(θi)

]

(7)

The squared distance between those points is then just

rTi ri. We sum this over all observation points, expanding

the product:

χ2 =
∑

i cos
2(θ̂)− 2 cos(θ̂) cos(θi) + cos2(θi) + (8)

sin2(θ̂)− 2 sin(θ̂) sin(θi) + sin2(θ̂)

Noting that cos2(x) + sin2(x) = 1, we can simplify to:

χ2 =
∑

i 2− 2 cos(θ̂) cos(θi)− 2 sin(θ̂) sin(θi) = 0 (9)

We wish to minimize the sum of squared distances, so we

differentiate with respect to θ̂ and set to zero:

∂χ2

∂θ̂
=
∑

i

sin(θ̂) cos(θi)− cos(θ̂) sin(θi) = 0 (10)

Collecting terms and pulling our unknown (θ̂) to the left

side, we obtain:

sin(θ̂)

cos(θ̂)
=

∑

i

sin(θi)

cos(θi)
(11)

θ̂ = arctan

(

∑

i

cos(θi),
∑

i

sin(θi)

)

(12)

In other words, the estimate of θ̂ that minimizes the

squared chord distance is the same as the vector sum

algorithm.

We can relate this directly to the form of the von Mises

distribution as well. First, we note that the squared chord

length is 2− cos(θi − θ̂). (This is easily derived from Fig. 1

using the law of cosines.) In minimizing the sum of these

costs, the 2 is inconsequential: we can drop the term without

changing the answer. Now, we are left with precisely the

exponentiated expression in the von Mises distribution.

III. PROPOSED METHOD

We now propose a new method for computing the average

orientation. In many cases, this method better approximates

the wrapped normal distribution than the von Mises dis-

tribution, while still being computationally inexpensive to

compute.

A. Interpretation

Our method can be described in both geometric and

probabilistic terms. In the previous section, we showed that

the von Mises distribution corresponds to minimizing the

squared chord length associated with each observation. The

arc length would be a more accurate method if we assume

Gaussian noise since the length of the arc is proportional to

the difference in orientation. (As a reminder, the maximum

likelihood estimator of µ minimizes the sum of the squares

of differences in orientation; this is the reason we use the

squared arc length.)

In fact, using the squared arc length is optimal if the noise

is bounded by π. When this does not hold, using the arc

length is an approximation: for an observation with noise

greater than π, we will pick the shorter direction around the

circle, rather than take the “long way” around the unit circle.

This type of error occurs only with extremely low probability,

or with Gaussians with very large standard deviations.

Probabilistically, minimizing the squared arc length cor-

responds to wrapping a normal distribution around the unit

circle without overlap, i.e., cutting off the tails of the normal

distribution that would otherwise continue to wrap around

the unit circle. Because the probability mass in the tails was

removed, the total probability mass will be less than 1.0. We

can correct for this by rescaling the distribution:

f(θ) =
1

erf(π/(σ
√
2))

1

σ
√
2π

e−(θ−µ)2/2σ2

(13)

From an analytic point-of-view, this density is fairly

awkward: it cannot be easily evaluated due to the presence

of the error function. However, our method (while producing

maximum likelihood estimates for the distribution) does not

require us to ever evaluate the densities, so this is not a

practical problem.

We’ve now described the geometric (minimize the squared

arc length) and probabilistic (truncate the Gaussian) inter-

pretation of our method. We now show that the maximum

likelihood solution can be quickly and exactly computed.

B. Implementation

The trick is to “unwrap” the observations back onto a

line, and to use conventional (non-circular) estimators to

compute the mean. The challenge is that the position of each

observation on the line is not uniquely determined, since it

can be freely translated by any multiple of 2π. Of course,

no matter what the mean is, no point will be farther than

π degrees away from it. Otherwise, a lower error solution

could be obtained by moving that point by a multiple of 2π
degrees so that it is closer to the mean.



Consequently, there exists an arrangement of observations

that span no more than 2π degrees, and for which all points

are within π of the mean (which is still unknown at this

point). Supposing that our points were in this arrangement,

the simple arithmetic mean would yield the optimal mean

as measured by the fact that the mean squared arc length is

minimized.

The basic idea of our method is to construct the possible

arrangements of the observations, compute their mean and

error, and output the best. At first, it may seem that there

are too many possible arrangements of observations: each

observation can appear at an infinite number of positions

(all spaced 2π apart).

By the argument above, however, the only arrangements

of consequence are those that span less than 2π degrees.

Each of those arrangements has a “left-most” observation—

an observation whose orientation is numerically smaller than

all the other observations. Once a left-most point is identified,

the positions of all the other points is fully determined due to

the constraint that the arrangement span less than 2π degrees.

If we have N observations, then there are only N can-

didate arrangements. (Each observation takes turns being

the left-most; once selected, the position of all the other

observations is uniquely determined.)

Suppose that our observations are mapped to some arbi-

trary interval of width 2π (i.e., by moving each point to be

[0, 2π]). We can construct the N arrangements by repeatedly

taking the left most point and moving it to the right by adding

2π to it. Now, some other point is the left most point. After

N iterations, we will have constructed all N arrangements

of the observations.

At each iteration, we compute the mean and squared

error. These statistics can be updated incrementally after

each iteration by appropriately updating the first and second

moments of the observations. For clarity, the first moment

M1 and second moment M2 are simply:

M1 =
∑

i

θi (14)

M2 =
∑

i

θ2i (15)

We can compute the mean and squared error as:

θ̂i = M1/N (16)

χ2
i = M2 −M2

1 /N (17)

Now, suppose that we take the left most point (call it

θi) and move it to the far right by adding 2π. We can

incrementally update the moments as:

M ′

1 = M1 + 2π (18)

M ′

2 = M2 − θ2i + (θi + 2π)2 (19)

= M2 + 4πθi + (2π)2

We simply repeat the process of moving the left-most point

to the right N times, and record the mean that minimizes the

squared answer. The complete algorithm is given in Alg. 1.

Algorithm 1 Compute mean theta using squared arc-length

1: M1 = 0
2: M2 = 0
3: {Map all points to [0, 2π] and initialize moments}
4: for i = 1 to N do

5: θi = mod2pi(θi)
6: M1 = M1 + θi
7: M2 = M2 + θ2i
8: end for

9: Sort θs into increasing order

10: σ2 = ∞
11: for i = 0 to N do

12: if i >= 1 then

13: {Move the ith observation to the right by 2π}
14: M1 = M1 + 2π
15: M2 = M2 + 4πθi + (2π)2

16: end if

17: θ̂i = M1/N

18: σ2
i = M2 − 2 ∗M1 ∗ θ̂i +N ∗ θ̂i

2

19: if σ2
i < σ2 then

20: θ̂ = θ̂i
21: σ2 = σ2

i

22: end if

23: end for

24: return θ̂

Our proposed method exactly computes the maximum

likelihood estimate of µ assuming that the noise is distributed

according to the truncated Gaussian distribution. As we’ve

also shown, this is equivalent to minimizing the squared arc

length.

IV. EVALUATION

In this section, we evaluate the performance of the vector

sum algorithm and the proposed method.

A. Approximation accuracy

Both algorithms attempt to approximate the wrapped

normal distribution. The distributions are plotted for σ =
0.5, 1.0, 2.0 in Fig. 2. For small σ, both algorithms closely

approximate the wrapped normal distribution. As the ob-

servation noise increases, however, there are two distinct

regimes:

• At moderate noise levels (σ < 1.6), the proposed

method out-performs the vector sum method. Intuitively,

this is because the “chord” distance is taking a short cut

around the circle, resulting in too much probability mass

away from the mean.

• At higher noise levels (σ > 1.6), the vector sum method

out-performs the proposed method. At these high noise

levels, it becomes more likely that observations will

have more than π noise. In other words, the “wrapping”

of the wrapped normal distribution starts to flatten out

the distribution. The flatter behavior of the von Mises

distribution (due to taking “short cuts” through the

center of the unit circle) is a better fit.



Fig. 2. Probability density functions for σ = .5, 1.0, and 2.0. For small sigmas, the performance of the proposed distribution (formed by truncating the
Normal distribution) is significantly closer to the wrapped Gaussian than the von Mises distribution (see left two figures). The relative improvement of the
proposed method increases with σ, until significant probability mass begins to wrap around (right). Also see Fig. 3.

Fig. 3. KL divergence as a function of σ. The KL divergence from the
wrapped normal (ideal) distribution to the proposed and von Mises distribu-
tion shows the relative accuracy of the two approximations. The proposed
distribution not only has significantly better worst-case performance, but
also has significantly less error in low-variance regime (σ < 1.639) in
which most applications operate.

Fig. 4. Chord versus arc error as a function of σ. For each value of σ, a
Monte Carlo simulation was run in which 50 directional observations were
generated. Both the chord and arc (proposed) method were used to estimate
the original mean. The sample standard deviation measures the performance
of the estimator; the difference between the two are shown above. Values
below zero indicate that the proposed method works better for that σ; values
above zero indicate that the chord approximation is better. As predicted by
the KL divergence results, the cross-over point occurs at around σ = 1.5,
or about 85 degrees.

Fig. 2 shows the probability densities at three discrete

points. Alternatively, we can compute the KL divergence [11]

between the wrapped normal distribution and the von Mises

or truncated Gaussian. As shown in Fig. 3, the KL divergence

between the wrapped normal distribution and the von Mises

distribution peaks at around σ = 1, then becomes smaller

again. The truncated Gaussian distribution has significantly

lower divergence in the low-to-moderate noise regime, but

does worse in the high-noise regime.

B. Empirical performance

Our KL divergence data suggests that the truncated Gaus-

sian is a better approximation of the wrapped normal dis-

tribution for σ ∈ [0, 1.6π]. To verify this, we conducted

Fig. 6. KL divergence as a function of σ (line case).

a Monte Carlo simulation in which we generated noisy

observations and estimated the mean using both methods.

The error for both methods was compared and plotted in

Fig. 4; negative values indicate that the vector sum algorithm

had a larger error than the proposed method. Positive values

indicate the opposite. The curve is very smooth due to a very

large number of trials.

This data reveals a surprising result: while the perfor-

mance of the proposed algorithm is indeed better for low-to-

moderate σ, the vector sum method does much better in the

high noise regime. In this case, the KL divergence analysis

was approximately correct in the cross-over point (where

vector sum would surpass the proposed method), but the

magnitude of the KL divergence results were not especially

predictive of the Monte Carlo results.

Still, the performance of the proposed method is demon-

strably better than the vector sum method over the most

useful range of σs; it is not until σ = 1.6 (i.e., a standard de-

viation of 90 degrees) that the vector sum method surpasses

it.

For maximum accuracy over the broadest possible range

of σ, one could use both methods, switching between the

two based on the estimate of σ.

C. Line variant

We have so far considered the case of observations with

a periodicity of 2π, such as compass readings. In some

applications, the data may have a periodicity of π, such as

in estimating the average orientation of the walls in a room

from LIDAR data.

Both methods can be easily adapted to this case. In the

case of our proposed method, the changes are trivial: the

scale factor is adjusted so that the density integrates to 1

over the smaller interval [−π/2, π/2].



Fig. 5. Probability density functions for σ = .5, 1.0, and 2.0 (line case). See also Fig. 6.

In the case of the vector sum algorithm, the orientations

of the observations can be multiplied by two, thus rescaling

the problem so that it has a periodicity of 2π. This has an

interesting consequence, as the probability density function

becomes:

f(θ, µ) =
1

πI0(κ)
eκcos(2(θ−µ)) (20)

Note that the factor of two is taken inside the cosine

expression; the resulting density is not a simple rescaling

of the von Mises distribution.

To examine the effect of these modifications, we again

plotted the distributions for different values of σ (see Fig. 5)

and the KL divergence (see Fig. 6). Note that, in computing

κ for the von Mises distribution, we used 1/(2σ)2 instead

of the original 1/σ2, in agreement with the variance of a

random variable multiplied by two. Interestingly, the results

from this case mirror almost exactly those of the 2π case.

D. Complexity analysis

From a complexity stand-point, the proposed method has

additional costs versus the simpler vector sum algorithm.

Both algorithms conceptually handle the observations one

at a time, but the proposed method needs them to be in

sorted (left-to-right) order, which incurs an O(N logN) cost.

In addition, this requires the observations to be stored in

memory; the vector sum algorithm can be applied to datasets

of virtually unbounded size since the data does not need to

be stored.
Algorithm Computation Memory

Vector sum O(N) O(1)
Proposed method O(N logN) O(N)

E. Runtime performance

While the asymptotic computational complexity of our

method is slower than the vector sum algorithm, the real-

world difference is quite small. For example, our Java

implementation of the vector sum method takes 0.30 ms for

1280 points; our method takes 0.35 ms for the same data.

Additional runtime data is shown in Fig. 7.

We attribute the similarity in performance (despite the

difference in asymptotic costs) to two factors: the vector

sum operation uses relatively expensive trigonometric op-

erations, whereas our proposed method uses only simple

arithmetic operations. The sorting method used is the stan-

dard Arrays.sort method, which also relies only on simple

comparisons, and is well optimized.

Fig. 7. Computational complexity. Despite having different asymptotic
complexities, the runtimes of the two methods are similar.

V. CONCLUSION

This paper considers the problem of computing average

orientation, a problem made difficult by the periodicity of

the data. In addition to providing an introduction to the

commonly-used vector sum product, we provide a new

geometric interpretation for that method. We also propose

and evaluate a new method that better approximates the ideal

wrapped normal distribution.

Implementations of our algorithm are available from our

web site http://april.eecs.umich.edu/. This research was sup-

ported by U.S. DoD grant W56HZV-04-2-0001.
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