
IPJC: The Incremental Posterior Joint Compatibility Test
for Fast Feature Cloud Matching

Edwin B. Olson1 and Yangming Li2

Abstract— One of the fundamental challenges in robotics is
data-association: determining which sensor observations corre-
spond to the same physical object. A common approach is to
consider groups of observations simultaneously: a constellation
of observations can be significantly less ambiguous than the
observations considered individually. The Joint Compatibility
Branch and Bound (JCBB) test is the gold standard method
for these data association problems. But its computational
complexity and its sensitivity to non-linearities limit its practical
usefulness.

We propose the Incremental Posterior Joint Compatibility
(IPJC) test. While equivalent to JCBB on linear problems, it
is significantly more accurate on non-linear problems. When
used for feature-cloud matching (an important special case),
IPJC is also dramatically faster than JCBB. We demonstrate
the advantages of IPJC over JCBB and other commonly-used
methods on both synthetic and real-world datasets.

Index Terms— Data association, joint compatibility test,
SLAM

I. INTRODUCTION

Data association is the problem of determining which
observations correspond to the same object. It is at the
core of the Simultaneous Localization and Mapping (SLAM)
problem and visual navigation: it is only by re-observing a
landmark that a map becomes over-constrained and therefore
more robust to the errors associated with any single obser-
vation.

SLAM systems are often described in terms of the two
“halves” of the problem: the front-end performs the sensor
processing and data association, while the back-end com-
putes the maximum-likelihood map subject to the observa-
tions and data-associations output by the front-end. In recent
years, the raw computational performance of back-ends has
increased dramatically: maps with millions of landmarks and
observations can be optimized [1].

While back-end systems are now very fast, the quality
of their output is entirely dependent on the accuracy of
the front-end. In particular, an incorrect data association (in
which the front-end erroneously asserts that two physically-
distinct landmarks are in fact the same landmark) forces the
back-end to distort the map to bring those two landmarks
closer together. Even a single data-association error can lead
to divergence of the entire map.

Consequently, the quality of a front-end system has an
enormous impact on the quality of the resulting map. Too
many loop closures (i.e., false positives) lead to catastrophic

1 Department of Electrical Engineering and Computer Science, University
of Michigan, Ann Arbor, MI 48109 ebolson@umich.edu

2 Institute of Intelligence Machines, Chinese Academy of Sciences,
Hefei, Anhui, 230031 ymli@iim.ac.cn

Fig. 1. IPJC Overview. A robot observes “feature clouds” from two
different poses (top left), and IPJC matches them by searching a tree and
computing a compatibility cost. The rigid-body transformation that results
from the matching process can be used in a pose-graph SLAM formulation.
IPJC is similar to JCBB, but when applied to feature cloud matching,
produces better results in less time.

failures, while too few loop closures (false negatives) lead
to a less-constrained map of lower overall quality.

A common approach to improving the quality of data-
association systems is to consider multiple observations as a
set. A reasonable analogy is that it is difficult to recognize
a star given an image of it, but recognizing a constellation
is much easier and less error-prone. When matching groups
of features, it is critical to consider the correlations between
measurements. In general, the set of observations will not
match perfectly with the prior estimates of the landmark
locations. Due to the correlations between these observa-
tions, some misalignments are more likely than others. For
example, suppose an image of a constellation of stars is
taken. The individual positions of the stars in the image are
highly correlated: they all depend on where the camera was
pointing. If all of the stars appeared to be shifted uniformly
with respect to their a priori estimated positions, the errors
could be easily explained in terms of a camera pointing
error. On the other hand, if the stars were shifted randomly
with respect to their a priori estimated positions, one might
instead conclude that the image is of a different set of
stars. In other words, proper consideration of the correlations
between observations can have a significant effect on the data



association process.
The gold standard method is the Joint Compatibility

Branch and Bound (JCBB) test [2], which searches for the
largest set of data associations subject to a bound on the
χ2 error. Conceptually, JCBB builds an “interpretation tree”;
at each level of the tree, an observation is associated with
one of the landmarks in the map (or to a “null” hypothesis
representing the possibility that no landmark matches the
observation.) A path from the root of the tree to any node
encodes a set of data-associations, and JCBB explicitly
computes a cost related to the probability of that set of data-
associations.

The computational cost of JCBB can be substantial; at
every node in the tree, the joint compatibility must be
computed. Even when computed in a clever incremental
fashion, this involves an operation of cost O(m2) at level m
in the tree. This cost can be prohibitive in some applications
and has led to a number of alternative approaches.

Several authors have suggested faster but less
probabilistically-motivated methods for validating data-
association hypotheses. One trend has been to implicitly
identify groups of compatible hypotheses by considering
their pairwise-consistency; this can be viewed as a max-
clique [3] or spectral graph partitioning [4] problem. Finding
loop closures, a common task in pose-based SLAM, is
an application of data-association. A recurring idea is to
look for sequences of loop closures that form a closed
topological loop: the composition of the loop closures in
the loop should approximately be the identity matrix [5],
[6], [7].

In addition to high computational cost, JCBB is sensitive
to non-linearities. JCBB estimates the joint compatibility by
linearizing around the prior and considering the entire set of
data associations as a single large linear update. However,
more accurate results could generally be obtained by actually
computing the posterior after each observation; this results in
a better estimate of the posterior and will generally improve
the linearization point used to estimate the compatibility of
successive data association pairings.

Many data association algorithms target the case where the
location of the landmarks is explicitly estimated—i.e., where
the state vector is enlarged to contain the position of each
landmark. Alternatively, as seen in pose-based SLAM algo-
rithms and in many camera-based applications, the landmarks
are not added to the state vector. Instead, the motion between
two poses is found by matching the feature observations
between those two poses. Each pose records a cloud of
features observed from that pose, and the problem becomes
one of “feature cloud” matching (see Fig. 1). This approach
is often used when each pose observes a large number of
landmarks: adding all of these landmarks to the state vector
can quickly tax even very fast back-end systems. Systems
using cameras or 3D LIDAR sensors can extract hundreds
of features from a single robot pose, for example.

In this paper, we propose a new data association method
that, like JCBB, is probabilistically rigorous. However, it
provides better accuracy in non-linear settings and, in the

case of feature cloud matching, dramatic runtime speedups.
The contributions of this paper are:

• We propose a posterior-based data association test,
motivate it in terms of the χ2 of a least-squares op-
timization, and show that it is equivalent to JCBB. This
algorithm, Posterior Joint Compatibility (PJC), serves
as the basis for the remainder of our algorithms.

• We propose the Incremental Posterior Joint Compatibil-
ity (IPJC) test, which exploits the probabilistic structure
of feature cloud matching. This method is both more
accurate in non-linear settings and dramatically faster
than JCBB. We further show how to accelerate the
process further, leading to the IPJC-Fast algorithm.

• We demonstrate our proposed methods along side
JCBB, RANSAC, and SCNN on a range of synthetic
and real-world problems. This data supports our claim
that IPJC and IPJC-Fast out-perform other methods.

II. A REVIEW OF JCBB

Our method is similar in most respects to JCBB [2]:
given a set of m observations of n features, we search an
“interpretation tree”. This tree has m levels, and at each level
of the tree, we consider n+ 1 possible data-associations for
the mth observation. (Each observation could match any of
the n landmarks, or could match none of them.) A path from
the root to any node represents a set of data-associations.
Our goal is to find a “good” data-association for every
observation.

How is the “goodness” of a set of data-associations
evaluated? Given a state estimate x with covariance P , we
use a domain-specific sensor model (assumed known) to
compute predicted observations ẑ. Given the matrix H of
partial derivatives of x with respect to ẑ, the uncertainty
of the predicted observations due to our uncertainty of x is
simply HPHT .

We assume that our actual observations z are contaminated
by noise with covariance V , and that the matrix of partial
derivatives of the noise variables with respect to z is G. The
uncertainty of the actual observations due to this underlying
sensor noise is simply GV GT . The combined uncertainty of
our prior and observation is given by:

C = HPHT +GV GT (1)

The discrepancy between our actual and predicted obser-
vations is e = z − ẑ. We can now write the cost function
used by JCBB as a Mahalanobis distance:

χ2 = eTC−1e (2)

In principle, we might wish to identify the maximum
likelihood set of data-associations (or equivalently, the set of
data associations with the minimum Mahalanobis distance).
To compute this, we would need to know the likelihood
of an observation not matching any landmark— a quantity
typically not known. Instead, JCBB searches for the largest
set of non-null data-associations such that the Mahalanobis
distance is less than a threshold. This threshold is typically



expressed in terms of the χ2 distribution for an appropriate
number of degrees of freedom.

A naive approach would be to consider each leaf of
the tree, compute its Mahalanobis distance, and select the
best. However, the interpretation tree is quite large: it has
(n + 1)m leaves. Fortunately, the search space can be
pruned by employing the branch-and-bound method. The key
idea is that the Mahalanobis distance can be computed for
any partial set of data-associations. Since the Mahalanobis
distance can only increase with additional data associations,
this serves as an admissible lower-bound for all of the node’s
children. Consequently, we can prune any sub-tree that could
not be better than the best-known solution. A more careful
description of JCBB can be found in [2].

The major computational cost in JCBB is to the cubic
cost of inverting the C matrix in Eqn. 2. As pointed out by
the original JCBB paper, the inverse of C at level m can be
computed in terms of the inverse of C at level m−1, reducing
the complexity to quadratic. Even with this optimization,
the cost of repeatedly evaluating the Mahalanobis distance
quickly becomes a bottleneck— particularly if there are a
large number of observations.

III. PROPOSED METHOD

A. Posterior Joint Compatibility

We begin by deriving a different way of writing the
Mahalanobis cost function used by JCBB. Given a putative
set of data-associations, suppose we compute the posterior
value of x, which we denote as x+. (For clarity, we will
denote the prior value of x as x−.) This posterior can be
computed in a variety of ways, including Extended Kalman
Filtering [8], non-linear optimization [9], etc. In this work,
we use the Iterated Extended Kalman Filter [10].

Suppose that we update the state estimate using the
Extended Kalman Filter as follows:

C = HPHT +GV GT (3)
K = PHTC−1 (4)
e = z − ẑ (5)
d = Ke (6)

x+ = x− + d (7)

We can compute the χ2 of the posterior as the sum
of the χ2 of the observations and the prior evaluated at
x+. Note that the posterior residual for the observations is
not e (because ẑ reflects the prior estimate of z); due to
the change in our state estimate, the posterior observation
residual becomes: z − (ẑ +Hd) = e−Hd.

In summary, the posterior χ2 can be written as:

χ2 = (e−Hd)T (GV GT )−1(e−Hd) + dTP−1d (8)

We now show that this expression is equivalent to the one
used by JCBB. To see this, we begin by substituting d = Ke:

χ2 = (e−HKe)T (GV GT )−1(e−HKe) + (Ke)TP−1(Ke) (9)

And now factoring out eT to the left and e to the right:

χ2 = eT
[
(I −HK)T (GV GT )−1(I −HK) +KTP−1K

]
e (10)

We’ll now consider the cost function used by JCBB,
showing that it can be simplified to the same expression as
Eqn. 10. Recall that the Mahalanobis distance used by JCBB
can be written as χ2 = eTC−1e. Let us begin by focusing
on the inner term C−1.

C
−1 (11)[

I + K
T
H

T − (HK)
T
)
]
C

−1 (12)[
K

T
H

T
+ (I − HK)

T
(GVG

T
)
−1

(GVG
T
)
]
C

−1 (13)[
K

T
H

T
+ (I − HK)

T
(GVG

T
)
−1

(C − HPH
T
)
]
C

−1 (14)[
K

T
(P

−1
PH

T
C

−1
C) + (I − HK)

T
(GVG

T
)
−1

(I − HK)C
]
C

−1 (15)[
K

T
P

−1
KC + (I − HK)

T
(GVG

T
)
−1

(I − HK)C
]
C

−1 (16)

K
T
P

−1
K + (I − HK)

T
(GVG

T
)
−1

(I − HK) (17)

In Eqn. 12, note that (HK)T = KTHT . In Eqn. 13,
we multiply by GV GT and its inverse; note also that I −
(HK)T = (I −HK)T . In Eqn. 14, we substitute GV GT =
C−HPHT , which follows from Eqn. 3. In Eqn. 15, we use
P−1P = I and C−1C = I , and we factor (C − HPHT )
as (I −HK)C. In Eqn. 16, we substitute K = PHTC−1.
Finally, in Eqn. 17, we distribute the C−1 factor.

We can now write the cost function used by JCBB in terms
of this final expression for C−1:

χ2 = eT
[
(I −HK)T (GV GT )−1(I −HK) +KTP−1K

]
e (18)

Eqn. 10 and Eqn. 18 are identical; thus, both formulations
compute the same value. In some ways, the posterior-based
test is more intuitive, since it corresponds to an explicit
minimization of the same metric function used by non-linear
SLAM systems.

B. Feature Cloud Matching

In a standard landmark-based SLAM system, the position
of each landmark is added to the state vector, and each
observation of that landmark improves the estimate of its
position. The position of the landmarks become correlated,
due to the fact that different sets of landmarks are observed
at different points in time.

In contrast, a feature-cloud matching approach does not
add landmarks to the state vector, and thus does not attempt
to compute optimal estimates of their positions. Instead,
landmark detections from two poses A and B are used to
estimate the motion of the robot between A and B.

Perhaps the most canonical example of feature-cloud
matching is scan-matching: two scans are aligned in order
to recover the motion of the robot, but the scans do not
update a global model of the underlying structure that led to
the observations. Iterative Closest Point (ICP) is often used



for both 2D and 3D [11]. However, ICP methods require
good initial estimates, which are not always available. In this
case, features can be extracted from the data and the features
are explicitly associated with each other. The relationship
between the two poses can then be computed from the feature
correspondence. Feature-cloud matching examples include
matching camera data for navigation [12], and computing
a rigid-body transformation to align two 3D LIDAR point
clouds [13]. The latter case demonstrates how the same
feature-cloud matching process applies to object recognition
(matching an observation to a model).

A feature-cloud matching system is generally a good
choice when many landmarks are detected at every pose.
First, it can be impractical to add them all to the state vector:
adding hundreds of landmarks at every robot pose would
quickly bog down even the fastest SLAM implementations.
Second, it is often unnecessary for accurate mapping: when
many landmarks are detected simultaneously, the rigid-body
transformation relating the two poses tends to be highly over-
constrained, which greatly reduces the impact of noise in
individual observations.

Feature-cloud matching can be performed using JCBB, but
it is expensive to do so. First, the quadratically-increasing
cost of incrementally computing the Mahalanobis distance
at each level in the interpretation tree quickly becomes a
bottleneck. Second, the depth of the interpretation tree is
equal to the number of observations, which can measure in
the hundreds.

C. Incremental Posterior Joint Compatibility

The posterior joint compatibility test suggests an alter-
native approach for performing data association on feature
clouds. The basic idea is to exploit the fact that feature
observations are conditionally independent given the rigid-
body transformation that relates poses A and B. In other
words, the critical quantity that needs to be estimated is
the rigid-body transformation T that projects points from
coordinate frame B into coordinate frame A. Everything else
needed to compute the posterior joint compatibility can be
recovered once T is known.

Our approach is summarized below. For clarity, we provide
example matrix and vector dimensions assuming that a robot
is operating in the plane, i.e., that rigid-body transformations
have three degrees of freedom and that landmarks are 2D
point features; however, our method is not limited to this
case.

1) Assume a prior on T , or alternatively, descend suffi-
ciently far down the interpretation tree such that an
initial solution to T can be computed. The state vector
is 3× 1 and the covariance matrix is 3× 3.

2) At level i of the interpretation tree:
a) Initialize a landmark based on observation i from

pose A. This enlarges the state vector to 5×1 and
the covariance to 5× 5. Because this observation
was made from position A, it does not depend
on T . Consequently, the covariance matrix will
be block diagonal.

b) When associating observation i from pose A
with observation j from pose B, perform an
EKF-like update. This will update the posterior
value of T and the landmark location. Because
the observation model is a function of both T
and the landmark position, the covariance matrix
becomes dense.

c) We do not need to maintain a full state estimate
over T and the landmark position, so we now
marginalize out the landmark position. The state
vector is now reduced to its original size of 3×1.

This method incrementally computes the posterior rigid-
body transformation T as we traverse the interpretation tree.
Critically, the computational time required at each node in
the tree is constant, as opposed to quadratically increasing
with JCBB1.

An advantage of this approach is that the posterior is
improving in quality as we travel down the interpretation
tree. This means that if the initial estimate of T was poor,
JCBB might encounter significant error due to linearization
effects. Because JCBB does not update the prior as it
traverses the interpretation tree, this error will affect every
computation in the tree. With the approach above, the quality
of the estimate improves as we traverse the tree, decreasing
the effect of linearization errors.

However, in order to use this method in a branch-and-
bound type of search, we need to be able to compute the
posterior χ2 at each level of the tree. This might seem to be
problematic, since we have marginalized-out the posterior
positions of the landmarks. However, as we’ve shown previ-
ously, the desired χ2 error can be computed as a sum of the
χ2 of both individual sets of observations with respect to the
posterior. In other words, the posterior χ2 can be computed
in terms of the posterior T using the following procedure:

1) Compute the χ2 error associated with the prior on T
(characterized by mean µT and covariance ΣT ), χ2

T =
(x− µT )

TΣ−1
T (x− µT ).

2) For each associated pair of observations i and j

a) Compute the posterior position of the landmark
given the two observations and T . We do this
by projecting observation j into coordinate frame
A using rigid-body transformation T . Note that
for the purposes of this projection, T has no
uncertainty: it is already the desired posterior
transformation.

b) Combine the uncertain observation i and the
projected uncertain observation j using an EKF
update-like step.

c) Compute the χ2 of both observations with respect
to this posterior, and add it to the total.

3) Return the sum of all χ2 terms computed.
Note that each time we wish to compute the χ2 error for

the set of data associations, we re-compute the posterior po-

1The computational complexity can be further reduced by modifying the
EKF update step so that the values discarded during marginalization are
never actually computed.



sitions for each landmark. This is because the posterior value
of T is updated at each level of the tree, and this affects the
χ2 error associated with each of the landmark pairs. If we had
not marginalized out the landmark positions at each level of
the tree, this re-computation would not be necessary. Despite
the seeming inefficiency of this procedure, we have traded
the quadratic cost of maintaining the landmark posteriors for
a linear cost associated with the algorithm above.

In summary, the IPJC algorithm follows the same general
pattern as JCBB; an interpretation tree is constructed, and a
search is conducted to find the best set of data associations.
The principle difference is that the χ2 error is computed
in terms of the posterior, rather than the prior. On linear
problems, IPJC computes exactly the same result, but IPJC
produces better quality results on non-linear problems due
to the steady improvement in the quality of the posterior.
Even more usefully, we show that by formulating the χ2 in
terms of the posterior, the complexity of the computations
performed at each node can be reduced from quadratic
asymptotic complexity to linear.

D. IPJC-Fast

The dominant computational cost of IPJC results from
constantly recomputing the posterior positions of the land-
marks and the resulting χ2 scores. We now describe an
improvement to IPJC that dramatically decreases computa-
tional complexity without compromising the accuracy of the
method.

The essential observation is that the χ2 strictly increases
as we progress down the interpretation tree. (This follows
from the fact that, at each level of the tree, we compute
the state estimate with the minimum χ2 error. Any future
modifications to the state estimate can only increase the
error.)

During the first few data associations, the state estimate
for T often changes significantly. But as we traverse farther
down the interpretation tree, T becomes more confident and
the state changes grow smaller. As a result, the χ2 for earlier
observations do not change very much.

This suggests a simple strategy: instead of recomputing the
χ2 cost of each observation at every node in the tree, simply
cache the values from the previous level. The resulting χ2

estimate will be strictly smaller than the true χ2. If this
lower-bound of the χ2 cost is greater than the χ2 threshold
used in the branch-and-bound search, the sub-tree rooted at
that node can be pruned.

Recall also that the branch-and-bound search also prunes
nodes whose χ2 error is worse than the best-known solution.
Whenever a node appears to be the new “best” solution, we
need to recompute the correct χ2 error in order to ensure
that it is correct.

As our results demonstrate, this “lazy” strategy pays off:
this algorithm, which we call IPJC-Fast, produces exactly the
same results as IPJC, but does so in a fraction of the time.
Neglecting the occasional need to recompute the full χ2 cost,
the asymptotic complexity at each node in the interpretation

tree is now O(1). This is in comparison to the quadratic costs
of JCBB.

IV. RESULTS

A. Simulation Results

In this experiment, and the other synthetic experiments that
follow, we simulated a planar robot operating in a field of
randomly-placed landmarks. In the linear experiments, the
robot has no orientation (or equivalently, has a “perfect”
compass) and observes the distance in the x̂ and ŷ direc-
tions to landmarks. In the non-linear experiments, the robot
acquires range-bearing observations. The sensor range and
obstacle density are configured so that around 15 landmarks
are visible from any given position. The robot trajectory is
sampled such that, between adjacent poses, there are around
10 matching landmarks.

B. Accuracy in comparison to the ideal χ2 distribution

We now wish to demonstrate that IPJC computes better
estimates of the true compatibility cost in non-linear prob-
lems. Our methodology relies on synthetic datasets in which
the magnitude of noise and data association can be known
with certainty. In this case, the compatibility cost of the true
data associations should obey a χ2 distribution.

Fig. 2 shows histograms of the computed compatibility
cost on a large number of trials versus the ideal distribution
(given by a χ2 distribution of the appropriate parameters).
Results are shown for JCBB, PJC, and IPJC, for both
low-noise and high-noise situations. All algorithms produce
reasonable results in low-noise situations, which is sensible
since linearization effects are minimized when noise is low.

However, in high-noise situations, the performance of the
algorithms is radically different. IPJC’s compatibility costs
follow the correct distribution much more closely than either
JCBB or PJC. (Recall that PJC does not incrementally update
the posterior, and so does not have the robustness to noise
that IPJC has.)

We can quantify the similarity of the histograms to
the ideal χ2 distributions by computing the likelihood of
sampling the empirical distribution from the ideal distri-
bution. These likelihoods substantiate our claims: IPJC’s
log-likelihood is -110.9, whereas JCBB’s log-likelihood is
-5748.6.

It is clear from Fig. 2 that JCBB has a tendency to
over-estimate the compatibility cost of true data associations
due to the effects of non-linearities. This effect is further
demonstrated by Fig. 3, which plots the compatibility costs
computed by our method versus JCBB. The high compati-
bility cost peaks computed by JCBB exceed the χ2 threshold
and result in false negative data associations. In high-noise
settings, JCBB incorrectly rejects many of the correct data
associations.

C. False vs True Positives

False negatives are problematic since they deprive a
SLAM solution of information that could improve the quality
of the map. However, false positives can be catastrophic,



JC
B

B

(a) k = 5, likelihood = -56.6 (b) k = 15, likelihood = -5748.6

PJ
C

(c) k = 5, likelihood = -88.1 (d) k = 15, likelihood = -12153.2

IP
JC

(e) k = 5, likelihood = -40.1 (f) k = 15, likelihood = -110.9

Fig. 2. Compatibility costs versus the ideal distribution. Given ground
truth, it is possible to determine the distribution of compatibility costs
that a data association algorithm should compute; this ideal distribution is
shown as a red line. For each algorithm we plot the empirical distribution
for two noise levels (algorithms span across rows; noise levels span
columns). At low noise levels (left column), each algorithm does fairly well.
However, at higher noise levels (right column), IPJC is dramatically more
accurate. The log likelihood is shown in each sub-caption and quantifies the
similarity between the empirical and ideal distribution; numbers closer to
zero represent greater similarity.

leading to divergence. We show the false positive and true
positive rates in Fig. 4. The performance of the algorithms is
plotted as a function of the noise magnitude, which increases
in the x axis. The figure demonstrates that IPJC and IPJC-
Fast produce higher fidelity results: both lower false positive
rates and higher true positive rates. Users can trade-off
performance in these categories by adjusting the χ2 data
association threshold.

We have included Sequential Compatibility Nearest
Neighbor (SCNN), which greedily matches features one at
a time (see [2] for more details). We have also included
RANSAC [14] for comparison. For RANSAC, we report re-
sults for the consensus threshold that maximized RANSAC’s
performance, and for two different iteration limits: one which
maximized accuracy (15000), and a second that represents a
reasonable compromise between quality and speed (5000).

D. Computational Cost

We now consider the computational cost of our methods
versus other data association methods. Fig. 5 demonstrates
that IPJC-Fast is consistently faster than JCBB, and that it

Fig. 3. Comparison of joint compatibility costs. Correct hypotheses are
used to calculate the compatibility costs in the proposed methods and
JCBB for two different noise levels. Linearization effects cause JCBB and
PJC to dramatically over-estimate the compatibility cost, which ultimately
causes errors in data association. IPJC computes lower and more accurate
compatibility costs.

does not suffer from the spikes in computational complexity
arising from linearization error that affect JCBB.

SCNN, as one of the simplest possible data association
algorithms, is the fastest method. However, it produces
significantly inferior data associations.

The time complexity of JCBB and IPJC-Fast are depen-
dent on the noise level in the problem: as noise increases,
more data association hypotheses appear plausible. As a re-
sult, more nodes in the interpretation tree must be expanded.
As shown by Fig. 6, IPJC and IPJC-Fast are both faster
in absolute terms, and exhibit slower growth in time. As
expected, SCNN and RANSAC are unaffected by the noise
level.

E. Victoria Park

Finally, we demonstrate our algorithm on a real-world
dataset: Victoria Park. We use the standard tree detection
method described in [15] for landmark observations. We
established ground truth based on the minimum-error con-
figuration using manually-verified data associations.

In order to make the fairest possible comparison to
RANSAC, we tuned the RANSAC parameters to optimize
its performance. Beginning with a very large number of
iterations, we searched for the consensus threshold that
minimized the error in the map, arriving at a value of



False Positive Rate

True Positive Rate

Fig. 4. False and true positive rates. False positives can cause catastrophic
errors, but a high true positive rate is necessary to produce accurate maps.
For a given χ2 threshold, IPJC generates fewer false positives (excluding
RANSAC) and more true positives than the other methods. Note that IPJC
and IPJC-Fast produce precisely the same data. While RANSAC produces
fewer false positives at high noise levels, this comes at the cost of much
higher computational costs.

1.0 m. We then reduced the number of iterations in order
to improve runtime until the quality of the map started
increasing rapidly. In this way, we arrived at 5000 RANSAC
iterations, which is sensible given that each pose observes
around 15 landmarks, and two associations are required to
compute a rigid-body transformation.

F. Victoria Results

We built maps using several different data association
algorithms and then compute the posterior map using a sparse
Cholesky factorization method [16].

TABLE I
VICTORIA PARK MAP ACCURACY. The mean squared error is computed

versus a hand-annotated ground truth. IPJC and IPJC-Fast, which produce
the same results, are the most accurate of the tested methods.

SCNN RANSAC JCBB PJC IPJC IPJC-Fast
X Diverged 1.0470 0.5334 0.5731 0.2159 0.2159
Y Diverged 2.0367 0.9017 0.9934 0.5801 0.5801
θ Diverged 0.0074 0.0002 0.0001 0.0001 0.0001

The resulting maps are shown in Fig. 7. SCNN makes
data association errors that cause the maps to diverge. The

Fig. 5. Computational complexity. Spikes occur when large numbers of
features are detected. SCNN is the fastest method, but its accuracy makes it
unusable in most problems. IPJC-Fast consistently outperforms JCBB and
RANSAC.

Fig. 6. Computational complexity versus noise level. Joint compatibility
methods (including IPJC) tend to require more computation in high noise
environments, since more hypotheses appear plausible. However, the growth
rate for IPJC-Fast is much lower than for JCBB. RANSAC’s complexity is
independent of the level of noise, as expected.

remaining methods, RANSAC, JCBB, PJC, IPJC, and IPJC-
Fast produce visually indistinguishable maps. However, the
maps are not identical: due to differing true and false positive
rates, the quality of the maps varies between methods. Table I
shows the mean squared error for the various methods. IPJC-
Fast (which produces the same results as IPJC, just faster)
produces a higher-quality result than the other methods.

These performance differences can be explained by the
true and false positive rates; see Table II. IPJC and IPJC-
Fast have the highest true positive rate and the lowest false
positive rate of any of the methods considered.

We also show the computational costs associated with
the different data association methods in Fig. 8. Naturally,
SCNN is the fastest (though its quality is poor); IPJC-Fast
outperforms all other methods.

TABLE II
VICTORIA PARK TRUE/FALSE POSITIVE RATES. On this real-world data,
IPJC and IPJC-Fast outperform all other methods in both true positives

and false positives.

SCNN RANSAC JCBB PJC IPJC IPJC-Fast
True pos. 0.2410 0.9132 0.9565 0.9623 0.9818 0.9818
False pos. 0.0608 0.0121 0.0044 0.0018 0.0004 0.0004



(a) SCNN (b) RANSAC

(c) JCBB (d) PJC, IPJC, IPJC-Fast

Fig. 7. Victoria Park posterior maps. We used each data association
algorithm to produce a pose graph that was then optimized using sparse
Cholesky decomposition. The graph generated by SCNN fails to converge
due to erroneous data associations. The remaining methods generated
visually reasonable graphs (visually indistinguishable in the case of PJC,
IPJC, and IPJC-Fast), though a numerical comparison to ground-truth shows
that IPJC-Fast’s map was the most accurate.

Fig. 8. Victoria Park Computational Complexity. IPJC-Fast was the fastest
of the methods that produced a reasonable map. SCNN ran in less time, but
the resulting map diverged due to data association errors.

V. CONCLUSION

We have presented IPJC-Fast, a new method for comput-
ing data associations that is both fast and accurate. It is
equivalent to the gold-standard JCBB on linear problems,
but is formulated in terms of the posterior distribution. It
exploits the probabilistic structure present in feature cloud
matching, a task common in both SLAM and in object
recognition, to achieve significant speed savings over JCBB.
Further, by updating the posterior distribution at each level
of the interpretation tree, IPJC-Fast computes more accurate
compatibility costs.

We demonstrated IPJC-Fast’s performance in both simu-
lation and on real data. With the help of ground-truth data,

we were able to show that the accuracy of the compati-
bility scores were significantly more consistent with those
predicted by a χ2 distribution. We also demonstrated our
method on the Victoria Park dataset, illustrating that it is
effective on real-world data.

On feature-cloud matching problems, IPJC-Fast rep-
resents significant improvements over existing methods,
including JCBB, RANSAC, and SCNN. Reference im-
plementations are available at the authors’ website,
http://april.eecs.umich.edu.

VI. ACKNOWLEDGMENTS

This work was supported by NSFC grant 61105090 and
U.S. DoD Grant FA2386-11-1-4024.

REFERENCES

[1] U. Frese, “Closing a million-landmarks loop,” in In: Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems,
Beijing. submitted, 2006, pp. 5032–5039.

[2] J. Neira and J. D. Tardos, “Data association in stochastic mapping
using the joint compatibility test,” IEEE Transactions on Robotics and
Automation, vol. 17, no. 6, pp. 890–897, December 2001.

[3] T. Bailey, “Mobile robot localisation and mapping in extensive out-
door environments,” Ph.D. dissertation, Australian Centre for Field
Robotics, University of Sydney, August 2002.

[4] E. Olson, “Recognizing places using spectrally clustered local
matches,” Robotics and Autonomous Systems, 2009.

[5] M. Bosse, P. Newman, J. Leonard, and S. Teller, “Simultaneous
localization and map building in large-scale cyclic environments using
the Atlas framework,” International Journal of Robotics Research,
vol. 23, no. 12, pp. 1113–1139, December 2004.

[6] E. Olson, “Robust and efficient robotic mapping,” Ph.D. dissertation,
Massachusetts Institute of Technology, Cambridge, MA, USA, June
2008.

[7] E. Olson, J. Strom, R. Morton, A. Richardson, P. Ranganathan,
R. Goeddel, M. Bulic, J. Crossman, and B. Marinier, “Progress towards
multi-robot reconaissance and the MAGIC 2010 competition,” Journal
of Field Robotics, To appear.

[8] R. Smith, M. Self, and P. Cheeseman, “A stochastic map for uncertain
spatial relationships,” in Proceedings of the International Symposium
of Robotics Research (ISRR), O. Faugeras and G. Giralt, Eds., 1988,
pp. 467–474.

[9] F. Lu and E. Milios, “Robot pose estimation in unknown
environments by matching 2d range scans,” in Proceedings of
the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR), 1994, pp. 935–938. [Online]. Available:
citeseer.ist.psu.edu/lu94robot.html

[10] P. Maybeck, Stochastic models, estimation and control, ser. Mathe-
matics in science and engineering. Academic Press, 1982, no. v.
2.

[11] P. Besl and N. McKay, “A method for registration of 3-d shapes,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 14,
no. 2, pp. 239–256, 1992.

[12] K. Konolige and M. Agrawal, “Frameslam: From bundle adjustment
to real-time visual mapping,” Robotics, IEEE Transactions on, vol. 24,
no. 5, pp. 1066 –1077, oct. 2008.

[13] B. Steder, R. B. Rusu, K. Konolige, and W. Burgard, “Point feature
extraction on 3D range scans taking into account object boundaries,”
in Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA),
2011.

[14] M. Fischler and R. Bolles, “Random sample consensus: A paradigm
for model fitting with applications to image analysis andd automated
cartography,” Communications of the ACM, vol. 24, no. 6, pp. 381–
395, June 1981.

[15] J. E. Guivant, F. R. Masson, and E. M. Nebot, “Simultaneous localiza-
tion and map building using natural features and absolute information,”
Robotics and Autonomous Systems, vol. 40, no. 2-3, pp. 79–90, 2002.

[16] F. Dellaert, “Square root SAM,” in Proceedings of Robotics: Science
and Systems (RSS), Cambridge, USA, June 2005.


