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Urb an reconnaissance and  search-and-rescue 
missions are ideal candidates for multi-robot teams 
due to the potential hazard the missions pose to 
humans and the inherent parallelism that can be 
exploited by teams of cooperating robots. However, 
these domains also involve challenging problems due 
to having to work in complex, stochastic, and partially 
observable environments. In particular, non-uniform 
and cluttered terrain in unknown environments is 
a challenge for both state-estimation and control, 
resulting in complicated planning and perception 
problems. Limited and unreliable communications 

further complicate coordination 
among individual agents and their hu-
man operators. 

To help address the problems, the 
Multi-Autonomous Ground robot In-
ternational Challenge (MAGIC), held 
November 2010 in Adelaide, Australia, 
brought together five teams, including 
nearly 40 robots, to pursue more than 
$1 million in prize money in a competi-
tion organized and funded by the Aus-
tralian government’s Defence Science 
and Technology Organisation (DSTO, 
http://www.dsto.defence.gov.au/MAG-
IC2010/) and the U.S. Army’s Research, 
Development and Engineering Com-
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mand (RDECOM, www.rdecom.army.
mil/). The teams were instructed to ex-
plore and map a large indoor-outdoor 
area while recognizing and neutraliz-
ing threats (such as simulated bombs 
and enemy combatants). Although the 
contest showcased the ability of teams 
to coordinate autonomous agents in 
a challenging environment it also re-
flected the limitations of the state of 
the art in state estimation and percep-
tion (such as map-building and object 
recognition) (see Figure 1). 

MAGIC is the most recent of the 
robotics Grand Challenges, following 
in the tradition of well-known com-

petitions sponsored by the Defense 
Advanced Research Projects Agency 
(DARPA) tracing back to a 2001 U.S. 
congressional mandate requiring one-
third of all ground combat vehicles 
to be unmanned by 2015. Over the 
course of the DARPA challenges, teams 
developed technologies for fully au-
tonomous cars, including the ability 
to drive in urban settings, navigating 
moving obstacles and obeying traffic 
laws.18,19 Moreover, they fostered devel-

 key insights

 � �Human operators can help a robot team 
be more efficient and recover from errors. 

 � �A good state estimate, in the form of a map, 
is the most critical piece of information for 
a team of robots—and the most difficult 
to obtain.

 � �Grand Challenge competitions like  
MAGIC highlight challenging open 
problems and provide a venue for 
evaluating new approaches. 

Figure 1. Team Michigan robots. Michigan deployed 14 custom-made robots  
that cooperatively mapped a 500m × 500m area; each included a color camera  
and laser range finder capable of producing 3D point clouds. 
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opment of new methods for planning, 
control, state estimation, and perhaps 
most important, robot perception and 
sensor fusion. 

Unfortunately, however, these ad-
vances were not mirrored in smaller 
robots (such as those used by soldiers 
searching for and neutralizing impro-
vised explosive devices, or IEDs) or for 
robots intended to help first respond-
ers in search-and-rescue missions. 
Instead, tele-operation, or remote-
joystick control by a human, remains 
the dominant mode of interaction 
(see Figure 2). These real-world sys-
tems pose several challenges not in 
the DARPA challenges: 

Limited/unreliable GPS. The Global 
Positioning System (GPS) is often un-
reliable or inaccurate in dense urban 
environments or indoors. GPS can also 
be jammed or spoofed by an adversary; 
the winning DARPA vehicles relied ex-
tensively on GPS; 

Multi-robot cooperation. Robots are 
individually generally less capable 
than humans, with their potential 

arising from multi-robot deployments 
that explicitly coordinate with one an-
other; and 

Humans in the loop. By allowing hu-
mans to interact with robot teams in 
real time, the system becomes more 
effective and adaptable to changes in 
mission objectives and priorities; this 
ability entails developing visualization 
methods and user-interface abstrac-
tions that allow humans to understand 
and manipulate the state of the team. 

MAGIC focused on increasing the ef-
fectiveness of multi-robot systems by in-
creasing the number of robots a single 
human operator can manage effective-
ly. This is in contrast to more-traditional 
robot systems that typically require one 
or more operators per robot.2 Partici-
pants were required to deploy a team of 
cooperating robots to explore and map 
a hostile area, recognize and catalog the 
location of interesting objects (such as 
people, doorways, IEDs, and cars), and 
perform simulated neutralization of 
IEDs using a laser pointer. Two human 
operators were allowed to interact with 

each robot team, but interaction time 
was measured and used to calculate a 
penalty to each team’s final score. 

The contest attracted 23 teams 
from around the world, a number re-
duced through a series of competitive 
down selects to five finalists invited to 
the final competition at the Adelaide 
Showgrounds, a 500m × 500m area 
including indoor and outdoor spaces. 
Aerial imagery provided by contest or-
ganizers was the only prior knowledge. 
While previous DARPA challenges pro-
vided detailed GPS waypoints describ-
ing the location and topology of safe 
roads, MAGIC robots would have to 
figure out such information on their 
own. Whereas other search-and-res-
cue robotics contests typically focus 
on smaller environments with signifi-
cant mobility and manipulation chal-
lenges (such as the RoboCup Rescue 
League, http://www.robocuprescue.
org/), MAGIC was at a much larger 
scale, with greater focus on autono-
mous multi-robot cooperation.16 

To succeed, a team had to combine 
robot perception, mapping, planning, 
and human interfaces. Here, we high-
light some of the key decisions and 
algorithmic choices that led to Michi-
gan’s first-place finish.14 Additionally, 
we highlight how Michigan’s mapping 
and state-estimation system differed 
from the other competitors, one of the 
key differences setting Michigan apart. 

System Design 
The Michigan system was largely cen-
tralized: A ground-control station near 
the center of the competition area col-
lected data from individual robots, 
fused it to create an estimate of the 
current state of the system (such as 
position of robots and location of im-
portant objects), then used it to assign 
new tasks to the robots. Most robots 
focused on exploring the large compe-
tition area, a task well suited to paral-
lelization. However, other robots were 
able to perform additional tasks (such 
as neutralizing IEDs). The discovery 
of such a device would cause a “neu-
tralize” task to be assigned to a nearby 
robot. Each team’s human operators 
were positioned at the ground-control 
station where they could view current 
task assignments, a map of the operat-
ing area, and (perhaps most important) 
guide the system by vetting sensor data 

Figure 2. Finalist robots. 

(a)

(c)

(b)

(d)

Each team used a unique robot 
platform (in ranked order, 
left to right): Michigan had 14 
custom-built robots; Penn had 
seven custom-built robots; 
the Reconnaissance and 
Autonomy for Small Robots 
team, principally organized by 
Robotics Research LLC and 
QinetiQ, based its seven robots 
on the Talon commercial plat-
form; MAGICian, a coalition of 
Australian schools, adapted 
a commercial base for its five 
robots; and Cappadocia, a co-
alition based mainly in Turkey, 
had six custom-built robots. 
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or overriding task assignments. 
Michigan’s robots received their 

assignments via radio and were re-
sponsible for executing their tasks 
without additional assistance from the 
ground-control station; for example, 
robots used their 3D laser range finder 
to identify safe terrain and avoid ob-
stacles on their own. They were also re-
sponsible for autonomously detecting 
IEDs and other objects. The informa-
tion they gathered (including object-
detection data and a map of the area 
immediately around the robot) was 
heavily compressed and transmitted 
back to the ground-control station; in 
practice, these messages were often 
relayed by other robots to overcome 
the limited range of Michigan’s radios. 
With the newly collected information, 
the ground-control station updated its 
map and user interfaces and computed 
new (improved) tasks for each robot. 
This process continued until the mis-
sion was complete. 

Such a system poses many chal-
lenges: How does the ground-control 
station compute efficient tasks for the 
robots in a way that maximizes the ef-
ficiency of the team? How can humans 
be kept informed about the state of 
the system? How can humans contrib-
ute to the performance of the system? 
How do robots reliably recognize safe 
and unsafe terrain? How do robots 
detect dangerous objects? How can 
the information collected by robots 
be compressed sufficiently so it can be 
transmitted over a limited, unreliable 
communications network? And how 
does the ground-control station com-
bine information from the robots into 
a single globally consistent view? 

Recognizing that many of these 
tasks rely on an accurate, detailed map 
of the world, Michigan focused on fus-
ing robot data into a globally consistent 
view. The accuracy of the map was a pri-
mary evaluation criterion in the compe-
tition, as well as a critical component in 
effective multi-agent planning and the 
human-robot interface; for example, 
where should robots go next if one does 
not know where they are now or where 
they have already been. 

A notable difference between Michi-
gan and the other teams was the accu-
racy of the maps it produced. Map qual-
ity pays repeated dividends throughout 
the Michigan system, with correspond-

ing improvement in human-robot in-
terfaces and planning. The variability 
in map quality from team to team is 
a testament to the difficulty and un-
solved nature of multi-robot mapping. 
Michigan began with a state-of-the-art 
system, but it was inadequate in terms 
of both scaling to large numbers of ro-
bots and dealing with the errors that 
inevitably occur. New methods, both 
automatic and humans in the loop, 
were needed to achieve adequate per-
formance; the following section ex-
plores a few of them. 

Technical Contributions 
While MAGIC posed many technical 
challenges, mapping and state estima-
tion were arguably most critical. Using 
GPS may seem like an obvious starting 
point, but even under best-case condi-
tions, it cannot provide a navigation 
solution for the significant fraction of 
the time robots are indoors. Outdoors, 
GPS data (particularly from consumer-
grade equipment) is often fairly good, 
within a few meters, perhaps. GPS can 
also be wildly inaccurate due to effects 
like multi-path. In a combat situation, 
GPS is easily jammed or even spoofed. 
Consequently, despite having GPS re-
ceivers on each robot, Michigan ulti-
mately opted not to use GPS data, re-
lying instead on its robots’ sensors to 
recognize landmarks. This strategy was 
not universally adopted, however, with 
most teams using GPS in some way. 

Mapping and state estimation. Con-
ceptually, map building can be viewed 
as an alignment problem, with robots 
periodically generating maplets of 
their immediate surroundings using a 
laser scanner. The challenge is to de-
termine how to arrange the maplets so 
they form a large coherent map, much 
like the process of assembling a pan-
oramic photo from a number of over-
lapping photos (see Figure 3). Not only 
can the system assemble a map this 
way but also the position of each of the 
robots, since each is at the center of its 
own maplet. 

Michigan’s state-estimation system 
was based on a standard probabilistic 
formulation of mapping in which the 
desired alignment can be computed 
through inference on a factor graph; 
see Bailey and Durrant-Whyte1 and 
Durrant-Whyte and Bailey7 for a sur-
vey of other approaches. The Michigan 

While MAGIC posed 
many technical 
challenges, 
mapping and  
state estimation 
were arguably  
most critical. 
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particular configuration of the world, 
it predicts the distribution of the sen-
sor; for example, a range sensor might 
return the distance between two vari-
able nodes plus some Gaussian noise 
the variance of which can be charac-
terized empirically. 

Our goal was to compute p(x|z), or 
the posterior distribution of the ma-
plet positions, given all sensor observa-
tions. Using Bayes’s rule, and assum-
ing we have no a priori knowledge of 
what the map should look like (or p(x) 
is uninformative), we obtain: 

p(x|z) α ∏ p(zi|x) (1)

The goal was to find the maplet po-
sitions x that has maximum probabil-
ity p(x|z). Assuming all the edges are 
simple Gaussian distributions of the 
form e(zi – µ)T Σ –1 (zi – µ), this computation 
becomes a nonlinear least-squares 
problem. Specifically, we can take the 
logarithm of both sides, which con-

verts the right-hand side into a sum 
of quadratic losses. We maximize the 
log probability by differentiating with 
respect to x, resulting in a first-order 
linear system. The key idea is that 
maximum likelihood inference on a 
Gaussian factor graph is equivalent to 
solving a large linear system; see Th-
run et al.17 for a more detailed explana-
tion. The solution to this linear system 
yields the position of each maplet. 

The resulting linear system is ex-
tremely sparse, as each edge typically 
depends on only two maplet positions. 
In the Michigan system, each maplet 
was generally connected to from two 
to five other maplets. Sparse linear al-
gebra methods can exploit this spar-
sity, greatly reducing the time needed 
to solve the linear system for x. The 
Michigan method was based on sparse 
Cholesky factorization;6 we could com-
pute solutions for a graph with 4,200 
nodes and 6,300 edges in about 250ms 
on a standard laptop CPU. New data is 

factor graph included nodes for un-
known variables—the location of each 
maplet—and edges connecting nodes 
when something is known about the 
relative geometric position of the two 
nodes. Loosely speaking, an edge en-
codes a geometrical relationship be-
tween two maplets; that is “maplet A is 
six meters east and rotated 30 degrees 
from maplet B”; none of these relation-
ships is known with certainty, so edges 
are annotated with a covariance ma-
trix. A map commonly contains many 
of these edges, with many of them sub-
tly disagreeing with one another. 

More formally, let the position of 
all maplets be represented by the state 
vector x, which can be quite large, as it 
contains two translation and one rota-
tion component for each maplet, and 
there can be thousands of maplets. 
Edges convey a conditional probabil-
ity distribution p(zi|x), where zi is a 
sensor measurement. This quantity 
is the measurement model; given a 

Figure 3. Mapping overview. Individual maplets (a) are matched in a pairwise fashion. 

(a)

The resulting network of constraints can be 
represented through a factor graph similar to 
(c) in which circles represent robot positions 
and squares probabilistic constraints. The 
final map (b) is computed by re-projecting all 
sensor observations according to maximum-
likelihood robot positions. 

(b)

(c)
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always arriving, so this level of perfor-
mance allowed the map to be updated 
several times per second. 

An important advantage of using 
the factor graph formulation is that 
it is possible to retroactively edit the 
graph to correct errors; for example, if 
a sensing subsystem erroneously adds 
an edge to the graph (incorrectly as-
serting that, say, two robot poses are a 
meter apart), we could “undo” the er-
ror by deleting the edge and comput-
ing a new maximum likelihood esti-
mate. Such editing is not possible with 
methods based on, say, Kalman filters. 
In this case, we relied on human opera-
tors to correct these relatively rare er-
rors, discussed later. 

Scan matching and loop validation. 
The Michigan mapping approach de-
pended on identifying high-quality 
edges; more edges generally result in a 
better map since the linear system be-
comes over-constrained, reducing the 
effect of noise from individual edges. 

The system used several different 
methods to generate edges, including 
dead reckoning (based on wheel-en-
coder odometry and a low-cost inertial 
measurement unit, or the set of sen-
sors that measures acceleration and 
rotation of the robot) and visual detec-
tion of other robots using their 2D “bar 
codes,” as in Figure 1.10 But the most 
important source of edges in the Michi-
gan system (by far) was its scan-match-
ing system, attempting to align two ma-
plets by correlating them against each 
other, looking for the translation and 
rotation that maximize their overlap. 
One such matching operation (see Fig-
ure 4) includes the probability associ-
ated with each translation and rotation 
computed in a brute-force fashion. 

This alignment process is compu-
tationally expensive, and in the worst 
case, each maplet had to be matched 
with every other maplet. In practice, 
the robot’s dead-reckoning data can 
help rule out many false matches. But 
with 14 robots operating simultane-
ously, and with each one producing 
a new maplet every 1.4 seconds, hun-
dreds or thousands of alignment at-
tempts per second are needed. 

The Michigan approach to mapping 
was based on an accelerated version of 
a brute-force scan-matching system.11 
The key idea is a multi-resolution 
matching system, generating low-res-

olution versions of the maplets and a 
first attempt to align them. Because 
they are smaller, the alignment is much 
faster. Good candidate alignments are 
then attempted at higher resolution. 

While simple in concept, a major 
challenge was ensuring the low-resolu-
tion alignments did not underestimate 
the quality of an alignment that could 
occur with higher-resolution maplets. 
The Michigan solution relied on con-
structing the low-resolution maplets in 
a special way; rather than apply a typi-
cal low-pass-filter/decimate process 
(which would tend to obliterate struc-
tural details), we used a max-decimate 
kernel to ensure matches between low-
resolution maplets never underesti-
mate the overlap that could result from 
aligning full-resolution maplets. When 
aligning low-resolution maplets, we 
never underestimated the overlap that 
could result from aligning the full-res-
olution maplets. 

Michigan’s earlier scan-matching 
work11 considered two different reso-
lutions, allowing approximately 50 
matches per second. This would be 
adequate for a small number of ro-
bots, but for a larger team, it becomes 
a bottleneck. For MAGIC, we modified 
the approach to consider matches over 
a full pyramid of reduced-resolution 
images that resulted in matching rates 
of approximately 500 matches per sec-
ond. The quality of the resulting map 
ultimately depended on the number 
of matches found, and a higher pro-
cessing rate increases the likelihood 

of finding these matches. Our fast-
matching system was pivotal in keep-
ing up with our large robot team. Other 
teams used similar maplet-matching 
strategies though were not as fast; for 
example, the Australian MAGICian 
team reported its GPU-accelerated sys-
tem was capable of seven to 10 match-
es per second. 

The improvement in our matching 
speed allowed us to consider a large 
number of possible matches in real 
time to support our global map. How-
ever, our state-of-the-art method had 
a non-zero false-positive rate, align-
ing maplets based on similar-looking 
structures, even if the maplets are not 
actually near each other. 

There is a fundamental trade-off be-
tween number of true positives and in-
creased risk of false positives. Increas-
ing the threshold for what constitutes 
a “good-enough” match also increases 
the likelihood that similar looking, 
but physically distinct, locations are 
matched incorrectly. Such false-posi-
tive matches can cause the inference 
method to distort the map to explain 
the error. 

To reduce the false-positive rate to 
a usable level, we performed a loop-
validation step on candidate matches 
before the system could add them to 
the factor graph. The basic idea of 
loop validation is to require that mul-
tiple matches “agree” with each oth-
er.4,12,13 Consider a topological “loop” 
of matches: A match between node A 
and B, another match between B and 

Figure 4. Brute-force search for best maplet alignment. The search space is 3D (two  
translation, one rotation) represented as a series of 2D cross-sections. 

Bright areas 
indicate good 
alignment; finding 
the best match 
quickly is critical 
in large-scale 
mapping systems, 
with resulting 
matches becoming 
edges in the factor 
graph. 
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C, and a third match between C and 
A. If the matches are correct, then the 
composition of their rigid-body trans-
formations should approximately be 
the identity matrix. When this occurs, 
the system adds the matches to the 
factor graph. 

Human-robot interfaces. In sim-
ple environments (such as an indoor 
warehouse), the combination of 
loop-validation and automatic scan-
matching presented here were suf-
ficient for supporting completely au-
tonomous operation of Michigan’s 
robot team (see Figure 5). However, in 
a less-structured environment (such 
as many of the outdoor portions of 
MAGIC 2010), mapping errors would 
still occur; for example, the MAGIC 
venue included numerous cable con-
duits that caused robots to unknow-
ingly get stuck, causing severe dead-
reckoning estimation error. At the 
time of MAGIC 2010, Michigan’s sys-
tem was not able to handle such prob-
lems autonomously. 

However, map errors are relatively 
obvious to human operators. Michigan 
thus developed a user interface that 
allowed human operators to look for 

errors and intervene when necessary. 
With new (validated) loop closures be-
ing added to the graph at a rate of two 
to three per second, a human operator 
could easily be overwhelmed by asking 
for explicit verification of each match. 

Instead, human operators would 
monitor the entire map. When an er-
ror occurred (typically visible as a 
distortion in the map), the operator 
could “roll back” automatically added 
matches until the problem was no lon-
ger present. The operator could then 
ask the mapping system to perform an 
alignment between two selected ma-
plets near where the problem had been 
detected. This human-assisted match 
served as additional a priori informa-
tion for future autonomous matching 
operations, making it less likely the 
system would repeat the same mistake. 

Michigan found this approach, 
which required only a few limited in-
teractions to remove false positives, a 
highly effective use of humans to sup-
port the continued autonomy of its ro-
bots’ planning system. Michigan was 
the only team to build a user interface 
that allowed direct supervision of the 
real-time state estimate; other teams 

handled failures in automatic state es-
timation by requiring humans to track 
the global state manually, then inter-
vene at the task-allocation level. Early 
versions of the system lacked a global-
mapping system, with human opera-
tors providing separate map displays 
for each robot. Michigan’s experience 
with this approach indicated that op-
erators could not effectively handle 
more than five or six robots this way. 
Maintaining a global map is critical to 
scaling to larger robot teams, and the 
Michigan user interface was a key part 
of maintaining map consistency. 

Evaluation 
The main evaluation metrics for an 
autonomous reconnaissance system 
are quality of the final map produced 
and amount of human assistance re-
quired to produce it and were also 
the primary metrics the MAGIC orga-
nizers used to determine the winner 
and subsequent ranking of the final-
ists, as in Figure 2. While the specific 
performance data used in the compe-
tition was not made public, we pres-
ent selected results we obtained by 
processing our logs; we also compare 
with other teams’ published results 
where possible. 

Lacking detailed ground truth for 
the MAGIC venue, the best evaluation 
of map quality is necessarily subjec-
tive; Figure 6 compares post-pro-
cessed maps for the Michigan team 
against the mapping software of MA-
GICian (fourth place) applied to the 
data collected by the Penn team (sec-
ond place); additionally, the map pro-
duced by the Michigan system (inset), 
includes distortions resulting from er-
roneous matches that, in the interest 
of time, the human operators chose 
not to correct. This result shows that 
high-quality maps can be produced in 
this domain; Michigan’s competition-
day results showed our state estima-
tion was sufficiently good to be useful 
for supporting online planning. The 
system allowed us to completely ex-
plore the first two phases of the com-
petition while simultaneously per-
forming mission objectives relating 
to dynamic and static dangers (such 
as IEDs and simulated mobile enemy 
combatants). 

We would also would like to mea-
sure the frequency of human inter-

Figure 5. Indoor-storage-warehouse map. In uncluttered environments posing few  
mobility challenges, Michigan’s team of 14 robots could explore and map with little  
human intervention. 
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action required to support our state 
estimation system during MAGIC. 
However, Michigan did not collect the 
data necessary to evaluate this metric 
during our run; we thus replicated 
the run by playing back the raw data 
from the competition log and having 
our operator reenact his performance 
during the competition. These condi-
tions are obviously less stressful than 
competition but are still representa-
tive of human performance. The re-
sult (see Figure 7) was the addition 
of 175 loop closures, on average two 
interactions per minute, which gen-
erally occurred in bursts. However, at 
one point, the operator did not inter-
act with the system for 5.17 minutes. 

Our evaluation shows we were able 
to support cooperative global state es-
timation for a team of autonomously 
navigating robots using only a single 
part-time operator. Yet there remain 
significant open problems, including 
how to reduce human assistance even 
further by improving the ability of the 
system to handle errors autonomous-
ly. Additional evaluation of the sys-
tem, as well as technical descriptions 
of the other finalists, can be found 
elsewhere, including in Boeing et al.,3 
Butzke et al.,5 Erdener,8 Lacaze et al.,9 
and Olson et al.14 

Discussion 
MAGIC’s focus was on increasing the 
robot-to-human ratio and efficiently 
coordinating the actions of multiple 
robots. Key to reducing the cognitive 
load on operators is how to increase 
the autonomy of robots; for a given 
amount of cognitive loading, more 
robots can be handled if they simply 
require less interaction. We identified 
global state estimation as a key tech-
nology for enabling autonomy and be-
lieve the mapping system we deployed 
for MAGIC outperforms the systems 
of our competitors. While this was 
one of the key factors differentiating 
Michigan from the other finalists, it 
was not the only important point of 
comparison. In fact, many of the other 
choices we made when developing the 
system also had a positive effect on 
our performance. 

In particular, we made a strategic 
decision early on that we would em-
phasize a large team of robots. This is 
reflected in the fact that we brought 

twice as many robots to the competi-
tion as the next largest team. This strat-
egy ultimately affected the design of all 
our core systems, including mapping, 
object identification, and communica-
tion. Given that we had a finite budget, 
it also forced us to deploy economical 
robot platforms with only the bare ne-
cessities in sensing to complete the 
challenge. The result was our robots 
were also the cheapest of any of the fi-
nalists (by a significant margin), cost-
ing only $11,500 each. 

One approach to detecting danger-
ous objects is to, say, transmit video 
feeds back to human operators and 

rely on them to recognize the hazard. 
Given a design goal of maximizing 
the number of robots, such a strat-
egy is unworkable; there is neither 
the bandwidth to transmit that many 
images nor could humans be ex-
pected to vigilantly monitor 14 video 
streams. The system simply had to 
be able to detect dangerous objects 
autonomously, whereas other teams 
with fewer robots could be success-
ful with less automation. At the same 
time, handling more tasks autono-
mously also meant our human op-
erators had more time to assist with 
mapping tasks. 

Figure 6. Minimally post-processed maps from Michigan’s robots (a) and MAGICian’s  
mapping algorithm using Penn’s data (b) from Reid and Brauni.15 The map produced online 
by the Michigan robots is inset top-left. 

(a)

(b)
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An interesting question relates to 
the optimal size of the robot team; 
larger teams have greater parallelism-
exploiting potential but also place 
greater demands on human operators. 
These demands are strongly depen-
dent on the reliability and autonomous 
capabilities of the robots; less-capable 
robots would place greater demands 
on the operators. An area of future 
work involves trade-offs between the 
size of a robot team and the cognitive 
load on human operators and how the 
autonomous capabilities of the robots 
affect this trade-off. 

Conclusion 
MAGIC resulted in significant prog-
ress toward urban search using teams 
of robots aided by human operators. 
Michigan’s approach, emphasizing 
accurate mapping, helped maximize 
the autonomous capabilities of its 
robots and maintain the operator’s 
situational awareness, allowing two 
humans to effectively control a larg-
er team of robots. However, MAGIC 
also highlighted the shortcomings of 
state-of-the-art methods. It remains 
difficult to maintain a consistent map 
for large numbers of robots; Michi-
gan’s competition-day maps still 
show distortions due to errors in the 
system’s matching capability. The sys-
tem coped with these errors at the cost 
of greater operator workload we con-
tinue to target in our ongoing work. 

Competitions like MAGIC highlight 
open technological challenges in areas 
often viewed as “solved.” MAGIC thus 

brought the prospect of cooperative 
teams of robots and humans closer 
than ever, but also highlighted the chal-
lenging research problems that remain. 
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Figure 7. Map interaction experiment. Michigan’s mapping operator reenacted the  
supporting role for the phase 2 dataset to measure the frequency of interaction required  
to maintain a near-perfect state estimate; see Figure 6 for resulting map. The human  
workload was modest, averaging only two interactions per minute. 
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