
M3RSM: Many-to-Many Multi-Resolution Scan Matching

Edwin Olson1

Abstract— We describe a new multi-resolution scan matching
method that makes exhaustive (and thus local-minimum-proof)
matching practical, even for large positional uncertainties.
Unlike earlier multi-resolution methods, in which putative
matches at low-resolutions can lead the matcher to an incorrect
solution, our method generates exactly the same answer as a
brute-force full-resolution method. We provide a proof of this.
Novelly, our method allows decimation of both the look-up
table and in the point cloud, yielding a 10x speedup versus
contemporary correlative methods.

When a robot closes a large-scale loop, it must often consider
many loop-closure candidates. In this paper, we describe an
approach for posing a scan matching query over these candi-
dates jointly, finding the best match(es) between a particular
pose and a set of candidate poses (“one-to-many”), or the best
match between two sets of poses (“many-to-many”). This mode
of operation finds the first loop closure as much as 45x faster
than traditional “one-to-one” scan matching.

I. INTRODUCTION

A critical step in virtually all modern mapping systems is

to identify places that a robot has visited more than once.

Such a “loop closure” is the primary mechanism through

which Simultaneous Localization and Mapping (SLAM)

systems prevent the unbounded accumulation of error.

A typical approach with laser range-finder data is to

compute the posterior uncertainty of the robot’s current

position (usually in the form of a covariance ellipse) and

then to construct the set of previously-visited places that

fall within that ellipse. A “scan matcher” is then used to

attempt to align the robot’s current laser scan with each

historical scan in the set. If there are H historical poses,

H scan matching operations are performed, and H possible

alignments (or “loop closure hypotheses”) result. Most of

these are wrong: the scan matcher tries to find the best

possible alignment between two laser scans, but it is often

possible to find a plausible match between scans acquired at

distinct places.

Additional validation of these scan-matcher loop closures

candidates is part of virtually every practical system, either

through an explicit validation system or through robust

optimization methods that intrinsically reject incorrect loop

closures [18], [13]. In this paper, however, we will focus on

the generation of these hypotheses. Further, we will focus

on the challenging case where the positional uncertainty is

very large (e.g., large loop closures and kidnapped robots),

though our approach also applies to scenarios with smaller

*This work was funded by the DARPA YFA program (D13AP00059).
1Edwin Olson is Associate Professor of Computer Science and Engi-

neering at the University of Michigan, 2260 Hayward St, Ann Arbor MI
ebolson@umich.edu

Fig. 1. Multi-resolution image pyramid. A high resolution cost function
(bottom) is successively reduced in dimension forming an image pyramid.
By constructing the pyramid carefully, alignment scores computed using
low-resolution levels can be used to prune the search space, leading to
large speedups. The region from which the cost function was generated is
visible in the map behind (green).

uncertainties (e.g. “laser odometry” and environments in

which loop closures are relatively common).

This matching process is computationally expensive, and

can be an even greater bottleneck than the SLAM optimiza-

tion itself. In our multi-robot mapping system, over a dozen

robots explored an area simultaneously [14]. The robots oper-

ated largely independently (so as to explore the environment

as quickly as possible) but thus quickly accumulated large

positional uncertainties with respect to their teammates. Each

robot’s position estimate could overlap dozens or hundreds

of historical poses of its teammates, and new poses arrived

about every second. In short, it is reasonable to want to

examine hundreds of candidate alignments per second.

Because of the large positional uncertainties that arise in

loop-closing scenarios, iterative local optimization methods

like ICP often become stuck in local minima— failing

to produce reasonable alignments even when the scans do

overlap. Unfortunately, scan matching methods (which are

desirable due to being immune to these local minima), can

be impractically slow when the search windows are large.

This paper makes several contributions towards these

problems:

• We describe a multi-resolution matcher (an improve-

ment over earlier 2-level matchers) that produces identi-

cal results to brute-force methods; this method achieves

significant speed-ups versus 2-level methods.

• We show how matching can be further accelerated by

decimating not only the look-up table (as above), but

also decimating the query points. This provides addi-



tional speedups, while still maintaining the correctness

guarantee.

• We introduce the idea of “many-to-one” and “many-

to-many” matching, where multiple queries are posed

simultaneously, and show that our scan matching ap-

proach can solve these much faster than examining these

queries individually.

II. RELATED WORK

Many common approaches to scan matching are variants

on Iterative Closest Point (ICP) [1], [11], [20] and Itera-

tive Closest Line (ICL) [5], [2], [3]. In these approaches,

correspondences between two scans are explicitly computed,

allowing a rigid-body transformation to be computed [8]. A

major disadvantage of these methods is their susceptibility

to local minima; poor initial estimates lead to incorrect data

associations and divergence [12].

Correlation based methods [10], [19] search for a rigid-

body transformation (without computing correspondences)

that projects one set of LIDAR points (the query scan) on top

of a reference map. This reference map may be known in

advance (a localization problem), or may be derived from

a LIDAR scan earlier in the robot’s trajectory (a SLAM

problem). The reference map is generally implemented as

a look-up table that assigns a cost for every projected

query point. Commonly, LIDAR points from the reference

scan are rendered into this cost map using a blurry kernel

that approximates the uncertainty of the laser data. Our

previous work [12] examined correlative matching, both with

a Graphics Processing Unit (GPU) and with a two-level multi

resolution method. We showed that scan matching could be

made fast enough for use in a laser odometry system, but

processing time for loop closures was still problematic.

2D laser range data, the focus of this paper, is often

ambiguous: it is common to find distinct places whose laser

range data appears to match. In contrast, vision-based meth-

ods like FAB-MAP [6] exploit the variation in appearance

between places in order to better distinguish them. However,

these methods generally do not produce the precise metrical

positioning information needed for many applications. In this

sense, the proposed method is synergistic with visual feature

methods in that they benefit from their culling of hypotheses

but produce more precise positioning information.

Scan matching methods can also be applied to visual data,

though additional complications arise due to the effects of

perspective projection [15].

A wide variety of other scan matching approaches have

been considered, including the use of polar coordinates [7],

histogram-based methods [16], feature-based methods [2],

and Hough transforms [4].

III. APPROACH

A. Correlative Scan Matching Overview

The basic approach to correlative scan matching is to find

the translation and rotation that project a set of points into

a “good” configuration. Configurations are scored according

to a cost map (see Fig. 1) that is commonly generated from

another scan. These cost maps often have a probabilistic in-

terpretation: they approximate the log likelihood of observing

a point at every location.

More concretely, suppose we are matching two scans taken

from two locations. Suppose that A and B are 3 × 3 rigid-

body transformation matrices that project points from the

robot’s coordinate frame into global coordinates. Let T be

the transformation that projects points from B’s coordinate

system into A’s coordinate system. In this case, the LIDAR

scan acquired at position A is the “reference” scan, and the

scan acquired at B is the “query” scan. We then have:

T = A−1B (1)

Suppose L() is a function which takes a point (in A’s

coordinate frame) and returns a cost associated with ob-

serving a point at that position. Let us assume that N
points are observed from position B, and write them as

3 × 1 homogeneous vectors pi. Assuming independence

of individual points, the cost associated with a particular

transformation matrix T is the sum of the costs of each

transformed point. The best transformation T ∗ is then:

T ∗ = argminT
∑

i∈N

L(Tpi) (2)

The function L() is usually implemented by rasterizing

the points observed in coordinate frame A into a 2D look-

up table (effectively an image). Points are rasterized with a

“blurry” kernel that approximates the noise in the observed

points. When this kernel is quadratic as a function of

the distance from the observed point, it corresponds to a

Gaussian noise model. Further, because the look-up table

has finite precision, costs saturate (at 255, for example),

effectively making the cost function robust.

Finding the best alignment T ∗ is conceptually simple:

one can simply try a large number of transformations,

evaluating the cost for each one. But the search space is

three-dimensional, including translations in x and y, and

rotations. As a result, the computational complexity can grow

very rapidly with larger search windows.

B. Multi-Resolution Search

The basic idea of a multi-resolution scan matcher is to

begin searching for T ∗ using a coarser grid of candidate

transformations, and to use the results of this low-resolution

search to inform a search at higher resolutions. This is

advantageous because the search at low-resolution is much

faster than the search at high resolution. The challenge is

to ensure that the results of the low-resolution search are

consistent with the optimal answer T ∗.

In previous work, we used a two-level multi-resolution

scheme in which the two levels differed in resolution by a

factor of 10 [12]. In this work, we generalize this to a multi-

level pyramid and a more flexible search strategy oriented

around a heap data structure.

The heap contains search tasks for specific rotations, a

range of translations to consider, and a resolution level. For

each task, we compute an optimistic bound on the maximum



likelihood. The main search loop simply extracts the most

promising task from the heap: if that task is at the highest

resolution, the search is complete; otherwise, the task is

expanded into child tasks, each of which are evaluated at

the next higher resolution level. The search is effectively a

best-first search [17], though the “path” through the space

of T is a purely artificial construct whose sole purpose is to

provide a tree-like partitioning of the search space.

The novelty of our approach is in deriving a method for

bounding the cost over a range of values of T , allowing

cost estimates to be computed for non-terminal nodes in

the search tree. Further, our method computes these bounds

quickly using a multi-resolution lookup table.

C. Computing optimistic estimates

Given a set of points pi and a function L() with finite

support that maps integer arguments to real values, let

us consider the problem of finding an integer-valued 1D

translation t∗ such that:

t∗ = argmaxt
∑

i

L(pi + t− o) (3)

The function of parameter o is to simplify the implemen-

tation of L as a look-up table using an array. Most languages

only support positive array indices, and so the value o is set

to be index of the first non-zero value of L.

Assuming that we will search over a large range of t, it is

convenient to decompose this search into sub-searches, each

covering a range of D values. Let us consider the search

within a sub-region defined by an integer j:

t ∈ T = [Dj,Dj +D − 1] (4)

In other words, we are considering a set of translations of

size D that is “aligned” to an even multiple of D. Obviously,

any search range for t can be enclosed by one or more such

regions of size D.

We now construct a “low resolution” version of L, picking

an offset od ≤ o such that od = Dk for some integer k:

LD(y) = maxx∈X L(x),

X = [Dy + od − o,Dy + 2D − 2 + od − o] (5)

Claim: A single lookup in LD can conservatively replace

D lookups in L. Specifically:

∑
i
LD(⌊pi/D⌋+ j − od/D) ≥ maxt∈T

∑
i
L(pi + t− o)

T = [Dj,Dj +D − 1] (6)

Proof: First, the claim is true if the sum and max on the

right hand side are interchanged: picking a different t for

each point will surely result in at least as good a score as

picking a single t for every point.

∑
i
LD(⌊pi/D⌋+ j − od/D) ≥

∑
i
maxt∈T L(pi + t− o)

T = [Dj,Dj +D − 1] (7)

This bound holds if we drop the
∑

from both sides, thus

requiring every term on the right hand side to be at least

as large as the one on the left. We will now consider an

arbitrary point p:

LD(⌊p/D⌋+ j − od/D) ≥ maxt∈T L(p+ t− o)

T = [Dj,Dj +D − 1] (8)

Two simplifications: first, recall that od/D = k. Second,

let us move the o into the set of T :

LD(⌊p/D⌋+ j − k) ≥ maxt∈T L(p+ t),

T = [Dj − o,Dj +D − 1− o] (9)

We will now compare the set of values used to compute

LD(⌊p/D⌋ + j − k) to the values of L() appearing on the

right hand side, showing that the left-most value used in the

construction of LD(...) is at least as far left as the left-most

value of p + T . (We must show that the same is true from

the right.)

First, the left-hand side:

D(⌊p/D⌋+ j − k) + od − o ≤ p+Dj − o

D⌊p/D⌋+Dj −Dk + od − o ≤ p+Dj − o

D⌊p/D⌋ ≤ p (10)

The final line is true due to the definition of the floor
function. Now, the right-hand side:

D(⌊p/D⌋+ j − k) + 2D − 2 + od − o ≥ p+Dj +D − 1− o

D⌊p/D⌋+Dj −Dk + 2D − 2 + od − o ≥ p+Dj +D − 1− o

D⌊p/D⌋+D − 1 ≥ p (11)

The final line is true due to the definition of the floor

function and the fact that p is an integer.

A major advantage of this formulation (and an im-

provement over our previous multi-resolution scan matching

method) is that the coordinates of query points p only appear

as part of a ⌊p/D⌋ term. This property is what allows

query points to be decimated: if two points (p2 and p7, for

example) have ⌊p2/D⌋ == ⌊p7/D⌋, then these points can be

combined into a single lookup with the result of that lookup

multiplied by two. The larger the parameter D, the more

likely it is that multiple query points will collapse onto the

same value of ⌊p/D⌋.

Decimating the points makes this scan matching approach

scale very well as the number of points in each scan increases

(see Fig 2). Intuitively, this slow growth in computational

complexity is due to the fact that the vast majority of tasks

in the heap are for lower-resolution searches. Only very

promising nodes need to be evaluated at full resolution.

D. Many-to-One

The dominant approach in graph-based mapping systems

is to identify pairs of robot poses that may have overlapping

views using the SLAM system’s current position estimates

and uncertainties. A scan matcher is then run on each of

these pairs, one at a time, producing an alignment for each

pair. We call this the “one-to-one” operating mode, because

one laser scan is being matched to one other laser scan.

One-to-one matching is computationally expensive: it

scales linearly with the number of scan matching attempts.



Fig. 2. Performance benefit of point decimation. Our method allows query
points to be decimated with no impact on quality, resulting in substantial
speedups. The first time a node is processed, there is an additional cost
in rotating the query points (dashed red line). However, once these rotated
points are cached, runtime becomes virtually independent of the number of
points (solid red). In both cases, however, decimation provides a significant
improvement. Interestingly, computational costs can actually increase for
very small point clouds. We attribute this to greater matching ambiguity,
causing more nodes to be expanded. Experimental settings: poses were
sampled from co-visible “red” regions in Intel dataset, initial pose errors
of up to ± 10 m and ± 180 degrees, and a search range of ± 15 m, ±
180 degrees @ 1 degree step size. Note log/log scale.

One-to-one matching also produces too much data. Most

of the matches are wrong, and must be rejected. While

one-to-one matching might identify multiple correct loop

closures, it is the first loop closure that is most useful to

a SLAM system. Once the first loop closure is found, the

reduction in posterior uncertainty generally makes it easy to

find additional matches.

One of the main contributions of this paper is a rethinking

of the conventional one-to-one matching approach. Consider

a robot that has just moved to a new position and acquired

a new scan. We might now want to ask: what previous laser

scans match the current scan? Based on our SLAM estimate,

we might generate a list of S potential poses. Suppose that,

instead of posing S separate scan matching queries, we ask

a single one: “what is the best possible alignment between

the current pose and any of the S other scans?” This is a

“many-to-one” query, in that S scans are being matched to

the robot’s current scan.

Our heap-based scan matcher can be easily modified to

accommodate “many-to-one” queries: we simply allow each

node in the heap to belong to a different pair of scans. As

the nodes in the heap are extracted and expanded, the search

will automatically switch between all S candidate poses.

Critically, we will demonstrate that this “many-to-one”

query requires far less computation time than the alternative

set of one-to-one queries. This is due to the fact that non-

competitive match hypotheses never get explored, whereas in

one-to-one matching, each hypothesis is forced to generate

at least one solution.

E. Many-to-Many Matching

The “many-to-many” approach is an additional improve-

ment over the many-to-one approach. Because every match in

the many-to-one approach references a common laser scan,

the success of the operation hinges on the properties of that

scan. That scan could be largely featureless due to the robot

facing a wall, or it could simply be a rare view that has

no good matches. In either case, when there are no good

matches, a large number of heap nodes tend to be expanded.

The essential idea in many-to-many matching is to elim-

inate the dependence on one “special” node. This can be

done in a variety of ways, though a simple approach is to

randomly sample pairs of laser scans where additional loop

closures are desired. (One could also imagine a system that

computes the same set of S candidates as in the many-to-one

case, but considers matches to the most recent k laser scans,

leading to kS candidates.)

F. Practical Considerations

1) Cost table generation: Our approach is formulated

in terms of a lookup table L. In our implementation, we

generate this lookup table using raw LIDAR data. (An

alternative might be to used an a priori map.) The resolution

of this lookup table has an impact on the overall accuracy of

the scan matcher. In this paper, we use a resolution of 1/32 m.

See Fig. 1 for an example of one of the cost surfaces.

The raw points from two LIDAR scans of the same

environment often do not align well. First, noise in individual

observations makes it unlikely that two points will align

exactly. A straight-forward way of dealing with this is

generate low costs for “near misses”, i.e., by rendering a

“fuzzy ball” into the lookup table, rather than a single low-

cost point. In this paper, we render quadratic surfaces that

saturate at a cost of 255 at a distance of 0.1 m from the

observed LIDAR point.

A second problem is that LIDAR scans of the same

environment, taken from different locations, typically sample

the position of walls at different points along the wall. In

general, these sample points will not line up. Our approach

for dealing with this is to extrapolate lines between LIDAR

returns in cases where it is reasonably likely that a solid

surface exists. In this paper, we do this using a simple

distance heuristic: if two points are within 1 m of each other,

we extrapolate a line segment between them.

2) Image pyramid generation: The previous section de-

scribes, in general, how a low-resolution version of a cost-

lookup table can be constructed. Scan matching alignments

queried against this low-resolution cost function always score

at least as well as any higher-resolution query. In this section,

we describe how this basic idea is exploited in a complete

scan matching system.

Our implementation pre-computes low-resolution versions

of every lookup table. We begin with the highest-resolution

lookup table and successively compute versions with half

the resolution. This process repeats, computing quarter-

resolution, eighth resolution, etc., until the entire original

lookup table is represented with a single pixel.

Equation 5 gives the precise recipe for computing the value

at every cell of a low-resolution lookup table given a higher-

resolution lookup table. Specifically, every pixel in the lower-

resolution table is the max over a grid of pixels in the higher-



resolution table of dimension (2D−2)×(2D−2). Note that

these max operations overlap between adjacent values.

Consider the 1D example below, in which the numbers in

each column represent the indices of the highest-resolution

lookup table over which the max operator is applied in order

to compute the value at each cell in a lower-resolution lookup

table:

D = 1: 0 1 2 3 4 5 6 7

D = 2: 0,1,2 2,3,4 4,5,6 6,7,8

D = 4: 0,1,2,3,4,5,6 4,5,6,7,8,9,10

The row labeled D = 1 represents the highest-resolution

version, and the next two decimated versions are also shown.

The “overlap” between pixels is necessary in order to com-

pute conservative bounds.

The full image pyramid can be efficiently constructed

recursively. The procedure is to apply a max convolution

of kernel width 3, followed by a decimation of factor 2. I.e.,

the first pixel of D = 4 is the maximum value over L(i) for

i ∈ {0, 1, 2, 3, 4, 5, 6}. This can be computed by computing

the max over the first three pixels in the D = 2 lookup table.

Because of this recursive construction, computing the

image pyramids is a relatively fast operation. A megapixel

lookup table (1024× 1024) can be converted into an image

pyramid in about 5 ms. The asymptotic complexity of

building an image pyramid is O(N) for an input image

with N pixels, and our empirical evaluation runtimes also

exhibit linear scaling. Our practical systems cache these

image pyramids.

3) Point cloud decimation: Recall that the core of our

method searches for a translation that best aligns a point

cloud with a lookup table. While we pre-compute the various

pyramid levels of the cost function, we compute decimated

point clouds on demand.

The primary reason for this stems from our approach for

dealing with rotations. Because the core method considers

only translation, we explicitly rotate the point cloud at

fixed intervals over the search range. In other words, we

initiate searches for rotated copies of the original point cloud.

However, it is often the case that some rotations can be

quickly ruled out— even at very low resolution, they may

score very poorly. Thus, it would be wasteful both in terms

of computational costs and memory costs to pre-compute all

possible rotated and decimated versions of the point clouds.

When the matching algorithm needs a particular rotated and

decimated version of the original point cloud, it is computed

on demand. That result is cached, since it is likely that there

will be multiple translation queries on that point cloud.

4) Overall search strategy: The essential data structure

in our algorithm is a heap. Entries in the heap correspond

to a rotation and a contiguous and square-shaped range of

translations. Each heap entry independently specifies which

point cloud and lookup tables should be used, allowing the

search to simultaneously consider many-to-one and many-to-

many type queries.

Searches are initialized by creating a small number of

heap entries at very low resolution. The search proceeds by

Fig. 3. Generating ground-truth laser data. Our evaluation makes extensive
use of this pre-processed map of the Intel Research Center. Derived from
real robot data, we can use ray-casting to simulate realistic laser data with
ground truth. The red regions were manually annotated to mark places where
the robot could plausibly visit. Pairs of “co-visible” poses, which are likely
to have significant overlap in their laser scans, are found by sampling two
“red” poses and rejecting those whose connecting line does not lie within
the red region. In all cases, robot orientation is randomly sampled from
[−π, π]. Scans cover 360 degrees and, unless specified otherwise, are 1440
points with additive range noise of σ = 0.01. Cost functions are rendered
with a cell size of 1/32 m.

extracting the heap entry with the best score. If that heap

entry corresponds to an alignment attempt using the highest-

resolution lookup table, then we return that alignment. It is

optimal, due to the fact that we never under-estimate the cost

of a low-resolution alignment attempt: any more promising

alignments must have already been ruled out.

If the heap entry does not reference the highest-resolution

lookup table, we create four new heap entries, each with one

quarter of the translational range.

IV. EVALUATION

A. Performance (One-to-One)

The computational time required by our method is strongly

affected by the search window. In turn, the search window

is affected by how much positional uncertainty the robots

accumulate: large uncertainties lead to large search windows.

We have evaluated our method in three different operating

regimes: low uncertainty, moderate uncertainty, and large

uncertainty. These regimes differ in terms of the translational

and rotational search ranges. (Note that the search window

is twice the size of the range, so that a 180 degree search

range covers [-180 deg, 180 deg], or a full revolution.)

In each of these regimes, we simulate 1080 point LIDAR

scans, consistent with a Hokuyo laser range finder. Timing

data excludes the cost of decimating images and point clouds,

since this time is both small and it is amortized over all

the scan matching operations using that scan. The rotation

resolution is 2 deg— fine enough for an incremental “hill

climbing” stage to easily improve upon if needed.

To evaluate the performance of our system, we use the

same Intel dataset used by earlier work [12] (see Fig 3).

Starting with the standard raw Intel data from the Radish [9]

data repository, a SLAM solution was computed, and a

posterior gridmap was rendered. From this data, we are



able to generate synthetic ground-truthed laser measurements

using ray-casting. While this data is simulated, it is derived

from real-world data, and thus has realistic levels of clutter.

For this experiment, we randomly select two poses from

the red-colored region (which was human labeled to repre-

sent places that the robot could physically go) and perform

a scan-matching operation. We obtain the following results

in our three regimes:

Translation Rotation One-to-one time

Low ± 2 m ± 5 degrees 0.9 ms

Moderate ± 30 m ± 10 degrees 20 ms

Large ± 50 m ± 180 degrees 310 ms

These three regimes can be characterized in terms of

typical applications. The low uncertainty regime is intended

to be representative of “laser odometry” applications, where

the robot has traveled only a short distance since the previous

scan, and thus has accumulated little uncertainty. The mod-

erate uncertainty regime is intended to model a typical loop-

closing problem in a relatively benign environment (where

wheel slippage is not a major problem, for example). The

large uncertainty regime models a kidnapped-robot, or a very

challenging large-scale SLAM system where robots seldom

have the chance to close loops.

B. Performance of Many-to-One Matching

To evaluate the “many-to-one” approach, we again used

the Intel dataset. In this case, we sample S + 1 random

locations; one represents the current position of the robot,

while the other S represent candidate scans. Formulated this

way, we can compare the one-to-one matching approach to

the many-to-one matching approach (see Fig. 6). Note that

both approaches agree exactly on the best match amongst the

S candidates.

The many-to-one approach finds the best loop closure

within the set of S candidates dramatically faster than the

one-to-one matcher. When S = 50, the many-to-many

approach is 24x faster than one-to-one; for S = 200, this

advantage increases to 45x. The particular speedups are data

dependent, but we have consistently obtained similar results.

C. Performance of Many-to-Many Matching

We evaluated our many-to-many approach by randomly

sampling S pairs of laser scans. We compared this to a many-

to-one approach with S candidate pairs generated as before.

Both approaches are thus considering the same number of

candidate matches. For this experiment, we used our Intel

evaluation framework and moderate uncertainty parameters.

The many-to-many approach increased performance by

an additional 2.8x in our large uncertainty experiment (see

Fig. 6). The impact in the moderate uncertainty experiment

was much less– only about 22% for S = 50.

We also measured a noticeable improvement in the scores

of the matches produced, which we attribute to the increase

in diversity amongst the LIDAR scans (see Fig. 5).

Fig. 4. Accuracy comparison. Using 950,000 co-visible pairs generated
from the Intel Research Center dataset, we evaluated the posterior accuracy
of ICP versus the proposed scan matching method. Initial alignment errors
were sampled over a range of 10 m and 2π radians. The scan matcher’s
search window was set to 15 m and 2π radians, and no hill-climbing
refinement was used. The proposed method has dramatically lower error,
consistently finding alignments close to the ground-truth alignments. ICP’s
performance is poor for all but very small initial errors.

V. PERFORMANCE DISCUSSION

The performance of our approach is strongly affected by

the quality of the best match: the search must continue

expanding nodes on the heap until there are no nodes that

might have a better score. When a match exists with near-

zero error, it is likely that few other search nodes will need

to be expanded.

When multiple queries are posed simultaneously, the

critical factor affecting performance is the quality of the

best match amongst those queries. Additional queries can

be added to the search efficiently because the performance

is dominated by the quality of the best query in the set.

This is the fundamental reason why posing the problem

as a “many-to-many” matching problem is advantageous: it

avoids spending time computing alignments for queries that

have high error (and are unlikely to be correct anyway).

VI. CONCLUSION

We have described an improved multi-resolution scan

matcher that produces exactly the same results as a brute-

force scan matcher. In particular, we have described how

to construct the levels of an image pyramid such that

conservatism is guaranteed. We evaluated the performance

of this algorithm over several different operating regimes. In

a low-noise laser-odometry scenario with a 40 Hz Hokuyo,

our approach would require only about 3.6% of the compu-

tational power of a single core of a contemporary computer.



50

100

150

200

250

0 10 20 30 40 50

S
co

re

Query Set Size

Score vs. Set Size

Many-to-one
Many-to-many

Fig. 5. Many-to-many impact on scan-matching quality. The scan quality
(the sum of the scores for each point as computed by a lookup table)
is plotted for both many-to-one and many-to-many approaches. Perfect
matches have a score of 255. In addition to a modest improvement in
runtime, many-to-many matching noticeably improved scan quality.

Our higher-uncertainty experiments indicate the plausibility

of scan matching even for kidnapped robots.

But even larger and more important gains to mapping are

possible when the traditional “one-to-one” operating model is

reconsidered. We showed how a “many-to-one” and “many-

to-many” approaches to scan matching can dramatically

reduce the computational costs of finding loop closures.

These approaches achieve this speed at the cost of reporting

only the best match amongst a set of match candidate.

However, this is also the information most valuable to a

SLAM system.

REFERENCES

[1] P.J. Besl and N.D. McKay. A method for registration of 3-d shapes.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
14(2):239–256, 1992.

[2] Michael Carsten Bosse. ATLAS: A Framework for Large Scale

Automated Mapping and Localization. PhD thesis, Massachusetts
Institute of Technology, Cambridge, MA, USA, February 2004.

[3] Andrea Censi. An ICP variant using a point-to-line metric. In
Proceedings of the IEEE International Conference on Robotics and

Automation (ICRA), 2008.
[4] Andrea Censi, Luca Iocchi, and Giorgio Grisetti. Scan matching in the

hough domain. In Proceedings of the IEEE International Conference

on Robotics and Automation (ICRA), 2005.
[5] I. J. Cox. Blanche- An experiment in guidance and navigation

of an autonomous robot vehicle. Robotics and Automation, IEEE

Transactions on, 7(2):193–204, 1991.
[6] Mark Cummins and Paul Newman. Probabilistic appearance based

navigation and loop closing. In Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA), Rome, April 2007.
[7] Albert Diosi and Lindsay Kleeman. Fast laser scan matching us-

ing polar coordinates. International Journal of Robotics Research,
26(10):1125–1153, 2007.

[8] Berthold K. P. Horn. Closed-form solution of absolute orientation
using unit quaternions. Journal of the Optical Society of America. A,
4(4):629–642, Apr 1987.

[9] Andrew Howard and Nicholas Roy. The robotics data set repository
(radish), 2003.

[10] Kurt Konolige and Ken Chou. Markov localization using correlation.
In IJCAI ’99: Proceedings of the Sixteenth International Joint Confer-

ence on Artificial Intelligence, pages 1154–1159, San Francisco, CA,
USA, 1999. Morgan Kaufmann Publishers Inc.

[11] F. Lu and E. Milios. Robot pose estimation in unknown environments
by matching 2d range scans. In Proceedings of the IEEE Computer

Society Conference on Computer Vision and Pattern Recognition

(CVPR), pages 935–938, 1994.

0

200

400

600

800

1000

1200

0 10 20 30 40 50

B
at

ch
 ti

m
e 

(m
s)

Query Set Size

Runtime (Moderate Uncertainty)

One-to-one
One-to-many

0

5000

10000

15000

20000

25000

0 10 20 30 40 50

B
at

ch
 ti

m
e 

(m
s)

Query Set Size

Runtime (Large Uncertainty)

One-to-one
Many-to-one

Many-to-Many

Fig. 6. One-to-one vs many-to-one vs many-to-many on Intel benchmark
dataset. In this experiment, we examine the effects of query set size on
runtime under two different noise regimes. In both cases, the many-to-one
and many-to-many approaches are dramatically faster than the one-to-one
approach. The many-to-many approach is only marginally faster than many-
to-one on the moderate uncertainty dataset (not plotted), but 2.8x faster on
large data. At S = 50, moderate uncertainty, the runtime of many-to-one
was 42.3 ms. At S = 50 (large uncertainty) the runtime of many-to-one was
3310 ms, and many-to-many was 1167 ms. All timings are averaged over
multiple runs. While not visible at this scale, all three methods empirically
have linear growth characteristics.

[12] Edwin Olson. Real-time correlative scan matching. In Proceedings

of the IEEE International Conference on Robotics and Automation

(ICRA), pages 4387–4393, Kobe, Japan, June 2009. IEEE.
[13] Edwin Olson and Pratik Agarwal. Inference on networks of mixtures

for robust robot mapping. International Journal of Robotics Research,
32(7):826–840, July 2013.

[14] Edwin Olson, Johannes Strom, Ryan Morton, Andrew Richardson,
Pradeep Ranganathan, Robert Goeddel, Mihai Bulic, Jacob Crossman,
and Bob Marinier. Progress towards multi-robot reconnaissance and
the MAGIC 2010 competition. Journal of Field Robotics, 29(5):762–
792, September 2012.

[15] Andrew Richardson and Edwin Olson. PAS: Visual odometry with
perspective alignment search. In Proceedings of the IEEE/RSJ In-

ternational Conference on Intelligent Robots and Systems (IROS),
September 2014.

[16] Thomas Röfer. Using histogram correlation to create consistent laser
scan maps. In Proceedings of the IEEE International Conference on

Robotics and Automation (ICRA), pages 625–630, 2002.
[17] S. J. Russell and P. Norvig. Artificial Intelligence: A Modern

Approach. Prentice Hall, 3rd edition, 2009.
[18] Niko Sünderhauf and Peter Protzel. Switchable constraints for robust

pose graph slam. In IROS, pages 1879–1884, 2012.
[19] S. Thrun, W. Burgard, and D. Fox. A real-time algorithm for mobile

robot mapping with applications to multi-robot and 3D mapping. In
Proceedings of the IEEE International Conference on Robotics and

Automation (ICRA), San Francisco, CA, 2000. IEEE.
[20] S. Thrun, M. Diel, and D. ahnel. Scan alignment and 3d surface

modeling with a helicopter platform, 2003.


