
AXLE: Computationally-efficient trajectory smoothing
using factor graph chains

Edwin Olson1

Abstract— Factor graph chains– the special case of a factor
graph in which there are no potentials connecting non-adjacent
nodes– arise naturally in many robotics problems. Importantly,
they are often part of an inner loop in trajectory optimization
and estimation problems, and so applications can be very
sensitive to the performance of a solver.

Of course, it is well-known that factor graph chains have
an O(N) solution, but an actual solution is often left as “an
exercise to the reader”... with the inevitable consequence that
few (if any) efficient solutions are readily available.

In this paper, we carefully derive the solution while keeping
track of the specific block structure that arises, we work
through a number of practical implementation challenges, and
we highlight additional optimizations that are not at first
apparent. An easy-to-use and self-contained solver is provided
in C, which outperforms the AprilSAM general-purpose sparse
matrix factorization library by a factor of 7.3x even without
specialized block operations.

The name AXLE reflects the names of the key matrices
involved (the approach here solves the linear problem AX = E
by factoring A as LLT ), while also reflecting its key application
in kino-dynamic trajectory estimation of vehicles with axles.

I. INTRODUCTION

Let’s begin with a motivating application– suppose we
have a self-driving car tracking a number of other agents
around it. Each observation of other agents is contaminated
by noise, and we’d like to fit a maximum likelihood trajectory
to those points in order to predicting the object’s future
position.

Better predictions can be obtained by imposing a motion
model while performing the trajectory fitting [1]. This can
greatly improve the quality of the results, improving the
safety of the car. But we don’t know what motion model
to use a priori, so we might perform model selection over a
number of candidate models including holonomic, unicycle,
or bicycle [2]. We might also only observe position (e.g. from
a LIDAR) but also want to infer velocity or acceleration as
well, given dynamic constraints on the vehicle model.

No problem– we can pose the trajectory estimation prob-
lem as a least-squares problem: we collect observations of
the agent positions over a several seconds of motion, assume
a type of motion model, then solve for the state of the
vehicle at each time step subject to the constraints of the
motion model. This gives us a posterior trajectory given the
observations, conditioned on the kino-dynamic model used.

1Edwin Olson ebolson@umich.edu is a Professor at the Uni-
versity of Michigan. This work was supported by grants from the NSF
(1830615) and ARC (W56HZV-19-2-0001). Distribution A. Approved for
public release; distribution unlimited. (OPSEC 3923). Disclosure: Olson has
a financial interest in a company that may have rights to foreground or
background technology described in this paper.

Fig. 1. An example factor graph chain. The state at each time is a 4 ×
1 vector containing position, velocity, and orientation. Red squares factor
potentials, with A) binary factor potentials connecting consecutive poses,
representing kino-dynamic constraints and B) unary constraints representing
observations of the position of the vehicle. A key property of a factor graph
chain is that there are no factor potentials connecting non-consecutive nodes.
This paper describes a fast method of solving factor graphs of this form.

We also obtain a quality-of-fit measure (χ2) that we can use
to compare the results obtained for different kino-dynamic
models, and thus help us with model selection.

In a real-world system, dozens of agents may need to be
tracked simultaneously; for each, we may need to consider
multiple kino-dynamic models, or models reflecting context-
dependent behavior (e.g., is another car’s trajectory best
described by “stay in lane” or by a “lane change” behavior?).
Hundreds of trajectory fitting operations might be required,
only to have to repeat this process 50 ms later when sensors
provide a new set of observations.

One alternative approach to this problem is to maintain a
bank of (recursive) Extended Kalman Filters [3], one for each
possible kino-dynamic model. However, EKFs pose several
practical challenges. Suppose, for example, that orientation
of other vehicles is either poorly observed or not directly
observable at all. Because unicycle and bicycle kinematic
models are controlled through the vehicle orientation, a
poor initial orientation estimate can lead to poor predictions.
Worse, because errors caused by linearization are irreversable
in an Kalman filtering paradigm, even the addition of future
unambiguous observations cannot repair past errors. An EKF
might be attractive due to its constant-time update (the model
size is constant), but because a full posterior trajectory
is desired (not just the posterior final pose), a linear-time
smoothing pass would be required anyway.

These problems make a non-linear smoothing approach
necessary. In a smoothing paradigm, the entire state vector



is revised during each iteration. Each iteration allows for a
new linearization point to be selected, allowing new infor-
mation to cause old information to be “reinterpreted”. This
flexibility comes at the cost of computational complexity,
and with so many potential smoothing operations to perform,
performance can quickly become a bottleneck.

In this paper, we will use a factor graph approach to
solving these trajectory smoothing problems [4], [5]. We’ll
exploit the special structure of these trajectory fitting prob-
lems, namely that they are chains.

Ultimately, the tools used here are the same high-
performance SLAM systems. However, SLAM systems must
handle more complex factor graphs than chains– after all, a
SLAM system would be fairly pointless without the ability
to handle loop closures. In order to perform well, SLAM
systems must address a variety of additional challenges:
maintaining sparsity through variable reordering [6], pre-
conditioners [7], handling information matrices with an
unpredictable block structure, handling fill-in in the matrix
factorization of an unpredictable block structure [8], and so
forth. These systems perform well and automatically exploit
the structure of a chain to solve them in (generally) O(N)
time. However, they carry the baggage of their general-
purpose nature, which limits their performance versus a
solver optimized for a special case.

For safety-critical systems, validation is also critically
important. A MISRA-C [9] implementation of a general-
purpose factor graph solver, along with analysis of runtimes
and memory usage would be difficult to say the least. The
special case outlined here, in contrast, could be implemented
in a strict conformance with MISRA-C provided that the
length of the state vector was fixed in advance. That makes
this particular special case especially important to safety-
critical applications.

The contributions of this paper include:
• We provide an accessible derivation of a Cholesky

factorization-based solver for factor graph chains. This
derivation extensively exploits the special block struc-
ture arising in chains in order to operate faster than a
general-purpose solver. This derivation might also be
useful to those building intuition about sparse matrix-
based SLAM systems, as the sparsity structure is made
explicit.

• We provide a stand-alone implementation of our solver
in C, and benchmark it against a state-of-the-art solver,
AprilSAM [10].

II. PRELIMINARIES

The state-of-the-art in Simultaneous Localization and
Mapping (SLAM) is based on least-squares optimization
over the entire state vector using sparse matrix factorization.
Nodes in the factor graph represent variables whose values
should be computed, while factors represent information
about the value of the nodes (i.e., an observation).

In this section, we’ll review the basic mathematics in-
volved so as to illustrate how the a factor graph chain leads
to special structure that can be exploited. We’ll do this in the

context of a specific example: fitting a trajectory to a time
sequence of point observations (i.e., as though the vehicle
was observed via a LIDAR), adding factors representing a
unicycle motion model, and solving for posterior position,
velocity, and orientation at each time step. Naturally, the
method proposed here can be used for simpler or more
complex kino-dynamic models as well.

Our state vector is x, which is a 4N×1 vector that “stacks”
all of the variables for all N vehicle positions (see Fig. 1).
We’ll write the state for just the ith time step as xi. Each xi
is a four element vector, containing (in this order) positions x
and y, velocity v, and heading θ. When we want to specify
a single scalar component of a variable, for example the
orientation θ for the ith pose, we’ll use super-scripts: xθi .

We will have two kinds of factor potentials: unary po-
tentials constraining the position (xxi and xyi ) of the vehicle
according to the LIDAR observation, and binary potentials
connecting consecutive nodes (e.g. xi and xi+1) that reflect a
unicycle motion model. If there are N states (i.e., x0 through
xN−1), there will be N unary constraints and N − 1 binary
constraints.

To form the optimization problem, we must provide for
each factor j:

• The residual (rj), an M × 1 column vector. This is a
measure of how much error there is in the current factor.

• The Jacobians of the residual function with respect to
each xi. The dimension of each Jacobian is M×4. Note
that in our problem, these will be zero for all but one
or two is.

• An M ×M symmetric weight matrix Wj , which en-
codes the relative importance of the elements in the
residual, and the importance of factor j in comparison
to the other factor potentials.

To make this more concrete, let’s consider two basic obser-
vation models. Note that the dimension M varies according
to the type of factor.

A. Position observation
Every xi will have a unary factor representing the position

of the vehicle as measured by a LIDAR. Suppose that a
LIDAR detects the position of the other vehicle at time i
as being at location (x = 5, y = 7). Supposing that this
is the jth observation made, we define the two-dimensional
residual function rj as:

rj(x) =

[
5− xxi
7− xyi

]
(1)

We next need to linearly approximate rj(x) around our
current best estimate of the state x− (which we will assume is
all zeros). Note that because rj(x) is linear, this linearization
is exact:

rj(x) = rj(x
−) + Jrjxi

(xi − x−i ) (2)
= rj(x

−) + Jrjxi
∆xi (3)

= rj + Jrjxi
∆xi (4)

where the first term is simply the value of the observation
equation evaluated at our current state estimate (assumed



to be zero for this example). In the final line, we simplify
notation by letting rj = rj(x

−). The residual and Jacobian
are then:

rj =

[
5
7

]
(5)

Jrjxi
=

[
−1 0 0 0
0 −1 0 0

]
(6)

The χ2 error for this factor– which is the quantity we will
minimize using least squares– is the weighted square error:

χ2
j = rTj Wjrj

=
(
rj + Jrjxi

∆xi
)T
Wj

(
rj + Jrjxi

∆xi
)

We’ll set Wj = I , though in practice, some “tuning” of
the weights would be used to reflect the noise model of the
LIDAR.

It will be useful below for us to rewrite the χ2 expression
in terms of the whole state vector (∆x and not just ∆xi). To
do this, we simply need to extend Jrixi

to be M×4N , adding
zeros in the positions the derivative is zero, and adding zeros
to Wj so that it is 4N × 4N :

Jrjx =
[

02×4 ... J
rj
xi ... 02×4

]
(7)

allowing us to write:

χ2
j = (rj + Jrjx ∆x)TWj(rj + Jrjx ∆x) (8)

which can be expanded:

χ2
j = rTj Wjrj + 2∆xTJrjx

TWjrj + ∆xTJrjx
TWjJ

rj
x ∆x

and differentiated with respect to ∆x, setting the result to
zero:

∂χ2
j

∆x
= 2Jrjx

TWjrj + 2Jrjx
TWjJ

rj
x ∆x = 0

Jrjx
TWjJ

rj
x ∆x = −Jrjx

TWjrj (9)

While it may not be obvious, we have a 4N × 4N matrix
(Jrjx

T
WjJ

rj
x ), multiplied by the 4N × 1 vector that we are

solving for (∆x), equaling a 4N×1 vector on the right-hand
side (−Jrjx

T
Wjrj). As we add additional factor potentials to

our problem, each factor potential will contribute to the left-
hand matrix or the right-hand vector additively.

If you are unfamiliar with how the structure of the factor
graph leads to sparsity in the linear system, this is a key
moment. Consider the 4N × 4N matrix J

rj
x
T
WjJ

rj
x . The

product will only be non-zero where the Jacobians (Eqn. 7
are non-zero. In this case, because the factor potential is
unary, the Jacobian is only non-zero for the state variables
belonging to xi, i.e.:

Jrjx
TWjJ

rj
x =

 04×4 ... 04×4 ... 04×4

04×4 ... J
rj
xi

T
WjJ

rj
xi ... 04×4

04×4 ... 04×4 ... 04×4



B. Unicycle Observation

Between nodes xi and xi+1, we will add a unicycle factor.
We will assume that the elapsed time between xi+1 and xi
is ∆ti. The residual function in this case is:

rj(x) =


xxi+1 −

(
xxi + xvi∆ti cos(xθi )

)
xyi+1 −

(
xyi + xvi∆ti sin(xθi )

)
(xvi+1 − xvi )/∆ti

mod2pi(xθi+1 − xθi )/∆ti

 (10)

It is easy to see how the residual for the x and y
components is given by straight-forward kinematics of a
unicycle, given the velocity and heading components of the
state at time i. The third and fourth elements of rj(x) encode
the idea that we don’t want the velocity or heading to change
very rapidly between time steps.

As with the previous observation, we need to provide
the Jacobian matrices. In this case, there are two non-zero
Jacobian blocks since rj is a function of both xi and xi+1:

Jrjxi
=


−1 0 −∆ti cos(xθi ) xvi∆ti sin(xθi )
0 −1 −∆ti sin(xθi ) −xvi∆ti cos(xθi )
0 0 −1/∆ti 0
0 0 0 −1/∆ti


(11)

Jrjxi+1
=


1 0 0 0
0 1 0 0
0 0 1/∆ti 0
0 0 0 1/∆ti

 (12)

We can now write the linear approximation of rj(x):

rj(x) ≈ rj + Jrjxi
∆xi + Jrjxi+1

∆xi+1 (13)

And of course, the χ2
j loss for the observation is of the

same form as before, but with a longer expression for rj(x)
which has two Jacobian terms instead of just one. We can
similarly write the full-state Jacobian, but now it has two
non-zero sections:

Jrjx =
[

04×4 ... J
rj
xi J

rj
xi+1 ... 04×4

]
(14)

As with the unary potential, it is critical to understand the
impact of this form on the sparsity of the matrix Jrjx

T
WjJ

rj
x ,

which will have a 2×2 block of non-zero sub-matrices, and
block-indices (i, i), (i, i + 1), (i + 1, i), and (i + 1, i + 1).
Note that the sub-blocks at (i, i + 1) and (i + 1, i) will be
transposes of each other:

J
rj
x
T
WjJ

rj
x = (15)

04×4 04×4 04×4 04×4

04×4 J
rj
xi

T
WjJ

rj
xi J

rj
xi

T
WjJ

rj
xi+1 04×4

04×4 J
rj
xi+1

T
WjJ

rj
xi J

rj
xi+1

T
WjJ

rj
xi+1 04×4

04×4 04×4 04×4 04×4





C. Building the linear system

We now leave the language of factor graphs and enter the
language of linear algebra. By looping over all of the factor
potentials in our chain, we sum up the contributions to the
left-hand matrix and right-hand side column vector. With
unary constraints only contributing non-zero blocks along
the diagonal, and the binary constraints only contributing a
2× 2 block of non-zeros along the diagonal, the sum of all
the contributions will have the following form:

A0 A1

AT1 A2 A3

AT3 A4 A5

AT5 A6




∆X0

∆X1

∆X2

∆X3

 =


E0

E1

E2

E3

 (16)

In our example, each block Ai has dimension 4× 4, and
both ∆Xi and Ei have dimension 4× 1.

We solve the system for ∆X by factoring A–which is
symmetric and positive definite1 using Cholesky decompo-
sition, i.e., by computing the lower triangular matrix L such
that A = LLT . Critically, because A has a special block
structure, so does L:

L =


L0

L1 L2

L3 L4

L5 L6

 (17)

We can solve for the individual sub-matrices Li by
algebraically manipulating the product LLT in terms of
the individual Lis and setting those products equal to the
corresponding elements of A, giving:

Li =


chol(A0), if i = 0

ATi (LTi−1)−1, if i odd
chol(Ai − Li−1L

T
i−1), otherwise

(18)

Note that we assume that chol computes the lower left
triangular factor L of its argument A such that LLT = A.
Note that chol is only being computed for individual sub-
matrices of dimension 4× 4.

We will solve the resulting problem AX = LLTX = E
in the usual fashion, by first letting U = LTX and solving
LU = E in increasing order of i:

Ui =

{
L−1
2i E0, if i = 0

L−1
2i (Ei − L2i−1Ui−1) otherwise

(19)

And finally, solving LTX = U for X , this time solving
for X in decreasing order of i:

Xi =

{
L−1
2i

T
Ui if i = N − 1

L−1
2i

T
(Ui − LT2i+1Xi+1) otherwise

(20)

These update equations represent the primary contribution
of this paper. An implementation will likely create an array
of the Ai, Ei, Li, Ui, and Xi matrices. The length of each

1The matrix A will be positive definite when the problem is “fully
constrained”. In situations where some variables may be only weakly
observable, Tikhanov regularization can be helpful.

Algorithm 1: Factor graph inference on a chain with
N factor nodes.

while not yet converged do
Compute factor potentials and their Jacobians
Compute Ai, Ei from factor potentials.
for i = 0 to 2N − 2 do

Li ← result using Eqn. 18
for i = 0 to N − 1 do

Ui ← result using Eqn. 19
for i = N − 1 downto 0 do

∆Xi ← result using Eqn. 20
Xi ← Xi + ∆Xi

list, and the dimension of each matrix, are generally known
in advance. An implementation then simply computes the
Ls, Us, and Xs. From this, it is obvious that:

• The computational costs are not only O(N) but actually
fixed.

• The memory requirements are also O(N), and could be
pre-allocated.

• The mix of dense matrix operations needed to imple-
ment a solution are fairly limited and operate on ma-
trices of fixed size, which makes implementation with
highly-optimized codes (e.g. using SIMD instructions)
possible.

For safety-critical applications, these properties are highly
desirable, as they make the runtime deterministic. Even if
runtime determinism is not a priority, the memory access
patterns are highly regular, which can lead to better cache
performance.

The overall flow of the algorithm, and the sequence in
which each matrix is computed, is given in Alg. 1.

III. DISCUSSION

We address a handful of assorted points here.
QR versus Cholesky. It is also possible to formulate the so-

lution of a factor graph chain in terms of QR decomposition,
instead of Cholesky. The advantage of QR decomposition is
that the condition number of the key matrix is the square root
of the condition number formed by the normal equations (i.e.,
what is done here.) For problems that are ill-conditioned, QR
factorization can be more stable. On the other hand, building
up the A matrix from factors is quite convenient from an
implementation perspective, and trajectory fitting problems
are usually well-conditioned.

Other kino-dynamic factor potentials. Different kino-
dynamic motion models can be incorporated through ap-
propriate modification of the binary factors (and possibly
modifications to the state variables). For example, a second
order motion model could be obtained by replacing θ with
a linear acceleration, and by turning the binary constraints
into a double integrator.

Other unary factor potentials. In some systems, it may
be possible to directly observe vehicle orientation (e.g., by
recognizing the shape of a car) or to directly measure closing



0 20 40 60 80 100
-6

-4

-2

0

2

4

6

x position (meters)

y 
po

si
tio

n 
(m

et
er

s)

Fig. 2. Trajectory fitting. A synthetic trajectory was generated with noisy (x,y) observations, and the proposed method was used to fit a trajectory. While
the input positions did not contain velocities or headings, the output trajectory does– the heading is tangent to the curve. This trajectory is composed of
N = 100 measurements and states, with a solution time of 140 us. I.e., about 7,000 trajectories like this could be fit per second on a single core.

rate (e.g., by doppler measurements). This approach is not
limited to one unary potential per state– many different
potentials could be incorporated simultaneously. In a differ-
ent application, we also added unary potentials to penalize
negative velocities. MaxMixtures [11] could be also used to
increase robustness to particularly poor data.

Variable reordering. In conventional SLAM systems, a
critical step in maintaining the sparsity of the Cholesky
factors is in finding a permutation matrix of the state vector
that minimizes “fill-in”. Here, however, we are simply using
the time-based variable ordering which achieves the O(N)
performance for the case of a chain. This significantly
reduces the complexity of the solver code.

IV. EXPERIMENTAL RESULTS

A. Trajectory fitting

A basic trajectory fitting problem is shown in Fig. 2.
This problem follows the formulation and factor potentials
given in this paper. CPU time, as measured on a i9-8950HK
processor was 140 us (two iterations of 70 us each.)

B. Trajectory interpolation

We also show how the same code can be used to per-
form trajectory interpolation. The interpolations are almost
identical to the trajectory fitting operations, except that the
unary potentials also observe heading (and thus are 3 × 1
measurements), and that only the first and last node have the
unary potentials. It is thus up to the optimization framework
to “fill in” the rest.

In Fig. 3, we show an interpolation for a lane-change like
maneuver, and in Fig. 4, we show an interpolation where
a k-point turn is required. Both systems use the unicycle
kinematic constraints described here without any additional
modifications.

C. Computational Performance

The performance of our method is shown in Fig. 5. Our
method is between 3.7x and 7.3x faster than a general-
purpose matrix factorization library. This is attributable to
both the streamlined computation on small block matrices
and the elimination of dynamic memory allocation.

-5 0 5 10 15 20 25
-5

0

5

10

15

x position (meters)

y 
po

si
tio

n 
(m

et
er

s)

Fig. 3. Trajectory interpolation. The proposed method can also be used to
interpolate a trajectory; here, given two initial poses with heading (shown by
black triangles), a trajectory is fit satisfying the unicycle kinematics model.
This maneuver resembles a lane-change maneuver.

-2 0 2 4 6
-2

-1

0

1

2

3

4

x position (meters)

y 
po

si
tio

n 
(m

et
er

s)

Fig. 4. Trajectory interpolation resulting in a k-point turn. While it was not
the goal of this algorithm to interpolate trajectories with very large changes
in heading, the algorithm generates reasonably plausible k-point turns.



N (number of state elements)

se
co

nd
s 

(5
00

0 
ite

ra
tio

ns
)

0

20

40

60

80

500 1000 1500 2000 2500 3000

april axle

Fig. 5. Runtime comparison. We show the total CPU time required for
5000 iterations as the number of poses is increased. The “april” trend line
represents a general-purpose sparse matrix library, while “axle” represents
the method proposed here. Axle is highly linear, whereas April is both
slightly non-linear (due to some overhead work that is not strictly O(N)
time) and around 3.7x slower at N = 50 and 7.3x slower at N = 3200.

V. CONCLUSION

We have presented an algorithm for performing inference
on factor graph chains, with a worked-out application to
trajectory fitting. This work was motivated by the need to
rapidly fit trajectories to sensor data, both filtering noise and
inferring latent state of the vehicle (like velocity and head-
ing) which were are not directly observable given position
observations of the target.

While it is well-known that factor-graph chains have an
O(N) solution [12], we propose a particularly simple way
of indexing the matrices that implicitly exploits the sparsity
of the underlying problem. An advantage of this approach
is that an implementation can be much more simple than a
general-purpose sparse-matrix solver, with implementations
compliant with MISRA-C even being possible.

The performance of this approach is significantly faster
than that using a general-purpose SLAM system. An ex-
ample implementation of this algorithm in C is available at
https://github.com/edwinolson/axle.

REFERENCES

[1] C. Lee and Yangsheng Xu, “Trajectory fitting with smoothing splines
using velocity information,” in Proceedings 2000 ICRA. Millennium
Conference. IEEE International Conference on Robotics and Automa-
tion. Symposia Proceedings (Cat. No.00CH37065), vol. 3, April 2000,
pp. 2796–2801 vol.3.

[2] E. Galceran, A. G. Cunningham, R. M. Eustice, and E. Olson, “Multi-
policy decision-making for autonomous driving via changepoint-based
behavior prediction: Theory and experiment,” Autonomous Robots,
vol. 41, no. 6, pp. 1367–1382, August 2017.

[3] R. Smith, M. Self, and P. Cheeseman, “A stochastic map for uncertain
spatial relationships,” in Proceedings of the International Symposium
of Robotics Research (ISRR), O. Faugeras and G. Giralt, Eds., 1988,
pp. 467–474.

[4] S. Thrun and M. Montemerlo, “The GraphSLAM algorithm with
applications to large-scale mapping of urban structures,” International
Journal of Robotics Research, vol. 25, no. 5-6, pp. 403–430, May-June
2006.

[5] F. Dellaert and M. Kaess, “Square root SAM: Simultaneous localiza-
tion and mapping via square root information smoothing,” Interna-
tional Journal of Robotics Research, vol. 25, no. 12, pp. 1181–1203,
December 2006.

[6] P. Agarwal and E. Olson, “Variable reordering strategies for slam,” in
Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), October 2012.

[7] Y.-D. Jian, D. C. Balcan, and F. Dellaert, “Generalized subgraph
preconditioners for large-scale bundle adjustment,” in Proceedings
of the 15th International Conference on Theoretical Foundations
of Computer Vision: Outdoor and Large-Scale Real-World Scene
Analysis. Berlin, Heidelberg: Springer-Verlag, 2011, p. 131–150.

[8] T. Davis, “Direct methods for sparse linear systems,” Philadelphia:
Society for Industrial and Applied Mathematics;, vol. 2, 01 2006.

[9] MIRA Ltd, MISRA-C:2004 Guidelines for the use of the C language
in Critical Systems, MIRA Std., Oct. 2004. [Online]. Available:
www.misra.org.uk

[10] X. Wang, R. Marcotte, G. Ferrer, and E. Olson, “AprilSAM: Real-time
smoothing and mapping,” in Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), May 2018.

[11] E. Olson and P. Agarwal, “Inference on networks of mixtures for
robust robot mapping,” International Journal of Robotics Research,
vol. 32, no. 7, pp. 826–840, July 2013.

[12] C. M. Bishop, Pattern Recognition and Machine Learning (Informa-
tion Science and Statistics). Berlin, Heidelberg: Springer-Verlag,
2006.


