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Abstract— A grade crossing is a crossing of a railway line
and a motor road. In 2009 alone there were 248 deaths and
682 injuries at grade crossings in the United States. Factors
like the elevation profile of a crossing or the environment and
foliage around the crossing can render it unsafe. Often, vehicles
with low ground clearance bottom out on a crossing with a
humped elevation profile. Excessive foliage around the crossing
can obstruct the visibility of an approaching train, reducing
the time a driver has to stop. Hence ensuring safety requires
regular monitoring and timely maintenance of grade crossings
across the country.

In this paper, we describe our method for automatically in-
specting grade crossings. Our work employs principled machine
learning methods to detect grade crossings from sensor data and
then reconstructs the profile of that rail-road intersection. We
then show how traffic simulation on the reconstructed profile
can be used to determine whether the crossing is unsafe.

I. INTRODUCTION

As of 2008, there were 137659 public, 85176 private and

1963 pedestrian grade crossings in the United States. One

must realize that the maintenance of grade crossings is not

a one-time effort since the conditions of the environment

around a crossing change over time. Foliage grows obstruct-

ing the visibility around the crossing and the road surface

can sink as the earth under it settles, causing a change in the

elevation profile of the crossing.

Grade crossings are a frequent location for rail-road acci-

dents. One of the most common incidents is a truck or other

vehicle with low clearance bottoming out at a sufficiently

“humped” grade crossing. This results in a rail/road traffic

hangup. In the worst case this may even result in the train

smashing into the stranded vehicle causing loss of life and

property.

Current standards call for bi-yearly inspection of grade-

crossings or around 400 grade crossings per day. The sheer

number of crossings (224,798) makes automation of this

process critical.

Ranging sensors like the Velodyne HDL 64-E [1] enable

robust sensing of the environment around railway tracks. As

a result, it is now possible to survey the area around a grade

crossing efficiently and accurately. This also opens up the

possibility of automatically analyzing this data to recover

information relevant to the maintenance of grade crossings.

In this paper we describe a system that automatically

inspects a grade crossing. The central contributions of this

paper are:
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Fig. 1. An unsafe grade crossing. Grade crossings occur with diverse
profiles. Crossings that are “humped” can cause heavy motor vehicles
passing over them to bottom-out. While some crossings are visibly risky,
some appear benign from the point of view of the truck driver. The proposed
method reconstructs the profile of the grade crossing from sensor data and
simulates traffic over the crossing to detect defects (highlighted) in the
profile of the crossing.

• A supervised learning method that automatically detects

grade crossings from a stream of 3-D points.

• An outlier rejection method based on Markov random

fields to identify the extent of the road surface.

• An automatic safety analysis system based on traffic

simulation on the reconstructed grade crossing profile.

All the components of our system operate in real-time,

without any deferred processing of data.

In the next section, we review related work. We describe

our method in the Section III. In Section IV, we evaluate

our method on real world data and present the results of our

evaluation, showing that our method can detect unsafe grade

crossings in real-time.

II. PREVIOUS WORK

LIDARs are common sensors employed to sense the envi-

ronment and acquire range data electronically. The Velodyne

HDL 64-E is a scanning LIDAR system that uses an array of

LIDAR sensors to acquire three dimensional points clouds

of the environment around the scanner in real-time. The

accuracy, robustness and resolution of LIDAR solutions

make them viable for surveying.

Several teams participating in the DARPA Urban Chal-

lenge used Velodyne scanners to perceive the environment

around an autonomous vehicle [1], [2]. The MIT team reports

the use of data from a Velodyne to detect obstacles and

recognize traversable ground [1]. Moosman et al. [3] describe

another technique to segment 3-D range data to extract

ground surfaces.



Fig. 2. Modified truck used for data gathering. The Velodyne HDL is
mounted facing the ground at an angle to improve resolution of the ground
surface immediately in front of the truck.

Others have reported the use of LIDAR scanners for

modeling 3-D environments. ENSCO reports the use of a

LIDAR scanner to map the environment around railways

tracks [4]. The resulting data was then used for analysis of

the crossing. However their system is not fully automated and

requires manual intervention for recognizing crossings from

data and for subsequent processing. Elashker and Bethel [5]

and You et al. [6] describe methods that generate models

of buildings using range scanners. Haala and Brenner [7]

describe the generation of 3-D city models from aerial range

scan data.

Sheikh et al. [8] present a trespass detection system that

can track pedestrians and vehicles at a grade crossing. Their

work addresses another aspect of safety at grade crossings

and is complementary to our work.

III. METHOD

A. Scan acquisition

Data was gathered along rail-road intersections using a

truck modified to travel on railway tracks (see Fig. 2). The

truck has a Velodyne HDL mounted in front, facing the

ground at 45◦ in order to improve the resolution of the

surface immediately in front of the truck. The truck also

contains an Applanix IMU unit to track and record the pose

of the truck as it travels on the track. Images of the path

through which the truck traveled were captured at regular

intervals to aid visualization and labeling of the data.

B. Intersection detection

In order to automate the task of surveying grade crossings,

one must first automate the task of detecting a grade crossing.

The exact locations of grade crossings are not known a

priori. Existing databases of grade crossing locations are

not accurate because of the lack of guidelines regulating the

process of obtaining grade crossing locations. For example,

manual tagging of grade crossings from aerial imagery can

introduce errors of 100 meters or more. Hence a more

accurate approach for detecting a grade crossing is required.

We approach this as a pattern recognition problem: recog-

nize patterns that correspond to intersections, from a stream

of 3-D point cloud data. Support Vector Machines (SVM) [9],

[10] are a popular supervised machine learning method that

can learn to classify new data based on training data. We used

LIBSVM [11], a popular implementation of SVM classifiers.

The first step is to extract features from the data that can

aid in classification. We begin by creating an occupancy

grid of the 3-D point cloud. The space around the sensor is

divided into tiles of equal area along the plane of the ground

and points that fall into each of the tiles are recorded. In our

implementation we chose a tile size of 0.5 m × 0.5 m.

Intuitively, the intersection is recognizable mostly by fea-

tures on the ground rather than objects above the ground.

Hence while constructing feature vectors, we ignore features

that begin more than M meters above the ground in front of

the train. This construction prefers features supported by the

ground (tree-trunks and shrubs) while ignoring features that

are free floating or vertically unsupported (tree canopies). In

our implementation we choose M = 5 meters. The exact

value of this parameter does not affect the accuracy of the

resulting classifier. The only constraint on this parameter is

that it should be large enough to separate objects supported

by the ground and that are vertically unsupported.

Due to noise in the Velodyne, the returns from the sensor

do not represent exact ground points [1]. We compute at an

estimate of the actual level by taking the point at the 80th

percentile of the points falling on a given tile. The resulting

occupancy grid is visualized in Fig. 3. Hereafter, we will

refer to this value of the point at the 80th percentile of the

points falling on a tile as the µ-statistic of that tile.

As an effect of ignoring the contribution of points above

a certain height from the ground, there can be tiles that have

no data points associated with them. This can happen if the

entire contribution to that tile comes from objects high above

the ground. The SVM classifier cannot handle feature vectors

with missing values. So missing tiles were assigned statistics

from the nearest tile in the previous time step. Because of

the low frequency nature of most terrain, this scheme works

quite well in practice.

It is difficult to identify a crossing from a single Velodyne

scan. Instead, we would like to construct features vectors

that use a history of Velodyne scans. Hence feature vectors

for classification are constructed from a contiguous subset of

tiles from the occupancy grid. Each feature vector consists of

tile statistics W meters on either side of the sensor collected

over H time steps. If the tile size is T×T , each feature vector

will then contain Nf = (2W × H)/T 2 feature elements

(Fig. 4). By construction, each feature vector will overlap

with the feature vector constructed in the previous time step.

Velodyne scans were obtained from six different intersec-

tions and feature vectors were constructed from the 3-D point

cloud data as described. Each feature vector was labelled

manually using the images taken along with the Velodyne

scans. We then used the labelled feature vectors obtained as



Fig. 3. This visualization shows µ-statistics on the occupancy grid. Each tile of the occupancy grid contains a small three dimensional bar whose height
is equal to the µ-statistic computed at that tile. The µ-statistic corresponds to the ground height estimate at a tile of the occupancy grid.
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Fig. 4. Feature vector construction. Feature vectors for classification
(shaded red) are obtained from a subset of the data in the occupancy grid.
One feature vector is generated at each time step using statistics from tiles
that are W meters on either side of the current position of the truck and H
meters behind it. The size of each tile of the occupancy grid is T ×T . The
entire occupancy grid is shown in Fig. 3. Each feature vector shares 2W/T
elements with the feature vector generated at the previous time step.

training data for a SVM classifier with a radial basis kernel

K(u, v) = e−γ|u−v|2

The parameter γ was set to 1

Nf
, where Nf is the number

of features in the feature vector. All other parameters were

set to their respective defaults provided by LIBSVM. The

trained classifier was then used to classify new feature

vectors obtained from data sets collected on other routes.

Henceforth, we refer to these locations on the track that

the SVM classifier labels as an intersection as intersection

points. The SVM classifier detects a series of intersection

points for each grade crossing. The number of intersection

points is roughly correlated with the width of the road at the

crossing.

C. Road surface isolation

The next step is to separate the surface of the road from

the surrounding area. For this and subsequent stages, we con-

struct an occupancy grid with tile size 0.25 m×0.25 m and

compute the µ-statistics for the tiles. We limit processing to

a rectangular section of the occupancy grid whose boundary

is at a perpendicular distance of 15 meters from reported

intersection points (the length and breadth of this rectangular

section is at least 30 meters). This length is chosen in order to

contain a strip of road long enough to analyze the passage of

a semi-tractor trailer whose typical length is 11 to 13 meters.

One characteristic of the road is its prominent edge with

respect to the adjacent ground and vegetation. As a conse-

quence, it is possible to separate the road surface from the

surrounding area by detecting these edges.

We detect these edges by transforming the existing occu-

pancy grid data into an image and then applying standard

image processing techniques. The data in an occupancy grid

of dimensions L×B can be transformed into a grayscale

image of corresponding dimensions by quantizing the infor-

mation in each grid tile over the possible number of intensity

values. We have already computed the µ-statistic for each

grid tile. We then compute the intensity of a pixel in the

image corresponding to a grid tile using a quantized linear

transformation:

Lij =

⌊

µij − µmin

µmax − µmin

× 255

⌋

,

Where µij is the µ-statistic computed for each grid tile and

µmin, µmax are the minimum and maximum values that the

statistic takes over the whole occupancy grid.

The resulting image of the terrain around the grade cross-

ing is noisy due to small artifacts that occur on natural terrain

e.g. stones, pits and pot-holes on roads. Using this image

directly for detecting edges will lead to detection of spurious

edges. Hence we apply a Markov random field based noise

reduction method to smooth out the image and remove noise.



A Markov Random Field (MRF) [12] consists of a set of

nodes connected together by edges according to a pre-defined

neighborhood scheme. Each node is assigned a label f from

a possible set of labels F = {f1, f2, f3, . . .}. The problem to

be solved is then modelled as an MRF optimization problem

in which one assigns new labels to each node such that the

new labels are similar to the observed labels (label costs)

and nearby nodes have similar labels (edge costs).

For our problem the nodes are the grid tiles and the

neighborhood scheme is based on adjacency of tiles. This is

because adjacent nodes are correlated due to their physical

proximity and are thus likely to have similar height values.

The set of labels is the set of possible heights that can be

assigned to the grid tiles. The noise reduction problem is

then transformed into an MRF optimization problem where

one assigns new heights to nodes subject to the truncated

quadratic label cost function

V (fi − fj) = min
(

(fi − fj)
2, dv

)

,

and truncated quadratic edge cost function

D(fj) = λ min
(

(I(j) − fj)
2, de

)

,

where dv and dk are thresholds beyond which the cost

functions are truncated.

Because of the large number of variables and edges,

solving the resulting problem exactly is computationally

infeasible. Instead, we use loopy belief propagation to incre-

mentally improve our posterior estimate. Computationally,

our method is identical to that used by Felzenswalb [13],

though the semantic meaning of the labels is different in

our application. For the parameters, we use λ = 0.05,

dv = 200, de = 10000. The neighborhood edge length was

varied from 1 to 5 and for each setting of the edge length,

five iterations of loopy belief propagation were done. For

a detailed explanation of this method, we refer the reader

to [13].

We then apply the Robert’s cross operator [14] on the

smoothed image to extract edges. The Robert’s cross operator

detects edges by sequentially convolving two matrices

R1 =

[

1 0
0 −1

]

,

R2 =

[

0 1
−1 0

]

,

with the image. The Robert’s cross edge detection operator

is computationally inexpensive but is sensitive to noise in the

image. However for our application, use of the Robert’s cross

operator to detect edges is effective because we have already

removed noise in the image. This operator computes an edge

intensity for each pixel. We then adaptively threshold these

images at the 90th percentile of the range of edge intensities

to finally declare pixels as edges (see Fig. 5).

However, this edge detection phase does not separate

the track surface from the road surface because there is

no prominent edge separating the track from the road (see

Fig. 5). This is because, in the vicinity of the grade crossing,

Fig. 5. Edges detected using the Robert’s cross operator after removing
noise. This intersection is the same as the one shown in Fig. 6. The road
and track have been labeled manually for reference.

the railway track is at the same height as the road. As a con-

sequence, when we use these edges as barriers for the flow

of traffic during simulation in the next stage of our method,

the simulated traffic might pass through the track surface.

This is clearly undesirable. This apparent shortcoming of

the edge detection phase is mitigated by adding appropriate

constraints in the next stage of our method.

D. Traffic simulation

From the previous stage, we have an estimate of the road

surface. Next, we want to determine whether a truck would

bottom out while traveling over that road. For this analysis,

we use a sampling based method to simulate traffic over the

road surface that was extracted.

We have a set of candidate points for the road surface from

the previous stage of our method. In this stage, we add more

constraints to refine this candidate set such that the road

surface is clearly separated from the track surface. Traffic

simulation is then done over this refined set. First two points

are randomly choosen from this refined set, such that they

correspond to the point of contact of the wheels of a truck

on the road. We then search along the line connecting these

two points for projections that exceed the ground clearance

of the truck. If any such projections are found the crossing

is declared dangerous. We now give a detailed description

of this simulation procedure in the following paragraphs.

The sample space is a subset of the occupancy grid tiles

that are within a radius of 15 meters from the first and last

intersection points identified by the intersection detection

phase. We randomly pick two points from this subset of

the occupancy grid, sampling uniformly over all elements

from the subset. We then declare that the two chosen points

(x1, y1) and (x2, y2) represent a plausible line of traffic flow

if they satisfy the following criteria:

1) The distance between two points is between 11 meters

and 13 meters. These values are based on the average

length of a truck.



2) The line segment connecting the points passes through

the strip of railway track containing intersection points.

3) None of the points that are labeled as an edges fall on

the line segment connecting the two selected points.

4) The line segment connecting these points does not

present an angle less than 30◦ or more than 150◦ to

the direction of the train through the grade crossing.

This constraint discards traffic flow directions that are

along the direction of the track.

Once a plausible line of flow of traffic is identified, we

check for sufficient clearance by comparing the deviation

of the µ-statistic computed for the grid tiles along the line

segment, with the expected height at a point along the same

line segment. The expected height zxy along a line segment

from (x1, y1, z1) and (x2, y2, z2) dimensions is given by the

following equation:

x − x1

x1 − x2

=
y − y1

y1 − y2

=
zxy − z1

z1 − z2

Here z1 = µx1y1
and z2 = µx2y2

. µxy is the observed

height of ground at a point (x, y) along the line segment.

The condition for insufficient ground clearance along this

line segment is then

zxy + C ≤ µxy,

where C is the ground clearance of the truck. Informally this

amounts to ensuring that the vertical clearance between the

two chosen points is sufficient for a truck with low ground

clearance.

Thus, if the deviation exceeds the expected value by more

than the ground clearance C of the truck, the point of

failure is noted and the crossing is declared dangerous. This

sampling procedure is repeated until a sufficient density of

points on the road surface have been sampled and analyzed.

The number of iterations was set to 1000 after empirical

observations. The crossing is declared safe if none of these

traffic flow lines present any danger.

IV. EXPERIMENTAL RESULTS

The data used for this study was obtained from six grade

crossings in Virginia. Each grade crossings has a different

elevation profile. Data was collected over a length of 30-40

metres around the grade crossing. This gave us an average

of 150 Velodyne scans per grade crossing. Feature vectors

were then constructed from these Velodyne scans and each

feature vector was labeled manually using ground truth from

images collected along with the scans.

A. Accuracy of intersection detection

The following table shows the accuracy of the SVM

classifier that was trained as described in section III B. We

report the number of false positives and false negatives when

data from each intersection was presented to the classifier for

cross-validation.

Location test cases false + false -

Old State 1 93 9 4

Old State 2 123 0 3

Old State 3 147 4 17

Green Mountain Rd. 226 0 6

Meyers Town 146 0 9

Pine Grove 172 6 10

The trained classifier detects the presence of grade cross-

ings on all test cases accurately. The false positives and false

negatives reported in the table above are for intersection

points. The overall accuracy of the classifier for intersection

points was 90%.

Traffic simulation works well even in the presence of a

few false negatives on the intersection. Only false positives

sufficiently far away from an intersection create a problems.

The trained classifier does not produce these kinds of false

positives that are far away from an intersection.

The method for constructing feature vectors for the clas-

sifier has two free parameters: W and H . These determine

the number of features in the feature vector as described

in section III B. Optimal values for these parameters were

learnt by optimizing the classifier performance as a function

of these parameters. The optimal values of the parameters

W and H for the intersection detector were found to be 2
meters and 8 meters respectively.

B. Traffic simulation and analysis

Fig 6 shows the different stages in processing sensor data

from a single faulty grade-crossing.

C. Performance

Grade crossing detection and analysis can be done on the

fly on the sensor vehicle without any post-processing. For

this application it would suffice to identify and process data

from an intersection such that the processing requirements

are bounded by a few seconds. The detection of an intersec-

tion, followed by road surface isolation and safety analysis

takes about 3 seconds on a 2.3 GHz processor. This is easily

completed before the next grade crossing. Only the µ-statistic

data for each tile on the occupancy grid is required for traffic

simulation. This data (< 1MB) is small enough to fit in the

main memory of the system and can be discarded once the

simulation is complete.

V. CONCLUSION

We have described a system that automatically surveys

grade crossings using ranging sensor data and generates

safety reports for them. Our system uses principled machine

learning methods to detect crossings. It then performs simu-

lation based analysis on a non-parametric model of the grade

crossing to detect faults in the crossing. We also showed how

the system can be engineered to perform this analysis in real-

time, without any deferred processing.



Fig. 6. Different stages in our method. (top-left) Photograph of the grade crossing being analyzed. (top-right) Model of the crossing reconstructed from
sensor data. (bottom-left) Edge detection phase where edges are detected on a subset of the tiles on the occupancy grid. Edges are shown along with their
intensities plotted as heights. A traffic flow line that is dangerous is shown in magenta. (bottom-right) The orientation in which a truck could bottom-out
at this grade crossing.

VI. FUTURE WORK

We are actively working to develop methods for extracting

other safety parameters such as the distance from which a

car can see an approaching train and mapping assets such as

sign posts and railway gates.
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