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Abstract— A homography is traditionally formulated as a
linear transformation and is used in multiple-view geometry as
a linear map between projective planes (or images). Analogous
to the use of homography-based techniques to calibrate a
pin-hole camera, non-linear homographies extend the pin-
hole camera model to deal with non-linearities such as lens
distortion.

In this work, we propose a novel non-parametric non-
linear homography technique. Unlike a parametric non-linear
mapping that can have inherent biases, this technique automat-
ically adjusts model complexity to account for non-linearities
in observed data. With this technique, we demonstrate non-
parametric estimation of lens distortion from a single calibra-
tion image.

We evaluate this technique on real-world lenses and show
that this technique can improve the stability of camera-
calibration. Furthermore, the non-parametric nature of our
technique allows rectification of arbitrary sources of lens
distortion.

I. INTRODUCTION

The term homography means similar drawing. Mathemat-
ically, it is a matrix that linearly transforms a point from one
projective plane onto a point in another projective plane. It is
an invaluable tool in multiple-view geometry for reasoning
about multiple views of the same object.

Zhang’s landmark paper [1] makes use of the homography
between a planar calibration target and the camera image
plane to calibrate the intrinsics of a camera. This method and
its extensions represent some of the most popular methods
for camera calibration.

Practical cameras do not conform to the linear transforma-
tion expected of an ideal pin-hole camera; the most obvious
source of non-linearity being distortion caused by the lens.
Thus, the linear projective camera must be augmented with
a model of lens distortion in order to model real-world
cameras.

Recent works by Claus and Fitzgibbon [2], Barreto
et. al. [3] and Gasparini et. al. [4], seek to model non-linearity
in cameras using a lifted homography. This formulation
projects the input coordinates into a higher-dimensional
feature space (lifting) and then constructs a homography in
this higher-dimensional space, thus producing a non-linear
mapping. By construction, lifted homographies are paramet-
ric with respect to the size of the higher-dimensional space,
and they are geometrically unintuitive. In this work, we
propose a novel alternative non-linear homography technique
that is also non-parametric. The technique retains geometric
intuition because its mapping action can be interpreted in
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Fig. 1: Original distorted image and undistorted image from
an ad hoc setup involving a camera and an automotive blind-
spot mirror. The proposed method can non-parametrically
estimate and correct arbitrary distortion from just a single
image of a planar target.

terms of a locally-linear homography. The contributions of
this work include:

1) A novel non-parametric non-linear homography for-
mulation that can map lines on the source plane to
arbitrary smooth curves on the target plane,

2) An application of this technique to build a model of
lens distortion; we compare the use of both parametric
polynomial models and non-parametric Gaussian pro-
cess models of lens distortion,

3) Improved stability of camera calibration using this
independent non-parametric estimate of lens distortion,
and

4) An evaluation of the performance of both the non-
linear homography technique and the resulting lens
distortion model on real-world lenses.

This formulation of a non-parametric non-linear homography
is a novel idea to the best of the authors’ knowledge. Its
ability is not limited by a choice of parametric model for lens
distortion, and it has the capability to model arbitrary sources
of distortion (e.g. Fig. 1). More interestingly, it produces an
independent estimate of the distortion without relying on any
prior knowledge of the intrinsics or extrinsics of the camera
used to acquire the image.

In essence, the straight lines are straight rectification
procedure as described by Devernay and Faugeras [5] serves
a similar purpose to our method. However, our method
operates in terms of homographies; therefore, it implicitly
encodes projective constraints.

In the following section, we present a brief overview of
necessary background. Our method and evaluation follows
in section III. We end this work with a discussion of its
contributions and future work in section IV.



II. BACKGROUND

Our formulation of the non-linear homography estimation
builds on the methods of classic planar homography estima-
tion and uses Gaussian process regression to provide predic-
tions of distortion from observed estimates. We provide brief
reviews of both these topics in this section.

A. Planar homography estimation

Mathematically, a planar perspective homography H de-
fines an invertible linear transformation between two per-
spective planes. It maps a point p in one plane onto a point
q in another plane such that p ∼ Hq. The point p is
similar and not equal to Hq because of the universal scale
ambiguity in perspective projection. Further, it maps a line
on the source plane to a line on the target plane. When a
planar target is viewed by a perspective camera, points on
the planar target are related to their image on the camera
plane by a homography H.

In camera-based view geometry, the homography acquires
a special interpretation H = KE, where K is the camera
perspective (intrinsics) matrix and E is the Euclidean trans-
formation (extrinsics) matrix that describes the pose of the
camera when viewing the target. For an extensive treatment
of the concept of a homography, we refer the reader to [6].
In the following paragraph, we briefly explain the process
(adapted from [7]) of estimating a homography that relates
two sets of corresponding points.

Consider a pair of corresponding points p = (x1, y1, z1)
T

and u = (x2, y2, z2)
T related by a homography H:
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T ,
i.e.,

x
′

2 =
h11x1 + h12y1 + h13z1 + h14
h31x1 + h32y1 + h33z1 + h34

y
′

2 =
h21x1 + h22y1 + h23z1 + h24
h31x1 + h32y1 + h33z1 + h34

Thus, each correspondence p � u, results in two linear
equations in the unknowns h = (h11, h12, . . . , h34)

T . With
multiple correspondences, we collect multiple pairs of such
linear constraints to obtain a coefficient matrix A. We then
obtain a least-squares solution for h by solving

(ATA)h = 0 (1)

The solution for h is obtained as the eigenvector correspond-
ing to the smallest singular value of ATA.

B. Gaussian process regression

For Gaussian process (GP) regression on a set of observa-
tions t at a set of input locations x, we assume that the
data was obtained from a zero-mean, stationary GP with
covariance function k(xn, xm). Let β denote the precision
of the observed target values t. We then define C as the
covariance matrix with elements

C(xn, xm) = k(xn, xm) + β−1δnm

When we require a prediction for a new input xN+1, we
first construct the covariance matrix CN+1 and partition it
as follows:

CN+1 =

[
CN k
kT c

]
Then the mean and variance of the predicted value at xN+1

are given by

m(xN+1) = kTC−1N t (2)
σ2(xN+1) = c− kTC−1N k (3)

We refer the reader to [8], [9] for a detailed mathematical
derivation of the above results. Instead, we provide an intu-
itive summary of GP regression in the following paragraphs.

GP regression can be viewed as kernelization of Bayesian
linear regression to accommodate non-linearity (see [9]). The
covariance function plays the role of the kernel function here;
the terms are often used interchangeably in the context of GP
regression. Intuitively, GP regression predicts new outputs
using a locally weighted sum of the observed targets, t,
where the local weighting is specified indirectly through the
covariance function.

A common choice for the covariance function is the
squared-exponential (SE) covariance function (or the Gaus-
sian kernel function).

k(xm, xn) = θ21 exp

{
−0.5

(xm − xn)
2

θ20

}
+ δmnβ

−1 (4)

The parameter θ0 controls the smoothness of the resulting
GP. The parameter θ1 controls the scale of the similarity and
also affects the extrapolation power of the GP.

The parameters θ0, θ1 and β are considered hyper-
parameters of the GP. For effective GP regression, one
must estimate optimal values for these hyper-parameters as
described in [8].

III. METHOD

In this section, we present our formulation of a non-
linear homography and use it to obtain an estimate of
lens distortion. We then learn predictive (polynomial and
Gaussian process) models from these distortion estimates and
then show how these models can aid and improve the process
of camera calibration via non-linear optimization.



Fig. 2: Local regression on non-linear data.

A. Locally-weighted homography estimation

Consider the plot in Fig. 2 with data (shown in black)
exhibiting a non-linear trend. This is a typical candidate
for non-linear regression. However, in a sufficiently small
window W (shaded gray), the data is mostly linear and a
line is, locally, a good fit as shown by the red line through
the dots.

Now, let us consider sliding the window W, over the entire
domain of data and computing local regression estimates at
each location of the window. To enforce smoothness between
estimates in adjacent window locations, we substitute the
use of a discrete neighborhood with a fuzzy neighborhood:
we weight points using a weighting scheme that weights
closer points higher than points further away. This regression
technique is termed locally-weighted linear regression1 [10].

This regression estimate is dynamic in the sense that
it changes with the choice of window location and the
weighting function (for example the other set of red points
to the left produce a different locally-valid, linear regressor).
When we systematically perform multiple local regressions
over the domain of the data, we obtain a non-linear locally-
weighted regressor (blue curve in the plot).

Homography estimation is also a regression problem, and
this idea of locally-weighted regression can be extended to
homography estimation by weighting the estimate derived in
(1). This gives us:

(ATWA)h = 0,

where the weight matrix W is a diagonal matrix, with
elements k(q,xi) on its diagonal; q is the location of the
current estimation window and xi are the points on the
source plane used to estimate the homography. k(.) is the
kernel or weighting function:

k(q,xi) = exp

{
−qT .xi

2τ2

}
(5)

The resulting non-linear homography is directly interpretable
as a continuous mosaic of smoothly varying planar ho-
mographies, which relates each point on the source to a
unique corresponding point on the target. Analogous to how
the planar homography maps source lines onto target lines,

1A reader with a background in signal processing or time-series modeling
will notice similarities between this technique, convolution and moving
averages.

the non-linear homography maps source lines onto smooth
curves on the target plane, as shown in Fig. 3.

Furthermore, this non-linear homography is also non-
parametric because it can model non-linearities of any
complexity using a single hyper-parameter τ , the weighting
bandwidth, in (5). Optimal estimates of τ are obtained by
optimizing a cross-validation score: one (or more) points are
held-out from the set of known correspondences, and τ is
chosen as the value that minimizes mapping error of the
held-out set of correspondences.

B. Lens distortion estimation

The distortion caused by lenses is predominantly radial
(see Fig. 3 for an example). However, manufacturing errors
or shock can introduce slight tangential distortion compo-
nents. Because of its radial nature, it is also generally true
that lens distortion is minimal at the center of the image.
Lens distortion is modeled as a distortion function fd(.) that
acts on a point on the image plane and displaces it to a new
point.

Our distortion estimation technique consists of the fol-
lowing steps. Note that a locally-weighted homography is
specified by the mapping direction (source, target) and point
at which it is estimated:

1) Obtain a set of pairwise correspondences between
image points xi and world points xw such that xk

w �
xk
i .

2) Estimate Hi→w, the locally-weighted homography
from image to planar target, at the center of the image
c. Use this to find p, the corresponding point on the
planar target, where p = Hi→wc.

3) Now, find a locally-weighted homography in the other
direction Hw→i, from planar target to image, at the
point p. By construction, p and c are related by Hi→w,
so Hw→i = (Hi→w)

−1. This mapping is not affected
by lens distortion since we have assumed that there is
minimal distortion at the center of the image.

4) Transform all other xk
w by Hw→i, to obtain yk

i . The
estimate of the distortion at xk

i is then dk = (yk
i −xk

i )

In other words, we estimate the (world-to-image) homogra-
phy at the center of the image, Hw→i, and project all the
world points through this homography. The distortion is then
the displacement between what was observed and what is
predicted by Hw→i. Displacement of observed points from
predicted image points gives us the distortion estimate while
its inverse, the displacement of predicted image points from
observed points, gives us the undistortion function:

dk = yk
i − xk

i

uk = xk
i − yk

i

For reasons that will be apparent in the following sections,
we chose to directly model the undistortion function from
its estimates uk.

To continue with our goal of not making any radial or
tangential assumptions, we model the undistortion as a direct



Fig. 3: Locally-weighted homography estimation. Left-most image is the camera image of the planar target (see [11], [12]
for information on the fiducial-based planar target). The following figures show the mapping of lines through row-centers on
the target onto the image plane, for weighting bandwidth τ = 1,0.005 and 0.0005, respectively. Note how the line mappings
are progressively more curved. At τ = 0.0005, the mapping is accurate to within 0.1 pixels.

Fig. 4: Distortion model using a locally-weighted homogra-
phy at the center of the image. The quiver plot at the top
shows the distortion observations for the image in Fig. 3.
At the bottom is a quiver plot of the GP undistortion model
inferred from these observations.

2-D function of pixel coordinates. A reasonable choice is to
use a 2-D polynomial mapping to model the undistortion.
However, we observed that 2-D polynomial regression ex-
hibited over-fitting on our datasets, with polynomial orders
greater than five causing an increase in reprojection error.

One could solve the problem of over-fitting by regular-
ization. Instead, we chose to model the undistortion using
a 2-D GP. This implicitly takes care of regularization with
the additional advantage of making the undistortion function
non-parametric.

In our implementation2, the 2-D GP consists of two
independent GPs, one modeling the undistortion ux in the
x-direction and another modeling uy in the y-direction. The
distortion components can be modeled separately because

2available on our website: http://april.eecs.umich.edu.

(a) Tamron 2.2 mm lens

(b) Tamron 2.8 mm lens (c) Tokina 3.3 mm lens

Fig. 5: Images undistorted using a GP model estimated from
a single image.

ux(i, j) is conditionally independent of uy(i, j) given the
pixel coordinates (i, j). This GP that tracks two independent
input variables (i, j) uses a 2D SE kernel function:

k(xm,xn) = θ21 exp

{
−1

2
xT
mΣ−1xn

}
+ δmnβ

−1

which has extra hyper-parameters corresponding to the en-
tries in the matrix Σ.

As an evaluation of the local homography-based undis-
tortion technique, in Table I, we undistort correspondences
from three real-world lenses and report pixel deviation from
straightness. Overall, we observe deviations of less than one
pixel. However, for the set of lenses used in our evaluation,
there is no significant difference in the performance of the
polynomial (up to fifth order) and GP models. Fig. 5 has
some examples of images undistorted using a non-parametric
GP model.

C. Single image calibration

Combining the technique of section III-B with camera
intrinsics estimation using orthogonal vanishing points (see
[13], [14]), one can obtain useful estimates of both the
camera intrinsics and lens distortion simultaneously. This can
be done with just one calibration image as follows:

1) Obtain an image of the planar target, such that the
target covers most of the image plane while producing



DATASET 1 DATASET 2 DATASET 3 DATASET 4 DATASET 5
PIX ERR→ AVG MAX AVG MAX AVG MAX AVG MAX AVG MAX

Tamron 2.2 POLY 0.09 0.37 0.11 0.54 0.09 0.39 0.05 0.17 0.09 0.41
GP 0.09 0.36 0.12 0.51 0.08 0.44 0.04 0.16 0.09 0.38

Tamron 2.8 POLY 0.07 0.24 0.11 0.39 0.11 0.56 0.16 0.65 0.13 0.76
GP 0.07 0.24 0.11 0.39 0.10 0.37 0.15 0.64 0.13 0.78

Tokina 3.3 POLY 0.04 0.21 0.05 0.32 0.11 0.65 0.06 0.29 0.08 0.43
GP 0.04 0.32 0.05 0.31 0.12 0.67 0.06 0.33 0.08 0.42

TABLE I: Mean absolute deviation from straightness after undistorting test datasets using the estimated lens distortion model.
Overall, we observe that the deviations (mean and max) are within 1 pixel. For the lenses used in this evaluation, there is
no significant difference between the polynomial and GP undistortion models.

two vanishing points. A target that covers the image
plane helps in a confident distortion estimate and at
least two vanishing points are required for recovering
the camera matrix K.

2) Estimate the undistortion as described in section III-B,
and undistort the image.

3) Estimate vanishing points from the undistorted image
and use the technique of [13] to estimate the camera
matrix. Note that with only two vanishing points, we
must assume that the principal point (cx, cy) is at the
center of the image.

This estimate of camera intrinsics and distortion from a sin-
gle image can be further refined by non-linear optimization.

D. Non-linear optimization of camera intrinsics

We can use the lens distortion estimate obtained by our
method to simplify classic camera calibration. This is done
by undistorting the calibration images first, and then opti-
mizing just the camera intrinsics and extrinsics. This results
in an optimization that optimizes a smaller set of parameters.

However, we must note that by undistorting calibration
images we are committing to a single point-estimate of
the undistortion and ignoring any uncertainty. As an em-
pirical approximation, we can integrate out the uncertainty
parameters from the optimization by sampling from the GP
lens distortion estimate, and then using these samples to
expand the calibration image set. We list out the steps in
this augmented camera calibration algorithm below:

1) Obtain a model of undistortion using the technique
listed in section III-B.

2) Obtain a set of calibration images.
3) For each image in the calibration set, sample the GP

undistortion model multiple times, and undistort the
image using the obtained samples. This results in an
expanded calibration set that empirically accounts for
the uncertainty in the distortion estimate.

4) Perform non-linear least-squares optimization of the
camera intrinsic and extrinsic parameters on the undis-
torted images, as in the classic calibration method.

In Fig. 7, we compare the performance of the classic and
augmented calibration methods and present histograms of
errors obtained on multiple testing datasets. We report both
the RMSE and max pixel errors and find that the classic
calibration method has significantly more outliers.

Fig. 6: Convergence of classic camera calibration vs. aug-
mented camera calibration for three different lenses. The aug-
mented calibration method uses the non-parametric undistor-
tion model estimate to undistort the image before calibrating
camera intrinsics and extrinsics. The x-axis and y-axis are
the values of (fx, fy) used to initialize the optimization.
(cx, cy) was initialized to the image center. The color-
mapped value at each point corresponds to the Euclidean
distance of the final calibration from a nominal reference
calibration. We find that the augmented camera calibration
is very flat showing that it is more consistent. For reference,
the range of values for the augmented calibration plots are
(2.0, 6.9), (3.3, 44.8) and (2.12, 12.9), top to bottom. This
improvement in convergence suggests that the augmented
method results in a more stable optimization.



Fig. 7: Testing errors for the classic and augmented cal-
ibration methods. We observe that both the classic and
augmented methods have a very similar distribution of errors
except for a significant tail of outliers for the classic method.
This tail of outliers suggests that the classic method is prone
to over-fitting.

In Fig. 6, we compare the convergence of classic non-
linear least-squares-based camera calibration with augmented
camera calibration. The augmented calibration results in an
optimization problem that has a smaller number of parame-
ters,3 and hence it has more consistent convergence.

An alternative (and perhaps more principled) approach for
incorporating the lens distortion estimate in the non-linear
optimization is to use the GP distortion estimate as a GP
prior over lens distortion. We refer the reader to [15] for
an explanation of this technique. We intend to explore this
approach as future work.

IV. DISCUSSION & CONCLUSION

In this work, we have described a novel non-parametric
non-linear homography technique; unlike a planar homog-
raphy, it is capable of mapping lines from a source plane
onto arbitrary smooth curves in the target plane. We then
use this technique to estimate lens distortion as the observed
deviation from the homography at the center of the image and
non-parametrically model lens distortion using a Gaussian
process.

We then use this distortion model to undistort real-world
images. Classic camera calibration involves simultaneous
estimation of lens distortion and camera intrinsic parameters.
We show that this classic calibration technique can be
augmented with our independent lens distortion estimation
technique to improve the stability of camera calibration.

Our technique can be visualized as building a continuous
mosaic of homographies from the source plane to the target
plane. As an extension, we can decompose the homographies
on the mosaic and interpret the resulting image as the result
of multiple appropriately placed pinhole cameras. This lets
us interpret this technique as building a non-parametric, non-
linear mapping from 2-D image points to rays in 3-D.

The ability to interpret an acquired image as the result
of a camera locus might have implications in estimating the
caustic of a catadioptric (mirror+lens) camera system [16].
We intend to explore this direction as future work.
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