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Abstract— We introduce a method for efficiently rasterizing
large occupancy grids. Efficient Maximum Likelihood Estima-
tion (MLE) of robot trajectories has been shown to be highly
scalable using sparse SLAM algorithms such as SqrtSAM,
but unfortunately such approaches don’t directly provide a
rasterized grid map. We harness these existing SLAM methods
to compute maximum likelihood (ML) robot trajectories and
introduce a new efficient algorithm to rasterize a dynamic
occupancy grid. We propose a spatially-aware data structure
that enables the cost of a map update to be proportional to the
impact of any loop closures, resulting in better average case
performance than naive methods. Furthermore, we show how
redundant sensor data can be exploited to improve map quality
and speed up rasterization. We evaluate our method using
several data sets collected using a team of 14 autonomous robots
and show success in mixed indoor-outdoor urban environments
as large as 220m x 170m, with 0.1m resolution.

I. INTRODUCTION

Successful autonomous operation of a team of robots in
unknown large-scale environments depends on having a ro-
bust and globally consistent mapping solution. In particular,
rasterized occupancy grids have many important applications
where efficiency is an important objective (See Fig. 1). For
example, autonomous exploration presents particularly hard
timing requirements – the planner requires map updates
quickly so that it can compute updated plans without re-
quiring robots to stop and wait [12]. Standard approaches to
rasterization in the Simultaneous Localization and Mapping
(SLAM) field scale linearly with the amount of robot sensor
data. For applications where robots are deployed for extended
periods of time, this eventually becomes problematic. We
show two optimizations which improve on the standard
methods by identifying similarity in subsequent maps and
by mitigating the performance and quality reductions from
redundant observations.

Relevant previous work in SLAM divides primarily into
two categories: particle-based methods and parametric meth-
ods. Particle-based methods such as FastSLAM, RBPFs and
DP-SLAM have the advantage that the occupancy grid can
be included in the state representation, since each hypothesis
commits to a fixed position for each sensor reading [9],
[7], [6]. This makes computing a dynamic map for planning
purposes trivial, since the ML map can always be retrieved
from the particle with the highest likelihood. However,
particle-depletion makes these methods inadequate for high
dimensional state spaces, such as the mapping task we
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Fig. 1. Rasterized map for a portion of Keswick Barracks, Adelaide, South
Australia (180m x 100m). The map was produced with a mean processing
time of 1.3 seconds on a single 2.53 GHz core. Permanent structure is shown
in black; known free space in gray; unobserved in white.

explore in this work. Various parametric methods such as
GraphSLAM, SqrtSAM and ESEIF [15], [8], [16] have
been shown to scale much better to high-dimensional state
spaces, such as those encountered when computing large
joint maps for a team of robots. An important benefit of
some of these methods is that they do inference on the entire
graphical model underlying the SLAM problem, providing
accurate posteriors quickly for the full trajectories of a team
of robots. Unfortunately, these parametric methods make
the rasterization of the global map more difficult, as grid-
based representations must be built explicitly. Computing
a dynamic gridmap using parametric techniques is further
complicated because the maximum likelihood location of a
sensor reading can change over time as more information is
collected about the environment.

Others have presented mapping results for teams of robots
using graph-based SLAM approaches, however, these do
not address scalability issues for creating very large grid-
maps with large numbers of robots [4], [11]. Thrun et al.
have generated large-scale grid maps of mines but do so
using only a single robot under manual control [14]. Others
have considered decomposing the global mapping problem
by building metrical maps on a per robot basis using existing
methods and then merging them [2], [3]. However, such
approaches are unable to guarantee a map which reflects the
MLE positions of all the sensor observations.

So far, no one has developed an algorithm to efficiently
rasterize a global occupancy map with a parametric SLAM
model as a backbone. This may be because in small or
medium size environments, even a naive algorithm is fast
enough to be useful. In large-scale environments, such as
those in the MAGIC 2010 contest, efficient map rasterization
is crucial in enabling autonomous management of the robots.



Fig. 2. Several GraphSLAM posteriors from the dataset that generated
the map in Fig 1. Even though the SLAM graphs do not directly encode
a grid map, we’ve shown that we can use this representation to efficiently
compute an occupancy grid of the observed space.

To address these shortcomings, we present a method
which uses a sparse parametric SLAM algorithm to enable
occupancy grid updates to be computed on-line for larger en-
vironments than any naive methods can handle. Our method
exploits several properties of the mapping problem: We
observe that after incorporating loop closures, the posterior
of a historical robot position does not necessarily change, so
parts of the gridmap may remain the same. We also observe
that useful maps, e.g. for cooperative planning, only contain
the static structure of the environment, omitting dynamic
obstacles. Finally, we note that with some low-noise sensor
types, e.g. laser range finders, a small number of views
of a place are sufficient to form a complete map. These
observations lead us to develop a map rasterization method
which has the following properties:
• efficient average case update proportional to the impact

of any loop closures
• globally consistent at every iteration
• applicable in dynamic environments by only rasterizing

non-transient objects.
• fast enough for on-line use

II. PROBLEM FORMULATION

We consider the problem of generating a rasterized map
using the laser-range-finder data associated with the trajec-
tories of a team of robots. In particular, we build on the
GraphSLAM formulation, where a SLAM graph G contains
a set of nodes V and edges E. The nodes represent the
location of a specific robot at a specific instant in time.
Each node is associated with a local occupancy grid taken
at that moment. The edges represent constraints between
two poses that determine their relative position, including
a covariance. An edge can be created using odometery and
IMU readings from a single robot to form that robot’s
trajectory. Furthermore, additional edges can be added by
finding correspondences in the sensor data associated with
two nodes.

Several efficient methods exist for computing posteriors
for the node locations, such as SqrtSAM, iSAM, or SGD [5],
[8], [10]. Given the sensor data associated with each node
and its posterior position, we can formulate a basic naive
algorithm for building a global occupancy grid map. Starting
with an empty map, we iterate over each node in the graph

Fig. 3. Cache data structure using slices for N = 2. The leaves represent
local maps from each robot. A single layer of globally aligned sub-maps
are stored in the slices.

and rasterize the associated sensor data onto a global map.
This rasterization algorithm scales linearly in the number of
nodes in the graph: for applications where only the final map
is desired, this method works quite well.

In the case of a team of actively exploring robots, we
actually operate on a sequence of n graphs G1, · · · , Gn, from
which we want to produce maps M1 · · ·Mn, e.g for use with
an autonomous planner. We desire that the maps be computed
on-line with a minimum of delay so that consumption by
the planner can proceed directly. We further require that the
maps reflect the exact MLE position of all the sensor data
contained within it, and that moving obstacles are removed.

III. PROPOSED METHOD

The proposed method uses a combination of techniques
to speed up the computation of Mi+1 given previous maps
M1 · · ·Mi. We first introduce a spatially aware data structure
that uses caching to exploit the similarity between subsequent
maps. Second, we introduce the notion of a “node covering”
which allows Mi to be computed by potentially discarding
redundant sensor data. These optimizations enable the time to
compute a rasterization to scale with the size of the observed
area, not with the duration of the system’s operation (which
could be quite long, or even unknown). Finally we show how
this method can incorporate transient object removal.

A. Slice Caching

Each subsequent node set is a superset of the previous set
(Vi ⊆ Vi+1), so we could theoretically improve on the naive
algorithm if we can exploit the overlap. For example, if the
edges added to Gi to form Gi+1 didn’t include significant
information gain (in the probabilistic sense), then the maps
Mi and Mi+1 can be quite similar. What we desire is
a principled way to determine which portions of Mi we
can reuse to form Mi+1, so that if the graph isn’t gaining
information, the map update is very fast. In cases where the
graph changes significantly, we must be willing to wait for
an accurate map Mi+1 to be formed if we want to ensure
the map is consistent.

We can exploit similarities in subsequent maps by parti-
tioning the nodes Vi into k disjoint subsets S1 · · ·Sk we call
slices (See Fig. 3). We then compute small maps mj from
each slice Sj , such that the final map Mj is the rasterization
of all m1 · · ·mk. For each map update, the number of subsets
that need to be converted to sub-maps will vary. In the



worst case all subsets will contain nodes whose posterior
has changed and the data from every node will be examined
twice – once to form mj , and once again to form Mi. To
achieve faster map updates, we can avoiding recomputing mj

if the posterior position of no node in Sj changes enough
to cause a change in mi. As we show in our evaluation, it
is usually the case that enough nodes are not part of a loop
closure that it is worthwhile to cache mi.

The method for partitioning Vi into subsets greatly impacts
the runtime of the algorithm. Unfortunately it is not possible
to know an optimal partitioning in advance. Ideally, we
design the subsets to contain highly correlated graph nodes.
This way, if l nodes need to be recomputed, only d |Sk|

l e slices
need to be recomputed. If the subsets were not correlated,
we might need to recompute as many as l slices. We found
that in practice, a good heuristic partitioning is to group
N sequential nodes from a single robot into a slice. These
slices contain spatially and causally correlated nodes, so their
posteriors are likely to change together. This means a single
node is less likely to cause the recomputation of an entire
slice unless the other nodes in that slice also have moved.

B. Spatially Non-Redundant Node Coverings

To further increase the speed of computing the rasteri-
zation for a map, we note that much of the sensor data
collected by the robots is redundant. For environments which
are structurally static, such as indoor-outdoor urban environ-
ments, a single sensor observation can be sufficient to build
an accurate map of small area. In particular, this is the case
for low-noise sensors such as laser range finders.

This observation allows us to reformulate the occupancy
map generation using only a subset of nodes, Ci ⊆ Vi,
which cover all the nodes in Ni. We define a set of nodes
to be covering if there exists no node not in Ci which adds
significant information to the map Mi. We can also show that
this assumption actually allows us to improve map quality
subjectively, since multiple observations of a single place
can only result in blurring of features, potentially erasing
important topological features such as doorways.

In practice, determining a minimal covering which meets
this definition is at least as expensive as computing M ′i from
Vi, since it is unclear without examining each local map mj

in detail if it will contribute significantly to the global map.
However, we can define a conservative heuristic which will
guarantee a complete covering in most environments, though
it may not be minimal. We do this by considering the field
of view which each local map covers, and the location at
which it was taken. If both of these are too similar to an
existing measurement, we can remove it from the covering.

The covering paradigm enables a smart decimation of the
sensor data, which enables the computation of Mi to be
bound by the area it covers, rather than the up time of the
system. In the worst case, the area could still be linearly
dependent on the runtime. However, at system design time,
we will likely have a prior over the size of the environments
we are mapping, even if we don’t have a prior over its
runtime.

Algorithm 1 CoverComposite(Gi = 〈Vi, Ei〉)
1: for v ∈ Vi|v 6∈ Vi−1 do
2: r = robot(v)
3: if coverTest(v, Cr) then
4: append(Cr, v)
5: sk = getNextSlice(Sr)
6: addToSlice(sk, v)
7: end if
8: end for
9: for sj ∈ S do

10: if projectionError(sj) >thresh then
11: regenerate(sj)
12: end if
13: end for
14: Mi = initialize(boundingBox(S))
15: for sj ∈ S do
16: compositeOnto(Mi, sj)
17: end for
18: threshold(Mi)
19: return Mi

C. Transient Object Removal

The final step of the rasterization process is determining
how to ensure transient objects are not included in the
final map. As previously mentioned, transient objects cause
problems for autonomous planners because their presence
can obscure the existence of more explorable terrain through
a doorway. As a result, we must carefully detect which
sensor readings are due to transient objects. In principle,
such objects are easy to detect by looking for disagreement
among sensor data as to the free or occupied status of a cell.
In practice however, some disagreement can be caused by
alignment error and does not necessarily indicate a transient
object. In cases where alignment is bad (e.g. when the
SLAM Graph is poorly constrained), we want to mitigate
the possibility that entire walls will be removed. The “bias”
to label an object as transient reflects the degree to which
the system designer wishes to be resistant to alignment error
vs the desire to ensure all doorways are correctly marked
as passable terrain. An efficient solution to this problem
is to view multiple sensor readings of a particular cell as
observations of a binary variable with equal covariance. The
probability of the cell being an obstacle is given by:

p(obs|z0 · · · zn) ∼ p(obs)
∏
i

p(zi|obs)

This can be computed directly by summation of log proba-
bilities [13]. A simple threshold on p(obs|z0 · · · zn) can then
be used to determine whether the cell should be marked as
occupied or free, reducing the process to a vote at each cell.

D. Proposed Implementation

By combining the improvements from the node covering
with the slice method we propose the map compositing
method ‘CoverComposite’ in Algorithm 1. We assume that
another module, e.g. GraphSLAM, is producing a sequence



Fig. 4. Final occupancy-grid map generated from the phase 2 portion of
the MAGIC 2010 contest. The map includes data from 15 robots collected
over the course of 72 minutes. Size: 220m x 160m @ 0.1m resolution.

of posterior SLAM graphs Gi, Gi+1, · · · . The algorithm we
present is run on successive Gi. For convenience, the cover
and slice sets are stored in memory as Cr and a set of slices
Sr for each robot r ∈ {0, · · · , R}. First, all the new nodes
that first appear in graph i are examined to determine if they
belong in the covering for the robots which spawned them.
If so, they will be added to an existing slice if there is room,
or otherwise force the creation of a new slice. Next, each
slice is examined to determine if the projection error of any
update of the state of any of its member nodes would cause
an error of more than some threshold (e.g. 1 pixel). If an
update is needed, the cumulative gridmap for that slice is
regenerated according to the most recent posteriors for each
node. Finally, all the slices for all robots are composited
together to form the final occupancy grid. The final grid
keeps track of how many slices observed each cell as either
observed or free. Using the probabilistic scheme described
in the previous subsection, we convert that representation to
a binary map via a fixed threshold.

The asymptotic complexity bounds of our method is the
same as the naive algorithm we described earlier. In the worst
case the proposed implementation is at most twice as slow,
since each sensor datum must be examined at most twice.
However, we have shown empirically that the average run
time is much faster than the naive rasterization algorithm.

Algorithm Nodes composited
NaiveComposite All
NaiveCoverComposite Cover (every timestep)
CoverCompositeN Cover (only when necessary)

TABLE I
METHODS USED IN THE EVALUATION

IV. EVALUATION

To evaluate the effectiveness of the proposed method, we
implemented two naive rasterization algorithms, in addition
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Fig. 5. Cumulative runtimes for each algorithm on phase 2. Color bands
depict histograms indicating which portion of rasterizations finished in under
1.0s, 2.0s, etc, for colors of red, green, blue, cyan, magenta and yellow,
respectively.

Dataset Size # robots Num. Graphs
Keswick Barracks 150m x 150m 10 68

Showgrounds (phase2) 220m x 160m 14 429

TABLE II
DATASETS USED IN THE EVALUATION

to three versions of the proposed method by varying N , the
parameter which determines how many nodes are in each
slice (see Table I). The first naive method, NaiveComposite,
computes a batch composite of all the nodes every timestep.
The second naive method, NaiveCoverComposite, rasterizes
only the nodes in the cover at each timestep.

We evaluated all five algorithm parametrizations on two
separate datasets: one involving 10 robots autonomously
exploring a section of the Keswick Barracks, and another of
14 robots autonomously exploring a portion of the Adelaide
Showgrounds as part of the MAGIC 2010 contest (see Ta-
ble II for specific dimensions). While the datasets are both of
structured, man made environments, they have significantly
different topology, which enables us to evaluate performance
under varying conditions. The maps corresponding to the
final graphs in each dataset are shown in Fig. 1 and 4 Both
data sets were taken in Adelaide, South Australia. To our
knowledge, no other public datasets of this scale exist.

To evaluate the effectiveness of each method, we ran each
algorithm on a sequence of graphs for each dataset, collected
at 10 seconds intervals. We evaluated each method primarily
on the total runtime of the rasterization. All algorithms use
the same node posteriors, so we expect the maps from each
algorithm to be very similar. While it would also be desirable
to quantitatively evaluate the map quality from each method,
as in [1], we lack accurate ground truth for the environments
in question (see Fig. 4). In practice, we found that our cover
heuristic consistently produced structurally accurate maps.
Subjectively, we even saw a slight improvement to map
quality using the covering method, as can be seen in Fig. 7.

For evaluation, we timed the duration of each map up-
date for each method on a 2.53 Ghz Intel i5 laptop. Our
algorithms are single threaded and implemented in Java.
To determine which algorithm is the most CPU efficient,
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(a) Detailed timing for the graphs G0...G67 on the Keswick dataset. Horizontal lines indicate average runtime for that
algorithm. Large runtimes indicate loop closures occurred between the (i− 1)th and the ith timestep which changed
the ML posterior for the position of many nodes.
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(b) Detailed timing for the graphs G0...G429 on the phase 2 dataset. Horizontal lines indicate average runtime for
that algorithm. Vertical spikes are indicative of significant loop closures. In this case, the system is still functioning
well after over an hour in a large environment with many loop closures.
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(c) Time varying totals for the number of nodes in the graphs, the number of nodes in the cover, and the number of
nodes which must be regenerated for each algorithm at each timestep.

Fig. 6.
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Fig. 7. Map quality improvement using a node covering for a problematic
section of the phase2 map. This technique reduces feature blurring while
still providing structurally equivalent maps.

consider the integral time over the phase 2 dataset shown in
Fig. 5 (lower is better). The plot shows that although N = 16
has the lowest total time, the N = 4 parametrization actually
has more instances finishing in under 1.0 seconds (red) than
any other method. Despite being slightly slower, we choose
N = 4 as the best, since it reduces the planning delay the
most often. Note that when large scale loop closures occur,
we must be willing to incur a heavier planning delay if we
want a map which accurately reflects the MLE position of
each sensor scan. This is because any cached rasterization is
largely useless when the underlying SLAM graph changes
significantly. This plot also shows that the CoverComposite
algorithm out-performs both naive implementations.

More detailed timing information for both datasets is
available in Figs. 6(a) and 6(b). These plots show the time
required by each method to rasterize the graph at each
timestep in both datasets. The average time for each method
is shown as a horizontal bar. The naive algorithms show
steadily increasing compute time as the number of nodes in
the graph (or cover) grows, which is expected. The cached
CoverComposite algorithm has variable runtime depending
on the number of slices which need to be recomputed.
Fig. 6(c) shows the number of nodes in the graph, the size of
the cover, and the number of nodes which are recomputed at
each step. Comparing Figs. 6(c) and 6(b) confirm our claims
that the CoverComposite family of algorithm only incurs
significant CPU time when large numbers of nodes have
moved significantly due to a loop closure. The data show
that the proposed method is significantly more efficient than
the highly optimized naive algorithms we compared it to.

V. CONCLUSION

We explored the problem of generating large occupancy
grid maps using a parametric SLAM method as a backbone.
We introduced a method that improves on the scaling proper-
ties of standard rasterization methods to produce occupancy
grids. We analyzed two significant optimizations, first by
formulating a subset of nodes whose sensor data effectively
covers all the nodes in the SLAM graph, and secondly by
formulating a spatially-aware data structure to exploit simi-
larities in the posterior positions of the nodes in successive
SLAM graphs Gi and Gi+1. The improvements our proposed

method makes allow us to generate occupancy grid maps on-
line and use them as for high level exploration planner or
for human observation of a team of robots.

Future work in this domain might explore node coverings
which are smaller than the conservative one we presented.
Additionally, methods for optimal partitioning of the graph
could be explored in greater detail, potentially by formulating
a better prior over the correlation between graph nodes. If
the single-threaded performance demonstrated here is insuf-
ficient for certain applications, several portions of the map
building process are trivial to parallelize, enabling significant
speedup if additional CPUs or GPUs are available, as in [17].
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