
Robust Pose Graph Optimization Using Stochastic Gradient Descent

John Wang and Edwin Olson

Abstract— Robust SLAM methods can allow robots to re-
cover correct maps even in the presence of incorrect loop
closures. While these approaches improve robustness to outliers,
they are susceptible to getting caught in local minima, a problem
which is exacerbated by poor initial estimates.

In this paper, we describe a stochastic gradient descent
optimization approach that exhibits greater robustness to poor
initial estimates. Our approach can either be used as a stand-
alone optimization system or in conjunction with existing
methods such as Gauss-Newton solvers. Using a combination
of synthetic and real-world datasets, we demonstrate that our
proposed approach is able to recover correct pose graphs
significantly more frequently than other methods when large
initialization errors are present.

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) systems
must overcome two major problems with real-world data.
First is the problem of noise, particularly noise in odometry
sensors. While noise may be overcome by fusing redundant
observations, extreme noise can lead to poor initial estimates
from which it is impossible to recover the robot’s true trajec-
tory. Second is the problem of incorrect data associations, or
loop closures. A robot may use visual similarities or laser-
scan matching to determine whether it has visited a place
before. Perceptual aliasing, which occurs when two distinct
places appear the same, can lead to incorrect loop closures.

To date, much work in SLAM has centered around
solving the first problem of correcting for positional error,
sidestepping the second difficulty by assuming perfect data
association. Many such SLAM algorithms are incapable of
dealing with erroneous loop closures, and even a single
false loop closure can introduce unrecoverable errors into
the robot’s inferred trajectory. Conventionally, the data as-
sociation problem has been addressed by building “front-
ends” to filter out poor associations. Although this approach
greatly improves the quality of SLAM-generated maps, these
methods alone are inadequate. In a long-running system,
even an extremely low error rate can result in loop closure
errors, which will accumulate over time to cause errors in
the inferred trajectory and the resulting map.

Recent work in SLAM has explicitly modeled the possibil-
ity of incorrect data associations inside the “back-end” solver
[1]–[3]. Some of these robust back-ends use extensions to
the pose graph model, such as switchable constraints or
max-mixture constraints. These robust constraints introduce

The authors are with the Computer Science and Engineering Department,
University of Michigan, Ann Arbor, MI 48109, USA.
{jnwang,ebolson}@umich.edu; http://april.eecs.umich.
edu

Truth Initialization Cholesky-MM SGD-MM

Fig. 1: An example Manhattan world pose graph with 40
false loop closures and odometry noise σ = 0.24. Cholesky-
MM, the prior state of the art, becomes stuck in a local
minimum due to the poor initialization. Our proposed method
SGD-MM escapes the local minimum and recovers an accu-
rate grid-shaped trajectory.

many local minima into the optimization problem. This can
be illustrated intuitively: suppose a loop closure constraint
is modeled as a Gaussian mixture with a “null hypothesis”
component (a very high covariance Gaussian) that represents
discarding that loop closure. A solution which discards a
correct loop closure may actually decrease the χ2 error
(eq. 3), since the “null hypothesis” may contribute very
little χ2 error to the graph. A local minimum occurs if
the graph is in a state where activating any correct loop
closure would increase the χ2 error. These local minima in
the χ2 error function make the max-mixtures optimization
problem difficult. Optimization problems with local minima
are more sensitive to the initial values of the variables,
making them less robust to odometry noise. This creates
a trade-off between robustness to loop closure errors and
robustness to initialization error.

Building upon this body of previous work, we present
a robust SLAM optimization algorithm that is resilient to
both poor initial estimates and incorrect data associations.
Our formulation uses a combination of the Gaussian max-
mixtures model and the stochastic gradient descent solver,
which is capable of quickly escaping local minima and often
finding the global minimum. The main contributions of this
paper are:

• An efficient stochastic gradient descent solver for Gaus-
sian max-mixture pose graphs

• A stochastic gradient descent-based bootstrapping pro-
cedure for Gauss-Newton solvers that increases robust-
ness to local minima

• An evaluation that demonstrates the improved robust-
ness of our approach against initialization error

II. PRIOR WORK

In non-robust pose graph SLAM, Gauss-Newton methods
that rely on factorizing the information matrix are often

mailto:jnwang@umich.edu
mailto:ebolson@umich.edu
http://april.eecs.umich.edu
http://april.eecs.umich.edu

used to solve the resulting non-linear optimization problem.
Such methods are sensitive to initial conditions, and a poor
initialization can prevent the algorithm from converging
upon the true solution. A stochastic gradient descent method
has been shown to increase convergence from poor initial
estimates in non-mixture pose graphs [4].

Previous methods to increase robustness involved front-
end validation of loop closures. Such methods include Atlas’s
nearest-neighbor feature matching [5], Joint Compatibility
Branch and Bound (JCBB) [6], and graph consistency ap-
proaches such as CCDA [7], SCGP [8], and spectral cluster-
ing [9].

Robust SLAM formulations are also not new. Latif, Ca-
dena, and Neira developed the Realizing, Reversing, Recov-
ering (RRR) algorithm [1] to check the consistency between
clusters of edges in a graph. This algorithm is based on the
observation that correct loop closures are mutually consis-
tent, while incorrect loop closures are often outliers. It bears
the most resemblance to conventional front-end verification
systems, and could be considered an online extension of the
joint compatibility test, where loop closure hypotheses can
be reexamined for consistency in the future.

Sunderhauf and Protzel introduce the concept of switch-
able constraints [3]. By adding a switch variable for each
loop closure, which takes on a real value between 0 and
1, each edge can be turned on, off, or partially on by
having the switch variable take on a value between 0 and
1. These variables essentially modify the shape of the pose
graph, allowing the optimization to turn off false loop closure
constraints.

Relative constraints have been used in existing SLAM
techniques. Grisetti et al. developed a spanning tree parame-
terization for pose graph optimization [10]. Relative bundle
adjustment techniques have been shown to efficiently solve
the general SLAM problem, which includes both poses and
landmarks [11], [12].

Olson and Agarwal described the Gaussian max-mixtures
SLAM model [2], on which this work is based. This formula-
tion makes the edge constraints themselves more expressive,
allowing multimodal distributions to be used as edge con-
straints. In particular, loop closure edges can use a robust
cost function which incorporates a high-covariance “null
hypothesis” component. This work introduces the Cholesky-
MM algorithm, which uses a Gauss-Newton solver to solve
max-mixtures SLAM problems.

III. BACKGROUND

In this work, we consider a limited case of SLAM that only
optimizes the robot’s trajectory. Edge constraints are assumed
to be rigid body transformations between robot poses. With
some additional considerations, landmark features can also
be incorporated, since feature positions can be considered
conditionally independent given the robot trajectory [13]. We
use odometry as the initial pose estimate. Although minimum
spanning trees are sometimes used for initialization, this
approach results in large initial position errors when false
loop closures are present (see Fig. 2).

MST Initialization
SGD-MM after

MST Initialization

Fig. 2: Minimum spanning tree (MST) initialization for the
pose graph shown in Fig. 1. In the presence of 40 false loop
closures, the MST initialization results in large initial errors,
preventing the solver from closing loops correctly.

The goal is to optimize over the state vector x, repre-
senting a series of robot poses, given our observations z.
Making the usual assumption that individual observations
are conditionally independent, we can factor this probability
distribution.

P (x|z) ∝
∏
i

P (zi|x)

Traditionally, each edge constraint P (zi|x) is assumed to be
Gaussian with some covariance Σi.

P (zi|x) ∝ e− 1
2 (fi(x)−zi)

T Σ−1
i (fi(x)−zi)

The observation model fi(x) is non-linear, so we must
linearize fi(x) ≈ fi(x0) + Ji∆x. The maximum likelihood
trajectory may be computed by minimizing the negative log
probability (eq. 1). We use the notation r = z − f(x0) to
represent the residual.

− logP (x|z) ∝
∑
i

(Ji∆x− ri)T Σ−1
i (Ji∆x− ri) (1)

A. Max-Mixtures Model

The max-mixtures model represents each edge distribution
P (zi|x) as a mixture of Gaussians based on a max operator.
A mixture model allows us to represent more complex distri-
butions. In our application, we represent the uncertainty of a
loop closure as a Gaussian component (the “null hypothesis”)
with a very large covariance.

P (zi|x) ∝ max
j
wjN (µij ,Σij)

The Gaussian components each have mean µij , covariance
Σij , and mixing weights wj . The max allows the log operator
to be “pushed inside” the max (eq. 2). Minimizing this
quantity results in a maximum likelihood estimator that
selects the most probable Gaussian component for each edge
constraint.

− logP (x|z) =
∑
i

min
j

[
− log(wj) +

1

2
log(|Σij |)+

1

2
(Jij∆x− rij)T Σ−1

ij (Jij∆x− rij)
] (2)

Because of the max selection operator, for each edge i
the Jacobian Jij and residual rij is computed for a single
Gaussian component j.

B. Stochastic Gradient Descent

The stochastic gradient descent (SGD) solver optimizes
over a single edge constraint i at a time. This allows it to both
explore and escape from poor local minima, since different
edges will pull the graph in different directions. The cost
function χ2

i for a single constraint is:

χ2
i = min

j

[
(Jij∆x− rij)T Σ−1

ij (Jij∆x− rij)
]

(3)

Assuming mixture component j is active, we will ignore the
other components and drop the j subscript from this point.
We begin by finding the gradient of the cost function with
respect to ∆x. At the current state, where ∆x = 0, the
gradient is:

∇χ2
i = 2JT

i Σ−1
i Ji∆x− 2JT

i Σ−1
i ri

= −2JT
i Σ−1

i ri

We correct our state estimate by ∆x in the direction of
the gradient, where the magnitude of ∆x is dictated by the
learning rate (or step size) λ.

∆x = −λ∇χ2
i = 2λJT

i Σ−1
i ri

C. Incremental State Space

The stochastic gradient descent method lends itself to an
alternative state space representation. Many SLAM imple-
mentations use a global state space, storing an (x, y, θ) pose
for each node. This representation preserves sparsity in the
information matrix, which is important for computational
efficiency, since each edge directly affects only two pose
nodes. This overlooks an important property of this problem:
a robot’s trajectory is cumulative. Intuitively, this means that
if a single pose needs some amount of correction, then it is
likely that the following poses also need similar correction.

In this method, we use the incremental state space as
described in [14]. Instead of using a global state vector
x = (x0, y0, θ0, x1, y1, θ1, . . .), we use the incremental
representation ẋ. The conversion from global to incremental
is given below.

ẋ =



ẋ0

ẋi

...


=



ẋ0

ẏ0

θ̇0

ẋi
ẏi
θ̇i
...


=



x0

y0

θ0

xi − xi−1

yi − yi−1

θi − θi−1

...


We model the each observation edge as a rigid body con-
straint T between poses xa and xb. In terms of global poses
xk = (xk, yk, θk), the equations for the observation model
are:

fT (x) =

 cos(θa)(xb − xa) + sin(θa)(yb − ya)
− sin(θa)(xb − xa) + cos(θa)(yb − ya)

θb − θa


We can express the same transformation in terms of incre-
mental poses ẋk = (ẋk, ẏk, θ̇k). Note that the global position

xa is the sum of the incremental states ẋk from 0 to a; for
example, θa =

∑a
k=0 θ̇k. Substituting in these summations:

fT (ẋ) =



cos(

a∑
k=0

θ̇k)(

b∑
k=a+1

ẋk) + sin(

a∑
k=0

θ̇k)(

b∑
k=a+1

ẏk)

− sin(

a∑
k=0

θ̇k)(

b∑
k=a+1

ẋk) + cos(

a∑
k=0

θ̇k)(

b∑
k=a+1

ẏk)

b∑
k=a+1

θ̇k


We can now compute the Jacobian of this rigid body con-
straint with respect to state ẋk. (Below, xa, xb, ya, yb, and
θa are used as shorthand for their respective summations.)

J =
∂fT
∂ẋk

=




0 0

−(xb − xa) sin(θa)
+ (yb − ya) cos(θa)

0 0
−(xb − xa) cos(θa)
− (xb − xa) sin(θa)

0 0 0

 k ≤ a

 cos(θa) sin(θa) 0
− sin(θa) cos(θa) 0

0 0 1

 a < k ≤ b 0 0 0
0 0 0
0 0 0

 otherwise

(4)
Note that the Jacobian for k ≤ a has non-zero values. A

more careful analysis shows that changing these poses will
not affect the relative positions of a and b, so in practice we
use a value of 0 for poses k ≤ a.

IV. METHOD

We now present the SGD-MM (Stochastic Gradient
Descent-Max Mixtures) algorithm, along with a description
of some practical implementation details. We also present
the hybrid SGD-Cholesky-MM algorithm, which further ex-
plores the search space and improves performance on graphs
with “strong” false local minima.

A. SGD-MM

For a given edge between nodes a and b, the correction
∆x is distributed among b−a nodes, so the total correction s
is scaled by b− a. Correction is distributed according to the
information matrix JT Σ−1J , so that less confident nodes
(smaller information matrix entries) get more correction,
while more confident nodes get less correction. Since it
would be computationally expensive to build the information
matrix, we instead approximate it using a diagonal matrix
M , as shown in the first part of Algorithm 1. The diagonal
terms of each W are summed so that Mj approximates the
jth diagonal block of JT Σ−1J . This can be viewed as a
preconditioning step to improve the convergence of gradient
descent, where M is a diagonal preconditioning matrix.

This implementation introduces a different scaling term
Γ−1, which scales the correction by the largest value of
M−1

j . This term can be seen as an approximation for

Algorithm 1 SGD-MM

1: procedure SGD-MM(λ0)
2: t = 1
3: repeat
4: Randomly permute edges
5:
6: . Compute M , an approximation of JT Σ−1J
7: Initialize Mj = 0 for all j
8: for each edge i between edges a, b do
9: Compute the Jacobian Ji (Eq. 4)

10: W = JT
i Σ−1

i Ji
11: for j ∈ [a+ 1, b] do
12: Mj = Mj +W
13: end for
14: end for
15: Γ = arg min |Mj |
16:
17: . Compute cumulative weights C
18: Cj =

∑j
k=0M

−1
k

19: Generate weighted error distribution tree using C
20:
21: . Modified stochastic gradient descent step
22: for each edge i between edges a, b do
23: Compute the Jacobian Ji and residual ri
24: λ = λ0/t
25: s = −(b− a)λΓ−1JT

i Σ−1
i ri

26: smax = xb − (xa ⊕ Tab)
27: s = clamp(s, smax)
28: distribute(a+ 1, b, s)
29: end for
30:
31: t = t+ 1
32: until converged
33: end procedure

(JT Σ−1J)−1, the Hessian term in the Gauss-Newton algo-
rithm. This scaling ensures that high confidence measure-
ments with small covariances will not cause extremely large
corrections. Finally, the magnitude of s is clamped according
to the observation Tab. Since we can calculate the value
of s that will exactly satisfy the constraint, we can prevent
gradient descent from drastically overshooting.

B. Learning Rate

The learning rate λ has a significant effect on the per-
formance of stochastic gradient descent. When λ is high,
the solver takes large steps through the search space and
is more likely to jump between different local minima. We
ensure convergence by using a learning rate schedule that
decays over time. Specifically we use the harmonic series
λ = λ0/t, where t is the iteration number, as suggested by
Robbins and Monro [15].

This leaves the initial learning rate λ0 as a free parameter.
In a sense, this parameter captures how much exploration
will be performed on a pose graph. This is not a computable
quantity, but we can characterize some of the variables that

make a graph more complex: the amount of initialization
noise, the total path length, and the covariances of the edge
constraints. We experimentally found an initial learning rate
that worked well for the majority of our datasets, but it is
difficult to generally prescribe a way of choosing λ0.

Other learning rate schedules include “Search Then Con-
verge” [16], which formalizes the intuitive notion of separate
exploration and convergence phases. However, since the
harmonic learning rate schedule seemed to work for a variety
of graphs, we did not attempt to use more sophisticated rate
schedules.

C. Implementation and Running Time

Although useful for the derivation above, in practice we do
not need to store the individual values as (ẋi, ẏi, θ̇i). Instead,
we store the pose normally as (x, y, θ) and use an error-
distribution tree [14]. The error-distribution tree efficiently
distributes correction among a contiguous range of states,
achieving the same effect as the incremental representation
while storing poses in the more useful global representation.

Suppose we have a pose graph with N nodes and E edges.
The asymptotic complexity of each iteration is determined
by the loops which iterate over each edge (lines 8-14 and
22-29), since E ≥ N in a pose graph. Inside both of these
loops, some amount of correction is added to a contiguous
block of nodes from a + 1 to b (lines 11-13 and 28). The
error distribution tree allows us to accomplish this operation
in Θ(logN) time. Each pose can also be computed from the
error distribution tree in Θ(logN) time. Therefore, the run-
ning time of each SGD step (lines 23-28) is still Θ(logN),
and the running time of each iteration is Θ(E logN).

D. SGD-Cholesky-MM

For many pose graphs, SGD-MM produces useful solu-
tions on its own. However, it may also be used to bootstrap
the Cholesky-MM solver, a Gauss-Newton based method.
The SGD-MM optimization procedure is good at performing
a rough alignment of poses, while the Cholesky solver’s
quadratic convergence is ideal for quickly finding the nearest
local minimum. At a fixed interval, it takes the graph
produced by SGD and runs Cholesky until convergence (or
divergence). Our algorithm repeatedly runs this procedure,
keeping the refined graph with the lowest χ2 error. This best-
so-far policy allows us to compensate for SGD’s tendency
to jump between local minima.

Algorithm 2 SGD-Cholesky-MM

1: procedure SGD-CHOLESKY-MM(k):
2: best = initial graph
3: repeat
4: Run Cholesky-MM on a copy of the graph
5: best = min(best, arg minχ2(graph))
6: Run k iterations of SGD-MM
7: until interrupted
8: return best
9: end procedure

0.0 0.1 0.2 0.3 0.4 0.5
Standard deviation of odometry noise (meters, radians)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f g
ra

ph
s

so
lv

ed
 (M

SE
 <

 1
0)

Graphs Solved vs Odometry Noise
SGD-Cholesky-MM
Sw. Constraints
SGD-MM
Cholesky-MM

Fig. 3: Percentage of graphs solved for 1000 randomly
generated Manhattan worlds with 400 poses, 800 true loop
closures, 40 false loop closures, and varying odometry noise.
Initial learning rate was λ0 = 5 and SGD-Cholesky-MM
used k = 50. SGD-Cholesky-MM outperforms comparison
methods, especially for very poor odometry initializations.

Since the first solution is exactly the same solution re-
turned by Cholesky-MM, its worst-case performance is no
worse than Cholesky-MM. We will later show that this
procedure produces significantly better graphs than either
SGD-MM or Cholesky-MM, and will offer some reasons
based on an analysis of the failure cases.

V. RESULTS

Our results come from synthetically-generated “Manhat-
tan” worlds as well as real-world data from the Intel dataset.
Our primary claim is that our method increases robustness to
poor initializations. Of course, it is possible to find specific
graphs where this is not true, so the bulk of our analysis is
based on large numbers of random graphs so that we can
statistically characterize the benefits of our approach.

A. Manhattan Worlds

In the Manhattan world experiment, we evaluated both
variants of SGD against Cholesky-MM and switchable con-
straints on a 1000-graph dataset. (We used the author’s
original implementation of switchable constraints in the g2o
framework [17].) Each graph was corrupted with increasing
amounts of odometry noise. Fig. 1 shows the result of one
of these experiments.

Fig. 3 shows the result of this test for 1000 randomly-
generated graphs at increasing noise levels. Mean squared
distance error (MSE) compared to the ground truth was
used to evaluate the map quality. SGD-MM was run until
convergence, which we defined as when the map changed
an average of |∆x| < 0.001 over 500 iterations. A threshold
of MSE < 10 was used to designate a graph as correctly
solved. This corresponds to a map which is usable but not
necessarily metrically perfect.

An analysis of the performance gap between SGD-MM
and SGD-Cholesky-MM reveals a specific weakness of both
iterative MM solutions, SGD and Cholesky. In many of the
graphs where SGD-MM failed, the true solution was not

Truth SGD-MM
SGD-Cholesky-

MM

Fig. 4: Example of a false stable minimum which causes
SGD-MM to fail. On this peninsula-like graph, the incorrect
solution is a local minimum with a larger basin of conver-
gence than the correct solution. Because SGD-Cholesky-MM
explores multiple local minima and selects the overall best
solution, it is able to find the correct solution.

Initialization SGD-MM SGD-Cholesky-MM

Fig. 5: Intel dataset with 100 false loop closures added
(shown in red). Both SGD-based methods are able to produce
accurate maps with the walls in alignment.

the most stable local minimum. Fig. 4 shows an example
failure case where the incorrect solution has a larger basin of
convergence than the correct solution – both SGD-MM and
Cholesky-MM converge upon this incorrect solution most
often from a variety of poor initializations.

SGD-Cholesky-MM (Algorithm 2) is designed to improve
performance on such graphs by using SGD to generate
initializations for Cholesky-MM. Stochastic gradient descent
has the tendency to jump in and out of local minima.
Running Cholesky-MM to convergence fully explores these
local minima. Selecting the graph with lowest χ2 error gives
preference to “better” local minima, even if its basin of
convergence is not as large. This is responsible for the
improvement over either Cholesky-MM and SGD-MM alone.

B. Intel Dataset

Our test run on the Intel dataset demonstrates the ap-
plicability of our method to real-world data. SGD-MM is
able to find the true solution and achieve the precision
necessary to generate a map (Fig. 5). Since SGD-Cholesky-
MM solution converges faster upon the true minimum, it
produces a somewhat more refined map.

C. Ring and Ring City Datasets

The Ring and Ring City datasets introduced in [18]
illustrate an extreme example where the true solution has
a minimal basin of convergence. In this case, we expect
Cholesky-MM to fail since its initial position is already in
a strong local minimum. SGD methods are more willing to
depart from local minima and explore the search space, as
shown in Fig. 6. SGD-Cholesky-MM is able to correctly

(Ring)
Truth

Initialization Cholesky-MM SGD-MM SGD-
Cholesky-MM

(Ring City)
Truth

Initialization Cholesky-MM SGD-MM SGD-
Cholesky-MM

Fig. 6: Results of SGD-MM on Ring and Ring City datasets
corrupted with 40 and 200 false loop closures, respectively.
Cholesky-MM fails because the graphs start in a stable local
minimum. Because SGD methods are more willing to depart
from local minima, they are more robust to ring-type failures.

0 10 20 30 40 50 60 70 80
Time (seconds)

0

50

100

150

200

250

M
ea

n
sq

ua
re

d
di

st
an

ce
 e

rr
or

 (m
2

)

Comparison of MSE over running time

Cholesky-MM
SGD-MM

Fig. 7: Plot of error over time on one trial of the CSW 3500-
node dataset, with 2100 true and 1000 false loop closures.
SGD-MM has reduced the initial error by about 80% before
Cholesky-MM has finished its first iteration. (SGD-MM takes
a bad step at around t = 3s, but recovers.) Both were run on
a single 3.4GHz core of an Intel Core i7 using the Java-based
april.graph library.

close the loop for the Ring dataset. The Ring City dataset
is even more challenging since the true solution requires
closing many such ring-type loops, and SGD-Cholesky-MM
is not able to close all the loops. However, SGD-based
methods show increased robustness to ring-type failures,
a specific case of graphs with strong local minima that
Cholesky-MM cannot solve.

D. CSW Dataset

We use the CSW dataset [4] to evaluate the running time of
our algorithm. CSW is a Manhattan graph with 3500 nodes
and 5600 edges. We expect Cholesky-MM to slow down
considerably, since the false loop closures cause increased
fill-in of the information matrix. SGD-MM is unaffected by
fill-in, since its runtime grows as Θ(E logN) without regard
to the sparsity of the information matrix. As shown in Fig. 7,
SGD-MM reduces error more quickly than Cholesky-MM.

VI. CONCLUSION

We have presented two variants of an SGD solver for
robust max-mixture pose graphs that performs well even
from poor initializations. SGD-MM can stand alone as a
computationally efficient solver for graphs with low initial
error. SGD-Cholesky-MM greatly extends the effectiveness
of the max-mixtures model on graphs with difficult local
minima. Our evaluation characterizes the performance of
these two methods and provides some insight into the struc-
ture of max-mixtures graph optimization problems.

ACKNOWLEDGMENTS

This work was funded by DoD Grant FA2386-11-1-4024.

REFERENCES

[1] Y. Latif, C. Cadena, and J. Neira, “Robust loop closing over time,”
in Proceedings of Robotics: Science and Systems, Sydney, Australia,
July 2012.

[2] E. Olson and P. Agarwal, “Inference on networks of mixtures for
robust robot mapping,” International Journal of Robotics Research,
vol. 32, no. 7, pp. 826–840, July 2013.

[3] N. Sunderhauf and P. Protzel, “Switchable constraints for robust pose
graph SLAM,” in Intelligent Robots and Systems (IROS), IEEE/RSJ
International Conference on. IEEE, 2012, pp. 1879–1884.

[4] E. Olson, J. Leonard, and S. Teller, “Fast iterative optimization of
pose graphs with poor initial estimates,” in Robotics and Automation
(ICRA), IEEE International Conference on, 2006, pp. 2262–2269.

[5] M. Bosse, P. Newman, J. Leonard, and S. Teller, “Simultaneous
localization and map building in large-scale cyclic environments using
the Atlas framework,” International Journal of Robotics Research,
vol. 23, no. 12, pp. 1113–1139, 2004.

[6] J. Neira and J. D. Tardós, “Data association in stochastic mapping
using the joint compatibility test,” Robotics and Automation, IEEE
Transactions on, vol. 17, no. 6, pp. 890–897, 2001.

[7] T. Bailey, “Mobile robot localisation and mapping in extensive outdoor
environments,” Ph.D. dissertation, Citeseer, 2002.

[8] E. Olson, M. Walter, J. Leonard, and S. Teller, “Single cluster graph
partitioning for robotics applications,” in Proceedings of Robotics
Science and Systems, 2005, pp. 265–272.

[9] E. Olson, “Recognizing places using spectrally clustered local
matches,” Robotics and Autonomous Systems, vol. 57, no. 12, pp.
1157–1172, December 2009.

[10] G. Grisetti, C. Stachniss, S. Grzonka, and W. Burgard, “A tree
parameterization for efficiently computing maximum likelihood maps
using gradient descent,” in Proceedings of Robotics: Science and
Systems, Atlanta, GA, USA, June 2007.

[11] D. Sibley, C. Mei, I. Reid, and P. Newman, “Adaptive relative bundle
adjustment.” in Robotics: Science and Systems, 2009.

[12] J.-L. Blanco, J. Gonzalez-Jimenez, and J.-A. Fernandez-Madrigal,
“Sparser relative bundle adjustment (SRBA): Constant-time mainte-
nance and local optimization of arbitrarily large maps,” in Robotics and
Automation (ICRA), IEEE International Conference on, May 2013, pp.
70–77.

[13] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “FastSLAM:
A factored solution to the simultaneous localization and mapping
problem,” in AAAI/IAAI, 2002, pp. 593–598.

[14] E. Olson, “Robust and efficient robotic mapping,” Ph.D. dissertation,
Massachusetts Institute of Technology, Cambridge, MA, USA, June
2008.

[15] H. Robbins and S. Monro, “A stochastic approximation method,” The
Annals of Mathematical Statistics, pp. 400–407, 1951.

[16] C. Darken, J. Chang, and J. Moody, “Learning rate schedules for faster
stochastic gradient search.” IEEE Press, 1992.

[17] R. Kuemmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard,
“g2o: A general framework for graph optimization,” in Proceedings
of the IEEE International Conference on Robotics and Automation
(ICRA), 2011.

[18] N. Sunderhauf and P. Protzel, “Switchable constraints vs. max-mixture
models vs. RRR: A comparison of three approaches to robust pose
graph SLAM,” in Robotics and Automation (ICRA), IEEE Interna-
tional Conference on, Karlsruhe, Germany, 2013.

	Introduction
	Prior Work
	Background
	Max-Mixtures Model
	Stochastic Gradient Descent
	Incremental State Space

	Method
	SGD-MM
	Learning Rate
	Implementation and Running Time
	SGD-Cholesky-MM

	Results
	Manhattan Worlds
	Intel Dataset
	Ring and Ring City Datasets
	CSW Dataset

	Conclusion
	References

