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Abstract— Orientation estimates derived from gyroscopes are
limited in quality by the noise and bias characteristics of the
sensors. Presently, there is a large gap in price and perfor-
mance between high-end fiber-optic gyroscopes and inexpensive
MEMS gyroscopes. In this paper, we propose using a redundant
array of inexpensive gyroscopes (RAIG) in order to obtain
significant improvements in performance.

A naı̈ve analysis predicts that n gyros should reduce angular
rate measurement noise by a factor of

√
n. In this paper,

we describe our custom array of 72 gyros which we use to
evaluate the empirical scaling performance. This evaluation
includes comparisons between several standard filtering and
bias estimation algorithms. In addition, we propose a princi-
pled algorithm that exploits non-linear dynamics, significantly
improving performance.

I. INTRODUCTION

The advent of mass-produced microelectrical mechanical
systems (MEMS) gyroscopes has enabled ubiquitous motion
sensing in cellular phones and other consumer devices.
Their low cost and popularity can be attributed to consumer
demand and advances in manufacturing technology, which
have driven the price of sensors below $10. Today’s MEMS
sensors are highly integrated, and it is common to find three-
axis accelerometers and gyros on the same chip in compact
surface-mount packages. The gyroscope and accelerometer
combination is commonly referred to as an inertial measure-
ment unit (IMU).

MEMS IMUs are commonly used in robotics applications.
In aerial robotics, their small size and light weight are a
significant advantage, and even in ground robots, MEMS
sensors are often used as they provide adequate performance
at a low cost. MEMS IMUs are typically used in conjunction
with other sensors that measure translational motion to dead-
reckon the robot’s position and orientation in the absence of
external references.

This dead-reckoned orientation estimate is critical for a
robot’s higher-level systems such as simultaneous local-
ization and mapping (SLAM). In one common approach
to SLAM, the robot’s trajectory is formulated as a pose
graph optimization problem with constraints coming from
both inertial estimates and external landmarks. The inertial
estimate accumulates error over distance: a heading error of
1◦ results in 1 meter of displacement error over 60 meters.
Furthermore, this optimization problem is nonlinear due to
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Fig. 1: Our multi-gyro test array. Readings from an array of
IMUs can be fused to create a higher-accuracy orientation
estimate. Our testbed features 72 Invensense MPU-6000
IMUs stacked in three layers.

uncertainty in the robot’s orientation, introducing multiple
local minima. Therefore, even small improvements in the
robot’s orientation estimate can have a large effect on the
accuracy of the robot’s final pose graph.

Improvements in manufacturing have driven down the cost
of consumer-grade MEMS gyros [1]. On the other end of
the cost spectrum are high-performance gyros such as fiber-
optic gyros, but a gyro that costs thousands of dollars per
axis may not make sense for certain robotics applications.
While robot localization systems would benefit from more
accurate gyroscopes, there is a middle ground of sensor cost
and performance with few options. We propose a method
that takes advantage of the availability of low-cost MEMS
gyros. By fusing the readings of multiple gyros, the quality
of our orientation estimates can be improved. The chief
contributions of this work are:

• An empirical analysis of performance scaling with
multiple identical gyros, showing the practical limit of
existing multi-gyro approaches

• A multi-gyro fusion algorithm incorporating a nonlinear
motion model that significantly reduces angular error
over existing approaches

• A novel multi-gyro dataset for evaluating filter perfor-
mance
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II. BACKGROUND AND PRIOR WORK

The idea of combining measurements from multiple gy-
roscopes into a single, higher-accuracy “virtual gyroscope”
was first proposed by Bayard and Ploen [2]. Their method
uses a Kalman filter to combine gyro readings, which is
optimal given their assumptions of a linear system with
additive Gaussian white noise. They develop a closed-form
analysis of the Ricatti differential equation of the multiple-
gyro system, from which come two important theoretical
properties. First, with n identical uncorrelated devices, the
resulting gyro will have its drift reduced by a factor of

√
n.

This corresponds to the theoretical limit of noise reduction
by signal averaging, where the average of n signals with
independent, uncorrelated noise will yield a

√
n reduction

in noise. In practice, this limit may not be reached due to
positively correlated noise. The second result of their paper
shows that negatively correlated gyros can improve drift
beyond the

√
n limit. They showed that as the correlation

coefficient ρ approaches -1 (perfect negative correlation), the
amount of drift approaches zero. With multiple gyros, suffi-
cient negative correlation can result in a drift-free virtual gyro
reading. Intuitively, this can be explained as a differential-
mode signal between two gyros: if the drift noise is perfectly
negatively correlated between two gyros, then averaging the
two gyro signals results in a drift-free motion estimate. In
this paper we provide empirical answers to complement
the results from Bayard and Ploen. We characterize the
correlation between low-cost MEMS gyros to determine
whether they are favorable or unfavorable to noise reduction.

Methods have been proposed to deal with bias drift
by creating the type of negative correlation that results
in differential-mode rejection. For gyrocompassing, a de-
manding application which requires detection of the earth’s
rotation rate, there are two general approaches, indexing and
carouseling [3], [4]. In indexing, a gyro is alternately read
at an orientation of 0 and 180 degrees from a fixed position.
The readings are subtracted, cancelling out bias drift, since
the bias drift happens at timescales much larger than the
measurement rate. In carouseling, the gyro is continuously
rotated and sampled at a fast enough rate that gyro biases
are integrated out with every complete revolution. While
both methods produce a drift-free bias reading, they have the
disadvantage of requiring actuation. In our work, we focus
entirely on non-actuated approaches.

With angular rate gyros, orientation is determined by
integrating a noisy rate signal. As the rate drifts, there are two
components of noise both modeled as white noise processes
by Bayard and Ploen. The gyro output z(t) is a combination
of the angular rate ω(t), a bias of b(t), and zero-mean white
noise v(t). The bias is assumed to follow a random walk, so
it is the integral of zero-mean white noise w(t).

z(t) = ω(t) + b(t) + v(t) (1)

ḃ(t) = w(t) (2)

We will use a generalization of the same basic formulation
where the noise processes can be arbitrarily complex. The

Fig. 2: Zero-rate bias of 72 gyros observed over 25 hours.
Most gyro biases follow the distribution of a random walk,
where the standard deviation grows proportionally to the
square root of time. Some outlier gyros (e.g. in purple and
blue) experience large jumps in bias not described by the
random walk model.

two components of noise are the angular random walk
caused by v(t) and rate random walk caused by w(t).
Angular random walk has units of deg /s1/2, meaning that it
contributes to orientation error at a sublinear rate with respect
to time. Rate random walk, which is sometimes called bias
drift, has units of deg /s3/2. As the rate error is integrated
into the orientation, it causes orientation error to accumulate
superlinearly with respect to time. It is important to note
that both angular random walk and rate random walk can
cause unbounded orientation error. However, the rate random
walk is the primary contributor to orientation error over long
integration periods for typical MEMS devices.

A common approach to dealing with rate random walk
is to integrate readings over shorter time periods. This
method involves a zero-velocity detector based on the known
dynamics of the system. Instead of integrating error at a
superlinear rate over time, the zero-velocity update breaks
the chain of observations into smaller timescales where the
bias can be considered constant. Automatic zero-velocity
updates may be achieved by analyzing the variance of
the gyroscope signal [5]. One application of zero-velocity
detection is in IMU-based pedestrian tracking [6], [7], where
the accelerometer and gyro biases are updated every time the
foot hits the ground. Heuristic methods can be employed in
vehicle tracking, assuming that motion commonly occurs in
a straight line [8]. If motion is detected in a straight line, the
system can explicitly remove gyro bias error from orientation
estimates. However, in both these cases, the zero-velocity or
straight-line detectors must be explicitly defined and tuned
for the particulars of the system. In our work, we will present
an alternative method that reduces drift due to bias changes
without computing explicit bias updates.
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Fig. 3: Illustration of windowing to reduce state space
dimensionality. The full state space is shown on the left, and
the windowed state space on the right. For each timestep only
a subset of states are active, and other states are ignored. This
effectively assumes they have zero probability.

III. PROPOSED METHOD

Our proposed method poses the gyro filtering problem as
a hidden Markov model (HMM). The hidden variables xt are
the true angular rate over time, while the observation vector
zt is corrupted with noise and biases for each observation.
The forward algorithm efficiently computes the posterior
distribution P (xt|z1:t) over the current state given the se-
quence of observations z1:t [9]. By the Markov property,
xt+1 is conditionally independent of x1:t−1 given the current
state xt. Therefore we can recursively update the probability
distribution at each timestep, marginalizing out the previous
state:

P (xt+1|z1:t+1) = P (zt+1|xt+1)
∑
xt

P (xt|z1:t)P (xt+1|xt)

P (zt+1|xt+1) is the emission or observation probability,
P (xt+1|xt) is the transition probability derived from the
motion model, and P (xt|z1:t) is the posterior at the previous
timestep. We can recover the maximum likelihood estimate
by taking:

x̂t = argmax
xt

P (xt|z0:t)

In order to use the forward algorithm on our HMM, we
discretize the state space of possible angular rates. It should
be noted that although angular velocity is a continuous
variable, the gyro readings themselves are already discrete
integer values. To reduce quantization error, the state space
is discretized at a resolution of 1

512

◦
/s per LSB, which

effectively provides 3 bits of increased resolution compared
to the raw 16-bit readings from our gyros.

The computation time of the forward algorithm grows with
the square of the number of states. As it is impractical to
store and compute updates for 219 states, we propose an
approximate filtering method. Instead of computing updates
for all 219 states at each timestep, we treat only a window
of 128 states as active for each timestep (illustrated in
Figure 3). The center of this window is determined at each
timestep by a crude pre-filter which only needs to estimate
the angular velocity within ± 1

8

◦
/s, which is easily achieved

with current methods. This window can be enlarged at the
cost of additional computation time. For our prefilter estimate
we take the average of all our gyro readings at a single
timestep.

A. Noise model

The angle random walk is modeled as additive Gaussian
white noise with standard deviation σn. In a noise-only
model the probability of an observation zt is as follows:

P (zt|xt) ∝ exp

(
− (zt − xt)2

2σ2
n

)
B. Bias model

An advantage of our formulation is that the biases of each
gyro are not explicitly estimated. Instead, the bias for each
gyro i is implicitly determined by the filtered angular rate
estimate by equation (1): bi(t) = zi(t) − ω(t). This keeps
the size of the state space constant as the number of gyros
increases, which is important for large arrays of gyros.

Although the bias is not included in the state vector, we
can still model the bias in our formulation. An additional
term is added to our observation model, penalizing choices
of ω that cause large changes in bias. First, the bias estimates
of each gyro are filtered to remove angle random walk noise.
Then the derivative of the bias ḃ(t) is estimated numerically.
In our implementation, bias is modeled as a Gaussian random
walk with σb. In principle, non-Gaussian distributions for
ḃ(t) can be handled by our formulation. The observation
model gains an additional bias term, corresponding to our
model for the rate random walk:

P (zt|xt) ∝ exp

(
− (zt − xt − bt−1)

2

2σ2
n

)
exp

(
− ḃ2t
2σ2

b

)

C. Motion model

The primary advantage of using the forward algorithm to
estimate the hidden state is the ability to use a nonlinear
system model. In this discrete-time HMM, the system motion
model is encoded in the transition probability P (xt|xt−1).

With an uninformative motion model, bias drift is unob-
servable since it is indistinguishable from the actual angular
rate signal. The motion model allows the filter to assign
greater probability to either interpretation of the signal:
whether it is drift or true motion. Intuitively, this is similar to
the heuristic-based approach in previous work, where knowl-
edge that the vehicle often stops is used to explicitly estimate
the bias. In our formulation, the motion model generalizes
this concept and removes the need for explicit estimation of
the stopped condition. Any model of the system’s motion
can be plugged in to improve filter performance. Since the
motion model is dependent on the system, there is no general
prescription for what to use. In the results, we will show two
examples of motion models that we used: a simple motion
model inspired by the zero-velocity update and a learned
motion model based on actual motion data.



Fig. 4: Correlation between 24 gyros. Black is negative and
white is positive. The block structure reflects the physical
layout of the gyros, where gyros 9-16 are mounted at a 90
degree rotation from gyros 1-8 and 17-24. Although absolute
values vary across runs, the signs of the values forming the
block structure are present across runs.

IV. EVALUATION

A. Description of gyro testbed

To test our method, we designed and fabricated a testbed
with 72 Invensense MPU-6000 IMUs, each containing a 3-
axis gyroscope, 3-axis accelerometer, and temperature sensor
(Figure 1). Designed to test gyro scaling performance, the
platform is composed of three stacking boards of 24 IMUs
each, with the capacity to add additional boards as needed.
The Invensense chip contains internal ADCs for each sensor
channel, producing a digital output with 16 bits of resolution.
The gyro data is read at 1kHz (their maximum output rate)
and integrated by the onboard microcontroller. The integrated
measurements are then logged at 100Hz.

For the sake of our intended robotics application, we
focused on z-axis (yaw) gyro performance. The roll and pitch
angles of a robot can be independently observed by using the
onboard accelerometers to observe the gravity vector, but
the yaw angle is not observable in an independent manner
by onboard sensors. However, the proposed approach would
naturally extend to pitch and roll.

B. Correlation

In [2] it was shown that significant negative correlations
between gyros in an array can reduce drift by orders of
magnitude beyond the expected

√
n factor improvement.

To characterize the limits of our system performance, we
analyzed the correlation between our gyros. The analysis
over a single board of 24 IMUs shows that the z-axis gyros
correlated in a block pattern, as shown in Figure 4. The
middle eight gyros are negatively correlated with the first
and last eight. This may arise from the physical layout of
the board, as the middle block of eight gyros are rotated 90
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Fig. 5: Allan variance plot for 72 individual gyros. Some
salient features can be observed: the value at τ = 1 second
indicates an average angle random walk of 0.23◦/

√
hr,

and the minimum value which defines bias stability occurs
between 10 and 100 seconds.

degrees in the z axis with respect to the first and last block.
The gyros that are facing the same way are slightly positively
correlated. However, the magnitudes of both positive and
negative correlations are very small.

C. Allan variance

To determine the noise performance of our n-gyro array,
we measured its Allan variance [10], a widely-accepted
statistical method to characterize the noise of a gyro [11].
Allan variance expresses the variance of a signal as a function
of the time window over which the signal is averaged.
Over small timescales, the angle random walk dominates
the noise. As the averaging time window increases, variance
decreases due to reduction of angle random walk noise. This
trend does not continue indefinitely as the window increases,
since variance begins increasing due to the effects of rate
random walk. The minimum value of Allan variance at this
inflection point is commonly referred to as the bias stability
of a gyro. It may be seen as an optimistic lower bound on
how quickly angular error accumulates, assuming the longest
possible averaging window. (This averaging window may be
impractical, as it also filters out the dynamics of the system.)
The value on the x-axis is the time window which minimizes
the variance of the signal, and is used as the averaging period
for initial bias calibration. Beyond this point, the rate random
walk’s superlinear-growing error overtakes the angle random
walk’s sublinear-growing error.

The Allan deviation (square root of Allan variance) of the
z-axis gyro of each of our 72 IMUs are plotted in Figure 5.
The angle random walk is the value of the Allan deviation
at τ = 1 second, representing the standard deviation of
the angle in degrees per square root second. The average
angle random walk of these gyros was 0.23◦/

√
hr, and

the bias stability was 5.8◦/hr. A virtual gyro formed by
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Fig. 6: Bias stability and angle random walk reduction
from averaging n gyros. The performance seems to track
the theoretical

√
n decrease in noise and bias stability for

uncorrelated gyros.

simple averaging of n gyros matched the predicted
√
n

decrease in noise (Figure 6), supporting our analysis that
these gyros are not strongly correlated either positively or
negatively. Also, our experimental results show that with
near-uncorrelated gyros, simple averaging performs about as
well as the Kalman filter described in [2].

D. Results under controlled motion

We evaluate the performance of our system using data col-
lected from a servo-actuated platform. Our 72-gyro testbed
is mounted on a platform actuated in the yaw direction by a
Dynamixel digital servo, and the servo feedback is logged as
ground truth for evaluation1. The gyros are rotated back and
forth 180 degrees at an angular velocity selected uniformly at
random. The platform speeds up with constant acceleration
to its target angular velocity, and is decelerated at its goal
position as quickly as possible. The motion histogram (Fig-
ure 7) shows the pattern of constant acceleration and rapid
deceleration.

We implemented two motion models for this system, based
on the controlled motion of the servo-driven test platform.
The first is a learned motion model which is trained from
the servo ground truth of a separate training set. The motion
histogram used as the motion model (Figure 7) was regular-
ized with a Gaussian kernel around each sample point. The

1Our full test data is available online at http://april.eecs.
umich.edu/raig/

Fig. 7: Motion histogram of the controlled motion test. The
histogram shows the transition matrix as logP (xt|xt−1), the
log probability that the angular velocity is xt given that the
previous angular velocity was xt−1. This motion model was
generated using the servo feedback as ground truth.

second is a simple motion model that encodes that the system
is more likely to be still than moving, with a probability peak
at zero velocity and uniform probability elsewhere. (γ is the
normalization factor that makes the probabilities sum to 1.)

P (xt|xt−1) =

{
10/γ if xt = 0 and xt−1 = 0

1/γ otherwise

The system is evaluated by computing the average mag-
nitude of yaw error accumulated over integration periods
of 10 minutes and 1 hour, respectively. Figures 8 and 9
show results from one of three collected datasets (all three
of which are available online). The average error across a
large number of runs is shown with respect to the number
of gyros used. We implemented two baseline methods: the
Kalman filter described in [2], and a mean filter which
averages the readings of n gyros at each timestep. According
to [2] the reduction in drift should be a factor of

√
n for

n uncorrelated gyros. However, we see that the scaling of
performance with n tails off more sharply than the theory
would predict, and final error does not improve significantly
beyond n = 10 gyros. This is likely due to the presence of
correlated noise in the long-term bias. One major source of
unmodeled correlated noise is temperature, since the zero-
rate bias is known to exhibit temperature sensitivity.

The results show that our proposed method improves
performance significantly over the baseline methods. The
Kalman filter is evaluated using three choices of parameters:
uncorrelated (ρ = 0), negatively correlated (ρ = −0.01),
and the empirical covariance matrix shown in Figure 4. The
Kalman filter variants and mean filter all perform similarly,
and using the empirical covariance matrix with the Kalman
filter makes no difference over assuming no correlation
(Figure 8). The learned motion model does not significantly

http://april.eecs.umich.edu/raig/
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Fig. 8: Average error after 10 minutes over 100 runs. The
Kalman filter with uninformative motion model performs
similarly to a simple averaging filter. Our proposed method,
which allows the use of a nonlinear motion model, results
in a 45% reduction in error. There is no measurable perfor-
mance gain from the learned motion model compared to the
simple motion model.
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Fig. 9: Average error after 1 hour over 20 runs. Our proposed
method reduces the angle error by about 50%.

improve performance over the simple motion model, showing
that our method can operate on very general assumptions
about the system motion.

V. CONCLUSION

We presented an empirical analysis of gyro scaling per-
formance using an array of low-cost MEMS gyros. While
the noise floor of the gyros does decrease by a factor of√
n as predicted, gyros in practice may exhibit long-term

bias correlations that limit their scaling performance. We also
presented a principled filter incorporating a nonlinear motion
model which significantly reduces angular error over existing
methods. The motion model is seen as an analog to existing
methods (e.g. zero-velocity updates) which compute explicit
bias updates, except that bias updates are computed implicitly
within the filter. Finally, we present our novel datasets of 72
gyros under controlled motion, which we believe are unique
in their scale, to aid future work in multi-gyro synthesis.
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