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Abstract— In GPS-denied environments, robot systems typ-
ically revert to navigating with dead-reckoning and relative
mapping, accumulating error in their global pose estimate. In
this paper, we propose Feature-based Localization between Air
and Ground (FLAG), a method for computing global position
updates by matching features observed from ground to features
in an aerial image. Our method uses stable, descriptorless
features associated with vertical structure in the environment
around a ground robot in previously unmapped areas, referenc-
ing only overhead imagery, without GPS. Multiple-hypothesis
data association with a particle filter enables efficient recovery
from data association error and odometry uncertainty. We
implement a stereo system to demonstrate our vertical feature
based global positioning approach in both indoor and outdoor
scenarios, and show comparable performance to laser-scan-
matching results in both environments.

I. INTRODUCTION

Knowing the global position of a robot is critical for
coordinating the actions of multiple agents, creating user
interfaces for operators, and creating data products that can
be more easily shared across agents or over time. Global
Positioning System (GPS) sensors are an obvious solution
to this problem, but GPS does not work well indoors or
in urban canyons, and it can be easily jammed. In some
applications, a map can be built ahead of time. That map
might either define a canonical global coordinate frame for
all the agents that operate within it, or the map may be geo-
registered. Once such a map is built, a robot can then obtain
global position information by localizing with respect to that
map.

For such a map to exist, a robot must have previously
operated in that location. That is an unacceptable requirement
for many real-world applications such as search and rescue
in which robots may be called upon to operate in a novel
environment. If GPS is unavailable, how can the robot limit
the accumulation of global positioning error that results from
operating without a means of global localization?

In this paper, we propose and demonstrate FLAG: Feature-
based Localization between Air and Ground, an approach
that allows a ground robot to perform global positioning by
recognizing landmarks from aerial imagery (see Fig. 1). In
particular, we use a stereo camera pair on the robot to detect
large vertical features (e.g. trees and corners of buildings) in
the environment.

In some cases, the vertical features can be directly seen in
aerial imagery, but in others, the presence of a feature can
only be inferred: the eaves of a roof often obscure the exact
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Fig. 1. Top: A robot path (cyan), with uncertainty of current robot position
indicated by red particles. The green star represents a known global location
of a vertical edge feature in the environment. Middle: Single image from
a stereo camera pair showing the location of a vertical edge feature in the
camera frame. Bottom: The corrected robot path and updated uncertainty
after detection of the vertical edge feature.

location of the corner of the building, for example. In this
paper, we hand-label features in the aerial image.

The significant challenge is that when observed from
above, landmarks may look completely different than when
viewed from the ground. The lack of useful appearance data
makes data association very difficult. We describe a robust
multi-hypothesis data association system based on particle
filtering as a way of mitigating this challenge.

Unlike other stereo localization methods based on inter-
est point detectors, FLAG uses descriptorless features that
are robust to temporal variations in visual appearance. We
describe a stereo processing pipeline that is well-suited to
extracting large vertical features. This processing pipeline is
one approach to feature extraction for a stereo camera. Fea-
ture extraction methods for other sensors such as monocular
cameras or LIDAR could be used in the FLAG method, but
further discussion is beyond the scope of this paper.

FLAG is a method for localization, not simultaneous
localization and mapping (SLAM), and is intended as a
replacement or supplement for GPS in areas with poor or
nonexistent GPS coverage. The FLAG approach performs oc-
casional global position updates directly in a geo-registered



TABLE I
COMPARISON OF SEVERAL RELATED LOCALIZATION METHODOLOGIES.
WHILE MANY VISION-BASED METHODS MEASURE RELATIVE MOTION,

FLAG IS A VISUAL METHOD USED FOR GLOBAL REGISTRATION.

System Feature
tracking

Prior
map

Global
registration

VO Y N N
V-SLAM Y N N

GPS N N Y
FLAG N Y Y

overhead image, and relies upon open-loop odometry or
a SLAM framework to maintain local position estimates
between global position fixes. Tracking algorithms such as
visual odometry [1][2][3], and optimization algorithms such
as factor-graph SLAM[4] could be complementary to our
global registration approach. A comparison of FLAG with
several common localization approaches is shown in Table I,
and an overview of how FLAG fits into a typical robot
localization architecture is shown in Fig. 2.

The contributions of this paper include:
• An approach to globally localize a ground robot based

on featureless descriptors that can be identified in both
2D overhead maps of an area, and from ground-based
sensing such as stereo imagery.

• A method to quickly find vertical edge features from
stereo imagery of dynamic environments.

• An evaluation of our localization system on both
outdoor and indoor real-world datasets demonstrating
comparable performance to LIDAR-based localization
methods in both environments.

II. RELATED WORK

Our proposed method uses a two-step approach to define
and localize to landmarks in the world, using both overhead
(orthographic) imagery, and 3D point clouds generated from
a stereo camera. In this section, we briefly summarize prior
work related to both of these steps: first discussing work in
the area of localizing a robot based on satellite imagery, and
then prior work related to robot localization based on stereo
image features.

A. Orthographic Imagery-Based Localization

Traditionally, mobile robots have relied on offline process-
ing to produce detailed prior maps, and perform localization
by matching observed features with landmarks in the map.
Recently, some research has focused on localizing a robot
using only a satellite image instead of a detailed prior map.

Viswanathan et al. [5] focus on visual matching. In their
work, the images collected with a wide-view stereo camera
on a robot are warped to obtain a birds-eye view of the
ground, and this view is compared to a grid of satellite loca-
tions using whole-image descriptors. However, objects in the
environment that violate the implicit flat-ground assumption
in the warping process, such as buildings, will not match well

Fig. 2. Example robot localization system architecture showing the role
of FLAG as a replacement or augmentation for GPS.

between the maps. Senlet and Elgammal [6] similarly use
satellite images of road maps for localization. However, they
do not follow the single-plane assumption and instead build a
3D point cloud of the scene as seen by the stereo camera, and
then project these points into a top-view image. However, this
method is highly reliant on accurate stereo dense matching.
Furthermore, both approaches try to match the stereo view
with a satellite image based on image features, which can
fail if the visual appearance of the area differs from the
satellite map due to different lighting conditions or changes
in appearance. In our paper, we directly match edge features
to corners in the orthographic image, which is less prone to
error due to temporal variations in visual appearance.

B. Features for Stereo Localization

Much of the previous work in stereo localization and
mapping has either relied on artificial landmarks [7] in a
controlled environment or used algorithms based on local
image features such as Scale-Invariant Feature Transform
(SIFT) [8] or Speeded Up Robust Features (SURF) [9].
While these local image feature-based methods can achieve
accurate localization, they come at a high computational
cost [10]. Additionally, the reliability of these features is
reduced in the presence of significant light and scale vari-
ations that can occur between different viewpoints. Since
these systems rely on feature matching across images taken
at different poses to estimate robot motion and perform
localization, system performance will suffer in the presence
of appearance variations [11].

Using edge features for localization and mapping has
previously been investigated by several authors. Tomono [12]
proposed an edge-based 3D SLAM system that extracts im-
age edges using a Canny detector and finds correspondences
between line features in the stereo image pairs. This method
uses normalized correlation and dynamic programming (DP)
matching [13] that requires significant computational re-
sources. While our paper also uses edges as features, we
focus solely on vertical edges, and use a 1D Binary Robust
Independent Elementary Feature (BRIEF) descriptor [14] and
marriage matching to match edges between stereo images in
an efficient manner (see Sec. IV).

These previous systems have only been tested in controlled
indoor environments, the structure of which enables the
use of simple nearest-neighbor data association. In dynamic
outdoor scenes, the motion of grass, trees, and shadows



Fig. 3. Schematic overview illustrating the FLAG approach. Ground-based features are compared to the locations of known landmarks, and then used to
update the particle filter localization solution. In a particular stereo processing pipeline described in IV, vertical edges detected in both stereo images are
extracted, matched and projected into 3D.

results in matching noise and increases the uncertainty of
data association, and single hypothesis data association is
not feasible. In our paper, a particle filter is used to perform
multiple-hypothesis data association to help achieve robust-
ness.

III. APPROACH

FLAG leverages vertical structures, such as edges of
buildings, as robust descriptorless features for localization
by matching them to pre-determined locations of vertical
structures in an orthographic overhead map. In this paper, we
use a stereo camera to detect these edges and project their
positions into the 3D world space. Edges are then matched to
the known features in the global prior map. A solution for the
robot pose is found using a particle filter-based localization
algorithm. Figure 3 shows an overview of our approach.

A. Global Map Features

Because point-based image features can change in appear-
ance over the course of a day or season, we seek to use global
features that are robust to changes in visual appearance. We
also wish to choose features that will persist over long peri-
ods of time, so that orthographic imagery need not be recent,
and feature maps can be reused for multiple missions. Under
normal circumstances, building structures, tree trunks, lamp
posts, and other permanent objects are unlikely to change and
should be consistently identifiable despite temporal changes
in appearance (e.g. shadows, snow, dirt), and are thus good
feature candidates. One reason LIDAR-based systems are
able to achieve high-quality, reusable maps is that they often
extract such permanent structures.

While it may be difficult to detect entire buildings with
a stereo camera (due to limitations of 3D projection range
and field of view), sections of buildings, particularly building
edges, are easy to detect. Edges of buildings also have

a characteristic appearance in both orthographic overhead
views of a scene (corners), and first-person views from the
robot (vertical lines). Trees and lamp posts appear as circles
from above, and vertical lines from the ground. Therefore,
we choose vertical edge features of permanent structures as
our ideal global map feature. With this approach, we enable a
robot to localize to objects in a scene that have not previously
been observed from the robot’s perspective.

Given an overhead representation of the robot’s envi-
ronment, such as a satellite image or orthographic aerial
photograph (or even a topographic map showing building
locations), we can either automatically or manually deter-
mine the locations of such vertical edges features in advance
of a robot’s mission. Note that manual annotation of a
prior map can be done with a few clicks of a mouse, and
is not necessarily an onerous task – particularly compared
to the detailed site analysis that mission preparation may
already require. Manual annotation also facilitates feature
identification from a wide range of orthographic imagery that
could be low-resolution or obscured. Thus, we focus here on
maps with hand-annotated features.

B. Ground-based Feature Detection

Vertical edge features are extracted from 3D point clouds
of the environment observed by the ground robot. In Sec-
tion IV, we discuss in detail a method for vertical feature
extraction from a stereo camera, however the FLAG method
could work with LIDAR, stereo cameras, or any other sensor
capable of producing a 3D point cloud.

Given a 3D point cloud of the robot’s environment, we
project the points into the 2D ground plane, binning points
in a 5 cm grid. Long vertical edges will bin to the same grid
position, and a simple threshold on number of points per
grid position is used to define a vertical edge. The precise
threshold depends on the type and resolution of the sensor



used to generate the point cloud. For our stereo setup, a
minumum threshold of 50 pixels can reliably detect vertical
edges at least 1 m high at a viewing distance of 8 m.

C. Particle Filter-Based Localization Solution

In our system, maximum likelihood data association is
likely to fail for multiple reasons. First, our global fea-
tures are descriptorless, which increases the probability of
a match, but hinders our ability to reject false matches.
Second, outdoor environments are unstructured and prone to
noisy feature observations, resulting in false positive feature
detections that have no correct association. Third, there may
be long periods of dead-reckoned motion without feature
observation, due to lack of vertical structures, leading to
high uncertainty in robot pose. With a single hypothesis
data association method, a false positive data association can
corrupt a localization solution beyond repair. We thus rule
out linearized Gaussian techniques, such as EKF, UKF, and
factor graphs for this process.

Instead, we choose to use a particle filter [15] to account
for multiple hypotheses, as shown in Algorithm 1. We
represent the posterior of the robot pose distribution by K

particles χ = {x[1]t , · · · , x
[K]
t }, and perform data association

on a per-particle basis using nearest neighbor search. The
motion command is denoted ut, observations are zt, and
importance weights are wt at time t. This allows us to express
uncertainty in the presence of ambiguous data associations,
hedging our estimate until more evidence is encountered,
and enables recovery from spurious feature matches. For
example, our system occasionally detects doorways as ver-
tical features (which are not visible in a satellite image)
and misassociates them to annotated building edge features.
Having multiple particles allows the system to recover from
these situations.

Algorithm 1 Particle Filter for Multi-hypotheses Data As-
sociation

1: procedure INITIALIZATION(χ0)
2: Initialize χ0 with K particles.
3:
4: procedure LOCALIZATION(χt−1, ut, zt)
5: χ̄t = χt = ∅
6: for i = 1 to K do
7: Sample x[i]t ∼ p(xt|ut, x

[i]
t−1)

8: w
[i]
t = p(zt|x[i]t )

9: Add x[i]t into χ̄t

10: for i = 1 to K do
11: Draw j ∈ {1, · · · ,K} with probability ∝ w[j]

t

12: Add x[j]t into χt

13: return χt

IV. EDGE FEATURE EXTRACTION FROM STEREO

The approach outlined in Section III is agnostic to the
source of the point cloud. In this section, we propose a
novel and efficient method to detect vertical edge features

Fig. 4. 1D BRIEF Descriptor. Each edge point is associated with a
local 64-bit BRIEF descriptor evaluated using 15 surrounding pixels in the
rectified image. For each point shown as a red dot in one rectified image, the
Hamming distance of its descriptor is compared to the descriptor of every
other filtered point along the epipolar constraint in the other rectified image.
Points are matched to one another if they are mutually most compatible.

from a ground-based stereo camera. This stereo method is
the basis for the implementation and evaluation described in
Section V.

A. Vertical Edge Detection

Given a stereo image pair, we use a Sobel filter to detect
edges in each image. Because we are only interested in
detecting vertical edges, we only calculate the gradients
along the horizontal direction. Assuming the robot is level,
we use the filter

Gx =

−1 0 1
−2 0 2
−1 0 1

 (1)

Eight-neighbors connection clustering [16] is used to find
pixels belonging to segments of vertical lines. For each edge
pixel, a 64-bit BRIEF descriptor [14] is generated to describe
the point. We first extract a 15-pixel patch vector around the
edge points, as shown in Fig. 4. Then we sample 64 pairs
of comparison locations based on a Gaussian distribution. In
each pair, if the pixel value of the first location is greater than
that of second location, the corresponding bit in the BRIEF
descriptor is set to 1. Otherwise, it is set to 0.

We can leverage the horizontal epipolar constraint [17] to
quickly evaluate potential feature matches between the stereo
images. For every point in the right image, we declare all
filtered points in the left image that lie on the corresponding
epipolar line as candidate matches. This process is repeated
for all points in the left image. The Hamming distance [18]
between all candidate pairs’ BRIEF descriptors denotes their
compatibility for matching, and a marriage procedure is used
to match points. This approach is conservative in that it only
considers pairs that are most compatible with each other.
Making the system less sensitive reduces the density of
detected landmarks, and can make data association easier.
Some pairs that do not lie on a vertical edge may be matched,
but they will be culled in the next step.

Note that simple BRIEF descriptors are sufficient since
the matching process is facilitated by spatially constrained



Fig. 5. April MAGIC2 robot platform used for experimental tests. The
30 cm baseline stereo camera pair is located beneath the standard monocular
camera and LIDAR sensor.

viewpoints and synchronized images. Additionally, while a
BRIEF descriptor is used to match vertical edge pixels in
corresponding stereo images, the resulting features in the
ground plane used for localization are descriptorless.

B. 3D projection and clustering

A point cloud consisting of all the matched edge points
from the stereo image pair is generated based on least square
triangulation [17].

The marriage matching procedure described above leaves
some outliers in the 3D point cloud that do not belong to
any vertical edge. These are removed using density-based
spatial clustering (DBSCAN) [19]. Given a set of points in
space, DBSCAN counts the number of nearby neighbors of
each point, grouping points that are closely packed together,
and rejecting outlier points that lie in low-density regions.
For our hardware setup (see Sec. V-A), using DBSCAN to
remove points with fewer than 5 neighbors within a radius
of 10 cm has produced good results.

V. EXPERIMENTAL EVALUATION

We evaluated our method with outdoor and indoor real-
world datasets in order to demonstrate its performance and
compare it to state-of-the-art laser-scanmatch-based SLAM
localization solutions. The following subsections detail the
setup and results of the evaluation.

A. Robot Platform

Experiments were performed using the MAGIC2 robot
platform developed by the April Laboratory shown in Fig. 5.
Relevant sensors onboard the robot include wheel encoders
and a fiber optic gyro (KVH DSP-1715) for robot odometry,
a stereo camera pair (2× Point Grey Chameleon) with
a 30 cm stereo baseline, and a 3D LIDAR sensor (Velo-
dyne VLP-16), for performance benchmarking purposes. The
stereo cameras were calibrated using AprilCal [20], and
image capture was synchronized via physical triggering.

B. Outdoor Evaluation

An outdoor dataset was collected at the Camp Atterbury
training facility, near Edinburgh, Indiana. An orthographic
map of the 9-acre (3.6-hectare) test area was generated using

Fig. 6. Comparison of dead-reckoning (blue), laser-scan-based localization
(yellow), and FLAG (red) methods over a 0.5 km outdoor course through
fields and areas with structure. Note that a vertical edge feature is not
detected for the first section of the course, so the FLAG solution is identical
to the dead-reckoning solution. Because it does not contain global features,
the laser-scan based localization was manually-aligned to the map in a post-
processing step, making this the best-case LIDAR solution. Discontinuities
in the stereo localization solution are due to feature observations after long
periods of dead-reckoning and are shown purposely to demonstrate the
recovery abilities of the particle filter.

0 50 100 150 200 250 300 350 400 450 500

Outdoor Distance Traveled [m]

1

3

5

7

9

11

13

15

A
b

s
o

lu
te

 d
if
fe

re
n

c
e

 b
e

tw
e

e
n

 L
iD

A
R

a
n

d
 s

te
re

o
 l
o

c
a

liz
a

ti
o

n
 [

m
]

First vertical
edge matched

Fig. 7. Absolute difference between robot pose as determined by the
benchmark 2D laser-scan-based SLAM algorithm and FLAG over the course
of a 0.5 km path. The difference increases with increasing time during which
the only updates are from odometry, and sharply decreases when the stereo
camera observes a global feature. The difference is consistently low in dense
areas of permanent structure. Once a vertical edge factor is found (at 140 m),
the difference does not exceed 8 m.



aerial imagery captured from an unmanned aerial vehicle
flown over the test site prior to testing. The orthographic
overhead imagery had a resolution of 0.27 m per pixel, sim-
ilar to commercially and freely available satellite imagery.
Vertical edge landmark positions were hand-annotated into
the prior map at select locations of building corners. Note
that an exhaustive labeling of landmarks is not required, as
the system uses dead-reckoning, relying on sparse vertical
edge features for infrequent global fixes.

The robot was manually driven from the north end of
the test area to the south end, on roads and grass through
areas including clusters of buildings over a course of about
0.5 km. Figure 6 shows the path of the robot as determined by
odometry-based dead-reckoning (blue), a factor graph-based
SLAM solution with 2D laser-scan-matching factors [21]
(yellow), and our proposed FLAG method (red). Note that
the posterior LIDAR-derived solution was post-processed to
align it to several surveyed GPS points in order to improve
its utility as a “gold standard” (near-ground truth) result.

In contrast, our stereo localization was run in real-time
with no manual alignment other than a coarse initial pose
estimate. This is evident in the first portion of the path, where
a misalignment in initial heading causes the dead-reckoning
estimate to deviate from the true path. Our stereo-matching
method is able to recover from this initial heading error
upon observation of the first vertical feature, despite tens of
meters of featureless open-loop driving. We purposely show
discontinuities in the stereo-matching solution to illustrate
localization recovery.

Figure 6 shows the path estimated by FLAG is similar
to that determined by the 2D laser-scan-matching algorithm
when vertical edge features are present, and is significantly
better than dead-reckoning alone over long distances.

The absolute difference between the laser-scan-based
SLAM solution and the proposed stereo edge feature-
matching scenario over the robot path is shown in Fig. 7.
Once the initial global feature is detected, the absolute
difference is never more than 8 m, despite long stretches of
featureless driving, and has a mean difference of 2.8 m.

C. Indoor Evaluation

To demonstrate FLAG’s versatility, an indoor dataset was
collected in an office building setting. Instead of searching
for vertical edge features in a satellite image, vertical edge
landmark positions were determined and hand-labeled from
a simple floor plan map.

The robot was driven in a 160 m loop through the halls
of the BBB Building at the University of Michigan. Fig-
ure 8 indicates that localization with our stereo vertical
edge matching approach shows clear improvements over
the dead-reckoning localization solution, resulting similar
performance to the baseline scan-matching approach. Fig-
ure 9 shows the absolute difference between the baseline and
FLAG approaches, indicating that our localization method
closely tracks the localization solution determined from the
full scan-matching based factor graph solution.

Fig. 8. Comparison of dead-reckoning (blue), laser-scan-based localization
(yellow), and our FLAG (red) methods over a 160 m counter-clockwise
looped path in an indoor environment. Green squares are the global features,
hand-annotated into a simple floor plan map of the building. Note that not
every possible vertical edge needs to be in the global map. Imagery has a
resolution of 0.10 m per pixel, but could have been much coarser.
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Fig. 9. Absolute difference between robot poses as determined by the
benchmark 2D laser-scan-based SLAM algorithm and the FLAG method
over a 160 m looped path in an indoor environment. As in the outdoor
experiment, the difference increases with increasing time since the last
global feature, and is consistently low in areas where many vertical edge
features are present. The mean difference is 1.1 m, and never exceeds 3 m.

VI. CONCLUSION

In this paper, we proposed Feature-based Localization
between Air and Ground (FLAG), a method that enables
a ground robot to localize itself globally by identifying
landmarks visible in overhead orthographic imagery. While
landmarks may look very different to a robot than when
observed from above, FLAG uses a stereo vision-processing
pipeline to quickly identify large vertical features (such as
trees, poles, and building corners) on the ground, which can
then be matched to known or inferred structural reference
points in an aerial image. A multi-hypothesis data association
technique is used to mitigate the difficulty of matching
features between two different viewpoints (air and ground).
We have demonstrated that our system has comparable
performance to LIDAR-based scan-matching localization in
indoor and outdoor environments, showing its feasibility for
real-time global localization without LIDAR or GPS.
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