
A Low-Cost, High-Performance Robotics Platform for Education and
Research

Max Bajracharya and Edwin Olson

3 Ames St. #325
Cambridge, MA 02142

maxb@mit.edu, eolson@mit.edu

Abstract

The authors have developed a new robotics platform for
researchers and educators, providing an improvement in
processing power compared to existing low-cost solutions
while maintaining a low cost. The platform includes a
microcontroller board, GNU-based development tools, and
a suite of device drivers and basic utilities. The authors
successfully used the platform in a one-month long robotics
crash-course at MIT.

Motivation for a New Robotics Platform

While several expensive robot kits are available commercially,
many researchers cannot afford to spend thousands of dollars on a
basic platform. Educators, attempting to improve the robot to
student ratio, are even more constrained. Several robotics
platforms have emerged that are affordable for both, including
Lego Mindstorms and the Handy Board. However, for researchers
and educators hoping to tackle harder robotics problems, the
features of these boards may not be sufficient. We have
developed a robotics platform that is comparable in cost and ease-
of-use to the Handy Board yet provides greater computational
power and additional features.

Existing platforms have many good traits that are worth
emulating. The Handy Board serves as an example of a successful
platform that enjoyed a long lifespan. Some of the traits that we
believe are responsible for its popularity are simple operation,
simple programming environment based on a commonly
understood language (C), straightforward electrical interfaces
enabling “hardware hacking,” and a general immunity to abuse,
making it appropriate for use by inexperienced students.

The primary disadvantage of the Handy Board, Lego Mindstorms,
and other similar platforms is their limited computational power.
For example, the Handy Board, able to execute only about 500k
instructions per second, cannot handle video processing—
certainly not motion flow. The 32k memory capacity is also a
limiting factor; a single 320x200 video frame cannot be held in
memory at once. Robots building maps of their environment can
also quickly exhaust the available memory.

Another controller board deserving mention is the Compaq Skiff.
Based on the StrongArm SA-110 microprocessor, the Skiff has
vast processing power (up to 233MHz) and can address 16

megabytes of DRAM. It also has a large number of I/O ports for
interfacing to various types of sensors. The Skiff, however, is an
extremely complicated board, consisting of two stacked PCBs
with high-density parts on both sides of each PCB. The primary
bus interface is PCI, which makes “hardware hacking” very
difficult for novices. Lastly, the cost of the Skiff is likely to be a
hardship for many.

The Compaq Skiff can be programmed using the GNU toolchain,
which provides a performance improvement over the
HandyBoard’s Interactive C, which is interpreted. It also enables
users to use existing and highly-optimized libc and mathematics
libraries and the powerful gdb debugging suite.

An additional shortcoming of many existing boards is the lack of
explicit support for sophisticated peripherals. It was our goal to
provide support for high-current (2A per channel) motor drivers
and dedicated inputs for quadrature phase optical encoders, for
example. While these capabilities can usually be added to existing
boards, it often requires specific knowledge of the internals of the
microcontroller and the board’s other components.

A New Microcontroller Board
After developing several small robots, and with plans of running
an ambitious robotics course, we were motivated to design a new
microcontroller board that could serve the role that the Handy
Board did, while providing the computational power, memory
capacity, and other features that we wanted.

Figure 1. Block diagram of controller board

Hitachi SH-2 2MB
DRAMCPLD

Analog Mux
Switches
(DIP and

momentary)

Digital
IO 16

Analog IO

7

16

RS-232
chargepump RS-232Motor

DriversLCD

mailto:maxb@mit.edu
mailto:eolson@mit.edu

At the heart of our microcontroller board is the microprocessor: a
Hitachi SH-2. The SH-2 is a 32-bit RISC microprocessor with a
rich set of on-board peripherals, eliminating the need for many
external components. The SH-2 has an integrated DRAM
controller, making large memory capacity possible. In addition,
the chip supports SRAM-style interfaces, making interfacing with
other chips particularly easy. The particular model of SH-2 we
selected is available in speed grades up to 30MHz, enabling about
30MIPS of sustained performance. We added 2MB of DRAM, a
16-1 analog multiplexer to increase the number of analog input
ports, and an Altera CPLD to implement an interface to an LCD
module and provide additional digital I/O ports. We selected a
CPLD with a large number of macrocells so that users would be
able to add additional functionality; for example, additional
counter channels could be implemented. The board should be
trivially modifiable to operate without a CPLD, with the SH-2
controlling the LCD directly, in order to reduce the cost of the
board.

The SH-2 has many on-board timers, which can be used to
control motors, servos, and decode quadrature phase signals from
optical encoders. In our standard configuration, there are two
quadrature phase decoder channels, four DC motor only ports,
and four servo or motor ports. The four DC motor only ports are
all connected to high current motor drivers providing 2 amps per
channel and a current feedback circuit so that current usage can
be monitored by software.

The board is physically constructed on a four layer PCB, with
two signal planes and planes for power and ground. We had
originally hoped that ambitious amateurs would be able to make
their own boards, which would imply a two layer PCB and no
fine-pitch surface mount components. The reality is that virtually
all modern microprocessors are only available in very small pitch
packages (making assembly difficult) and their high clock speeds
and greater pin counts make a robust two layer implementation
very difficult. Using four PCB layers avoids many signal noise

problems, while simultaneously making PCB layout an easier
task.

Our board is designed with a single power supply in mind. Logic
components, sensors, and servos all require a regulated 5V
supply, whereas DC motors (which often have a nominal rating of
12V) use a higher, unregulated voltage available directly from the
batteries. The regulated 5V source on our most recent boards is
generated from the battery voltage. The voltage is heavily filtered
to prevent the high-current motors from causing noise problems
for the digital components.

We have experimented with both linear regulators switching
regulators. Linear regulators suffer from very poor efficiency
when the battery voltage is much greater than 5V, resulting in
heat problems in the regulator and causing batteries to drain
needlessly quickly. With a Vbat of 6V, the efficiency of a linear
regulator is roughly 83%, but with a Vbat of 12V, this drops to
about 41%. Switching supplies are bulky, costly, and are less able
to maintain a constant voltage when current demands change
rapidly, but do yield greater efficiency—about 65% (independent
of Vbat) in our implementation. However, we observed that
voltage drops caused by the slow transient response of the
switching regulators caused the board to erroneously reset—a
fatal problem. We are still investigating the ideal power source
setup, but for our next board revision, we intend to return to
linear regulators and provide an option to use separate battery
sources for the electronics and motors if Vbat is too large for
efficient 5V regulation. For example, if a user needs to supply
24V to the motors, they could provide a 6V supply for the
electronics and an independent 24V supply for the motors.
However, as long as the required motor voltage is close to 5V, a
single power source becomes a viable and convenient alternative.

While the board can make use of a wide variety of battery
technologies, we have found consumer-grade NiMH batteries to
perform very well. 1400mAH are commonly available in a single
AA module, and we typically use eight of them to form a voltage
source sufficiently high (9.6V) to operate our motors (nominally
rated for 12V) and controller board efficiently. These batteries
should theoretically last about an hour with the motors running,
though in our experience 45 minutes is more realistic. 2200mAH
batteries in a size C module are also available, but we have not
tried them. A major advantage for users is that NiMH AAs are
readily available from almost any electronics store, as are rapid
one-hour chargers.

The ideal connector for attaching external devices like motors and
sensors would be polarized, inexpensive, high density, easy to
assemble, and rugged. Generic 0.100 pitch header is inexpensive
and high density but students have trouble assembling reliable
connectors. Crimping connectors, easy to assemble and quite
rugged, are a tempting alternative, but are very costly and
typically take up a lot more room. We have elected to use generic
header for analog and digital I/O, in virtually the same way as the
Handy Board, but have used crimping connectors for the high
current motor connectors. We also use crimping connectors for
the quadrature phase connectors, since maintaining proper

Figure 2. Photograph of controller board

polarity is essential. We will be using female header exclusively
on the next board revision to eliminate the risk of unoccupied
header being shorted together by stray pieces of wire or other
conductive material.

We have only produced the board in very small runs, so we have
not determined how much the board will cost in quantity. Our
current estimates put the cost at about $250-$300, putting it well
within reach of enthusiasts, and making it reasonable for research
groups to build many boards to study robot interactions.

Development Environment

In addition to developing a controller board, we have worked to
ensure that the entire GNU toolchain can generate code for it.
Gas, gcc (C and C++), and newlib (a libc for embedded systems,
including functions like strcmp, printf, and malloc) can all be
used, just as they could be on a Unix machine. Code can be
downloaded via serial link into either the SH-2's onboard FLASH
or the RAM via a gdbstub. The gdbstub also allows programs
running on the controller board to be interactively debugged from
a PC.

Runtime utilities are also available, including device drivers for a
standard HD44780-compatible LCD display, PWM, quadrature
phase decoders, and analog/digital I/O. In addition, we have
written a lightweight multithreading library.

The complete design of the controller board and all of the
software tools have been placed in the public domain. We intend
to support the software as best we can, and encourage others to
base their robotics projects on our platform. Schematics,
software, and other information are available at
http://maslab.mit.edu.

Applications in Education
We recently completed teaching a month-long robotics course,
known as MASLab or 6.186, at MIT. Like MIT’s 6.270 contest,
our course is intensive; students meet every day Monday through
Saturday. While we envision the course becoming larger in the
future, we limited enrollment to three teams (each with about
three students) so that we could better deal with any unexpected
problems that might arise with our first attempt at teaching a
robotics course with a new controller board.

The goal of the contest was to build and program a robot capable
of finding and grabbing “targets”, then pushing or pulling the
targets back to the location where the robot was first turned on.
The playing field was a smooth tile floor with a nine-inch high
wall around the perimeter. The actual size and shape of the
playing was intentionally and dramatically altered from run to
run, but was about 100 square feet. Any number of obstacles (also
with nine-inch walls) would be placed inside the playing field and
random positions. Targets consisted of small boxes with active IR
beacons to make them more easily detectable by robots. The walls

and obstacles were all constructed out of hardboard, which can
easily be detected by IR range finders.

We created a small infrared beacon module that emits an IR
signal containing a four-bit ID in every direction, and has a
highly directional receiver. The modules have a typical range of
12 feet, substantially more under good lighting conditions. By
rotating the IR module around on a servo, it was possible to find
the angle to other nearby modules. We also added several
modules outside the playing field so that robots could implement
an absolute positioning system using triangulation. We statically
assigned IDs to each beacon so that when a module was detected,
it could be trivially determined whether it was another robot, a
target, or a navigation beacon.

The teams were provided with all the basic pieces of a robot.
High quality DC motors with integrated gearheads and encoders
were obtained from surplus for about $25 each. Each team also
received a pair of servos and IR range finders, as well as an IR
transceiver module. We provided plexiglass, which can be easily
cut and shaped, to form the base of the robot. Additional parts
were provided when requested.

The experience of our participants varied dramatically. We had
one freshman, three sophomores, one junior, and three seniors
participate. Of these, all but one was an EE/CS major. One person
had previously taken 6.270, but no one else had any significant
experience in developing an autonomous system.

The teams had differing degrees of success. One team managed to
successfully find, capture, and drag back a target while avoiding
obstacles. They iteratively stopped, scanned their surroundings,
and by assigning “points” to various sensor results, used a hill
climbing strategy to determine their course. The second team was
able to accurately (within a foot or so) triangulate the positions of
targets by establishing the baseline and measuring angles to the
targets at each end of the baseline. They measured the length of
the baseline using odometry and were able to use odometry to
drive to the target, but did not have time to incorporate obstacle
avoidance into their routines. The third team, the team with the
least experience, had significantly more difficulty. They initially
invested a large amount of time writing code, underestimating the
degree to which real-world non-idealities would impact the
behavior of their robot. By the end of the contest, however, they
could iteratively stop, scan, and move in the direction of the
target, using odometry to return to their starting point in a straight
line.

We were pleased to see that all of the teams, even the least
experienced ones, were able to build a relatively sophisticated
robot—capable of using odometry and IR modules to navigate a
very difficult playing field. Two of the teams used velocity
feedback control systems (PD) for their drive motors. Students
wrote in their course evaluations that they spent the most time
gathering together basic behavioral “ingredients” (turning n
degrees, panning the IR module for targets, driving in a straight
line) and had only the last day or two to combine them together
into a top-level strategy for retrieving a target. Given an

additional week we believe all three robots would have all
succeeded in retrieving a target.

It was obvious that the most significant obstacle to the students in
succeeding was time. Since the independent activities period
during which our course is held will always be a month long, we
must make that month more productive. We plan on combating
this in several ways in next year’s course:

• Hosting a “Build your chassis night”. In one case, a
team was still doing basic mechanical construction
on their robot at the halfway point, and all the teams
took at least a week. We believe that students
underestimating the total amount of time required to
program the robot caused the delay. We plan on
designating a day early in the course during which
they will build the basic components of the chassis.

• Checkpoints. To keep students from coding

hopelessly elaborate control programs without first
perfecting basic behavioral ingredients, we plan to
set checkpoint dates during which they will
demonstrate basic behaviors under contest-like
conditions.

• Additional background material. We found that

providing background material and demonstrations
of what was possible with an autonomous robot not
only gave students a more concrete idea of what was
possible, but also inspired them to think about the
issues involved.

We believe that the environment of our contest, consisting of a
smooth surface but with obstacles at unknown locations, is
particularly compelling to students; with virtually no
modification, the robots could be made to navigate and retrieve
targets in real-world environments, such as a dormitory hallway
or office.

Future Plans
We are collaborating with the organizers of 6.270 to create the
next controller board revision, which will be used in both
contests next year. Our work to create a board suitable for both
classes will help ensure the applicability of the design to an even
broader range of researchers and educators.

Conclusion

We have developed a microcontroller board that offers solid
performance at a price that is accessible to students and
researchers. By using the GNU toolchain, we leverage existing
compilers, libraries, and debugging tools. Multithreading was
enabled with a library provided by the authors.

The board was used in a month-long class by MIT
undergraduates to build autonomous robots capable of
performing predefined tasks in a realistic environment. In
addition to providing an educational venue for artificial
intelligence algorithms (such as path-finding and map-making),
students had the opportunity to learn about embedded and real-
time systems programming.

The combination of our controller board and a largely unknown
playing field provides a motivating environment for developing
control systems for intelligent autonomous vehicles. This is
reinforced by an emphasis on software development rather than
mechanical engineering.

We believe that our controller board would be a useful asset to
those building autonomous robots, as demonstrated by its
successful use in our undergraduate course. Future revisions will
continue to refine and improve the design.

Acknowledgments. The authors would like to thank our sponsors
for making our research and class possible, particularly Hitachi
Semiconductor.

