
Predicting Object Functionality Using Physical Simulations

Lauren Hinkle and Edwin Olson

Abstract— It is challenging for a robot acting in the world
to interact with and use novel objects. While a person may be
able to look past visual differences and recognize the intended
function of an object, doing so is more difficult for robots,
which tend to rely on visual similarity to recognize categories
of objects. A robot that recognizes and classifies objects based
on their functional properties and potential capabilities is better
prepared to use unknown objects.

We propose a technique for functionally classifying objects
using features obtained through physical simulations. The
described method simulates spheres falling onto an object from
above. We show how a feature vector can be derived from the
results of the physics-based simulation, and that this feature
vector is informative for a variety of affordance classification
tasks. This process allows a robot equipped with a 3D sensor to
determine the functionality of objects in its environment given
only a few training examples from various function classes. We
show that this method is able to accurately learn membership of
3D models in three function classes: “drinking vessel”, “table”,
and “sittable”. We then show that this can be extended to 3D
scans of objects using the models as training examples.

I. INTRODUCTION

The dominant approach in object classification is to use

the appearance of objects: a chair might be recognized

because particular visual features (e.g. SIFT features [1])

are associated with it. The challenge with this approach is

that visual appearance within many classes, such as chairs, is

highly diverse, making learning difficult. What all chairs have

in common, however, is that they serve a specific physical

function: their construction affords the specific interaction of

“sitting”. This shared functional property, or affordance, is

what allows all chair-like objects to be grouped in a class.

Functional properties can be used to classify objects and to

give insight into how an object can be used and by whom.

In this paper, we approach the problem of object classifi-

cation by considering the physical properties of objects. Our

hypothesis is that these physical properties, which we predict

by computing a 3D model of the object and subjecting it to a

series of simulations using a simple physics engine, will be

highly predictive in object classification tasks. We test this

hypothesis using a limited set of physics-based simulations

and show how machine learning features can be extracted

from the results.

Functions and affordances are intrinsically linked to the

physical properties of an object, but the exact mapping

between them is unclear. Previous work approaches func-

tion recognition and classification in a variety of ways

The authors are with the Computer Science and Engi-
neering Department, University of Michigan, Ann Arbor,
MI 48104, USA {lhinkle,ebolson}@umich.edu
http://april.eecs.umich.edu

Fig. 1: The result of simulating spheres falling onto a cup,

table, chair, and sofa (not shown to scale).

including predefining characteristics of function classes [2],

[3], analyzing images or video of people interacting with

objects [4], [5], [6], and, more commonly, having a robot

learn functional properties by either interacting with objects

directly [7], [8] or in simulation [9], [10]. These techniques

require a large time commitment and focus only on the

functionality afforded to a given user, either the human being

watched or the robot that is interacting. Learning the actions

a given robot can perform with an object misses many of

the possible functions and uses of the object. These more

general properties can’t be discovered through an individual’s

interactions, but can be explored in simulation.

We introduce features for predicting object functionality

obtained by physical simulation. In particular, we simulate

the effect of dropping spheres onto an object from above,

allowing them to roll and settle on the object. The resulting

distribution of spheres is analyzed and used for function

classification. We show that objects in the same function

class have correspondingly similar distributions of equally

sized simulated spheres.

In this paper we:

• Propose a class of object features based on physical

properties determined through simulation

• Experimentally show the proposed framework can sup-

port learning functional classes like “sittable”, “table-

like”, and “drinking vessel” using 3D object models

• Demonstrate successful function classification on exam-

ples of real-world objects using sensory data from a

Kinect.



II. PRIOR WORK

Prior work on function classification can largely be divided

into systems that reason about objects’ physical properties

and systems that learn functionality through interaction [11],

[12].

A. Reasoning About Functionality

The initial work on distinguishing function classes em-

phasized measurable quantities of objects, such as their

dimensions, with pre-defined parametric requirements for

each class. Among the first function classes explored was

“sittable.” Stark et. al use a list of the faces and vertices defin-

ing an object to determine whether it can be appropriately

used as a chair [3]. The list helps determine characteristics

such as the object’s dimensions, relationships between its

faces, and its predicted center of gravity. These higher-level

features are compared to a parameterized structural model

defining a sittable object. The model isn’t learned, but rather

is specified with hard-coded “knowledge primitives” that

define which relationships must exist.

Rivlin et al. introduced a method to determine the overar-

ching functional properties of an object by recognizing and

relating the function of parts of the object [2]. By combining

shape primitives such as the dimensions, spatial primitives

describing the relationship between parts, and pre-defined

functional primitives, they are able to recognize hammers in

a scene.

Rather than using size and shape directly, Horton et al.

use sensory feedback from an AIBO to discover visual sym-

metries and what they term “inverse symmetries”. They use

these symmetries to predict relationships between objects,

allowing an AIBO to use a tool to push an object over rough

terrain [13].

B. Learning Functionality Through Interaction

The majority of work on recognizing the functional prop-

erties of objects is framed in terms of affordances. The term

“affordance” comes from ecological psychology [14], but has

been adopted and adapted by other communities including

human computer interaction and artificial intelligence. An

affordance is often interpreted as a perceivable attribute of

an object that alerts the perceiver as to what functions he,

she, or it can performed on or with the object. Approaching

function recognition through the lens of affordances has

led to an emphasis on either analyzing images of people

interacting with objects or having robots interact (or simulate

interacting) with objects.

Systems that analyze how humans interact with objects

attempt to recognize where people grasp objects and the

motions they perform with them. This is often done by

analyzing a series of frames to determine when and where

contact is made and tracking the ensuing motion [4], [5], [6].

Most methods that use robot interaction employ a “bab-

bling” stage, in which the robot interacts freely in the

environment without any goals, to determine the functions

it can perform on nearby objects. Stoychev created a system

that learns to use sticks with a variety of end-effectors to

move a puck around a table [8]. After hundreds of test

trials, the robot learns to associate the puck’s trajectories

with the color-coding of the stick that caused them and is

able to choose the correct stick to move the puck from a

start position to a goal [10]. Similarly, Brown and Sammut

created a simulated robot that employs babbling to learn to

use a stick to push balls out of tunnels and to climb ramps

to reach rewards. The robot learns numerical relationships

between the tools it uses and the tasks they help perform

(for example, that the stick must be thin enough to fit in the

tunnel) [9].

Although tool-use is the most common emphasis in af-

fordance and function recognition, other affordances such

as traversibility are also explored through robot interaction

and babbling. Erdemir et al. explore traversibility using

statistical information obtained in a babbling stage to perform

internal rehearsals before acting in later stages [7]. Uğur et

al. consider traversibility of a robot among objects that can

or cannot be moved, such as balls or boxes respectively [15].

In a departure from both tool-use and traversibility, Griffith

et al. use vision and sound to determine whether objects are

containers. A robot accomplishes this both by attempting to

manipulate a small toy inside the object [16], and by moving

objects under running water in a sink [17].

These affordance-driven techniques allow the robot to

learn what actions it is capable of performing with an object,

but do not reveal wider, functional properties of an object.

For example, although an object might provide an excellent

seat for a person, most robots are incapable of sitting and will

therefore never discover this affordance. Simulation provides

an arena for exploring properties a robot cannot discover

through its own interactions but which may be useful to

recognize when communicating with humans or other robots

with differing capabilities.

Bar Aviv and Rivlin use simulated “examination agents”

that interact with objects to determine the objects’ functional

properties [18]. Each function category is defined as a

combination of an examination agent and a set of constraints

on the location and orientation of the agent, both of which

must be pre-defined. For example, in order to test if an object

can be sat upon, a human model is manipulated on the object

and tested for “sitting positions”, parameters in which the

angles of the model’s joints must lie. If the model can be

positioned within these constraints, the object is functionally

categorized as a chair. They are similarly able to recognize

tables using a simulated person and bookshelves using a

simulated book.

The method described in this paper also explores the

use of simulation to predict the functional properties of

objects without restricting functions to those performable

by a particular robot or person. However, unlike Bar-Aviv

and Rivlin’s method, function classes do not have predefined

“examination agents” or goal orientations.



III. SIMULATED INTERACTION FOR FUNCTION

CLASSIFICATION

Our method is, in short, to simulate dropping spheres onto

an object and use the resulting distribution to functionally

classify it. We use a 3D point cloud of an object to predict

how spheres dropped on the object from above will respond

to it. The simulated spheres follow basic physical rules when

colliding with either the object’s model or other spheres

before coming to rest in static locations. Each function

class is associated with a sphere radius that provides the

most informative distribution, i.e. that allowing for the best

classification accuracy, which is learned using initial training

examples. We derive a feature vector from a histogram of the

locations of the spheres on the object.

We define the functional properties of an object to be how

the object is able to interact with other objects, specifically,

how it affects them and how it is affected by them. Coarse

simulation of these interactions predicts how an object

might react in the real world without requiring any actual

interaction to occur. The benefits of this are that it’s often

faster than initiating physical interaction and that one can

explore interactions that are irreversible in the real world.

Additionally, it may allow for the discovery of a more general

set of functions and affordances. We hypothesize that even

if the simulated interactions don’t perfectly model the real-

world interactions they are designed to imitate, they reveal

useful information about the object. We choose spheres for

our preliminary interaction simulation tests because their

physics are straightforward and they are able to roll and fit

the shape of objects.

A. Simulating an Object and Falling Spheres

Although an object mesh provides more information and

results in more accurate simulations, we use only a point

cloud for simulation to reflect the data obtained from 3D

sensors. A robot exploring the world with a 3D sensor does

not have the advantages afforded by an object mesh. While it

can easily build a point cloud of its environment, transform-

ing the point cloud into a set of faces is a computationally

expensive and unnecessary task. Basic spatial knowledge of

the point clouds is assumed by creating a ground plane along

the lowest Z-plane of the bounding box. Spheres fall toward

this plane, in a simulation of gravitational effects.

A more sophisticated physics simulation system like Open

Dynamics Engine [19] could be used for our approach.

However, high-fidelity results are not necessary for good

classification performance. Consequently, we use a low-

fidelity simulation system that runs much more quickly. In

our system, simulated spheres drop one at a time from

randomly chosen (x, y) positions above the object’s point

cloud. A sphere drops straight down until it collides with

points in the point cloud or another sphere. The sphere “rolls

off” the points it collides with by estimating a plane through

the points and rolling along the plane. Similarly, a falling

sphere rolls off spheres that have already settled. A sphere

continues to roll along the object until it either collides with

Fig. 2: A simple 2D example of how features are extracted.

Once the simulation is complete, the object is divided into

equal bins. The number of sphere centers in each bin is

counted and these counts form the histogram and feature

vector.

an object that blocks its path, comes to rest on a flat surface,

or rolls off the object entirely.

Once a sphere comes to rest, it is static and does not move

regardless of other spheres colliding with it. The histogram is

calculated using only spheres that land on the object; spheres

that roll off the object and strike the ground are ignored.

Spheres continue to fall onto the object until a user-defined

number of sequential spheres either roll off or fail to be

placed on the object. Together, these two conditions suggest

that the object is covered by spheres and cannot hold more.

Although this threshold could be varied for different object

sizes, in our tests, we set this threshold to 50 for all objects.

Spheres pile upon one another without direct support from

the object while the pile fits within the object’s bounding box.

This compensates for the fact that spheres become static once

they have landed. In the real world, a ball falling on top of

or rolling up against another will generally cause the second

ball to roll as well if it is not held in place; a pile of balls

doesn’t form without a structure to support them. The result

of this constraint is that cups fill up with spheres, chairs have

a slope growing from the front edge of the seat to the back,

and tables have a flat surface of spheres. This can be seen

in Fig. 1.

B. Feature Extraction

The final location of the spheres is summarized by a

histogram, where each element of the histogram represents

the number of spheres that fell within a given box in space.

A simplified, two-dimensional example of the histogram and

features resulting from spheres being dropped on a chair is

shown in Fig. 2.

Histograms are chosen to represent the results of the

physical simulation because we predict different objects will

cause the spheres to land and group in different ways. The

distribution of the spheres is affected by their radii as well as

the size and shape of the object. Prior work uses object size

and shape as features for recognizing function classes, and

although the proposed method does not use these properties

explicitly, the resulting vectors are affected by them. The

distribution of the spheres is summarized using a histogram

that divides the object into equally sized cubes.

The initial feature vector for each object is constructed

with the histograms derived from a variety of sphere sizes.

It is reasonable to believe that different sphere sizes will

perform better for different function types, which may vary



greatly in expected size themselves. For example, large

spheres may not be helpful for recognizing drinking vessels

because they can support only one large sphere, while such

spheres may be more relevant in determining objects that are

sittable for a person. To explore this, a variety of radii are

initially used. In practice, we have found that smaller spheres,

on the scale of a few centimeters, lead to better classification

for all function types because they provide richer histograms.

The accuracy of the histograms depends upon the dis-

cretization chosen. Large bins will encapsulate whole ob-

jects, causing spatial relationships between spheres to be

lost. Alternatively, bins that are too small will only contain

a single sphere center, making comparisons between feature

vectors of different objects harder because spheres are re-

quired to land in the same location rather than in the same

general area. After testing several alternatives, including a

range of fixed sizes of bins and sphere radius-to-bin ratios,

we found that bins three to four times the diameter of the

spheres perform best. This means the histograms resulting

from different sphere radii have different numbers of bins

and are not comparable. Additionally, this results in a single

histogram bins of some of the larger spheres fully containing

some of the smaller objects. This is non-ideal, but was not

further explored in this work.

C. Function Classification

Each function class is associated with a single radius that

is found to produce sphere distributions that result in accurate

classifications. In order to determine the best-performing

radius for a given function class, initial examples of each

class are divided 70%−30% into a training and a validation

set. Function classification is performed using a binary, one-

vs-all, classifier for each class. In our evaluation we use a

weighted nearest neighbor classifier where training examples

in the classifier are weighted with the inverse Euclidean dis-

tance between an example and the histogram being evaluated.

A weighted nearest neighbor classifier was chosen because

we expect to have few initial training examples, and we

have found the weighted nearest neighbor classifier gives

good predictions with few training examples. Individual

binary, one-vs-all classifiers are necessary because they do

not restrict function class membership to a single class. Thus

a sofa, which can be either sat or laid upon will have positive

classification for “sittable” and “layable” classifiers but will

be negative for classifiers such as “table”.

The F-measure is chosen as our evaluation metric because

the goal of function classification is to correctly identify as

many objects exemplifying the function as possible while

minimizing the number of false positives. The F-measure

accomplishes this by heavily penalizing either low precision

or low recall.

F-measure =
2 ∗ precision ∗ recall

precision + recall

Each radius is evaluated by calculating the F-measure of

its classification for each function class on the validation set.

The radius with the highest F-measure for a given function

(a) The average F-measure obtained with an increasing number of
total training examples over 10 trials. Error bars denote variance.

Class Radius (cm) F-Measure Accuracy

Cup-like 0.5 0.80 0.96

Table-like 1 0.85 0.94

Sittable 0.5 0.74 0.92

(b) Ultimate radius chosen for each function class and the F-measure
and accuracy at that radius.

Fig. 3: Performance of function classification using features

derived from simulating falling spheres.

is chosen as the representative for that function class and is

used in the future when determining whether an object is a

member of that class.

When functionally classifying an object, only the chosen

radius for a given class is tested on the object. A robot

looking for sittable objects in its environment would only

simulate dropping spheres of a specific radius to make a

classification. Alternatively, if the robot wanted to deter-

mine which function classes an object exhibited, it would

simulate dropping spheres with the representative radius for

each function class and consider the resulting distributions

individually.

This radii selection test can be performed either offline

with 3D object models or online using the first several ex-

amples of the functional class the robot sees while exploring

the world.

IV. EVALUATION

We evaluate how well our method is able to functionally

classify three classes, “table”, “drinking vessel”, and “sit-

table”, by testing the classification accuracy for a collection

of 3D models. We are able to achieve high accuracy and

recall in identifying objects. We further evaluate function

recognition with real-world data from a Kinect, using the

3D models as training examples.

A. 3D Model Dataset

For testing and evaluation, we created our own database of

200 CAD object models that were individually downloaded



cup-like table-like sittable none

cup-like 10 0 0 6

table-like 0 20 0 2

sittable 1 0 6 15

none 2 8 0 33

(a) 20 Training Examples

cup-like table-like sittable none

cup-like 11 0 0 5

table-like 0 18 0 4

sittable 1 3 13 6

none 1 2 3 34

(b) 45 Training Examples

cup-like table-like sittable none

cup-like 12 0 0 4

table-like 0 21 0 1

sittable 1 2 18 1

none 2 3 6 29

(c) 85 Training Examples

Fig. 4: Confusion matrices showing the function classifica-

tion for the same test set given differing numbers of training

examples. Rows indicate actual membership while columns

denote classified memberships. As more training examples

are seen, function classification improves.

from several free online databases1. These models were

downloaded as .stl or .3ds files and were converted into

unordered point clouds by sampling at least one point every

half centimeter along the faces. Models were rotated so that

all objects have the XY plane as ground with the positive

Z-axis pointing up, and were translated to the origin. Models

with incorrect scales were manually adjusted to reasonable

values.

Of the 200 objects acquired, 40 were a type of sittable

object (chairs, sofas, benches, etc), 40 were table-like objects

(dining room tables, desks, etc), and 30 were drinking vessels

(glasses, bowls, etc). The others were household objects

ranging from furniture such as baths, ovens, and bookshelves,

to appliances such as televisions, vacuums, microwaves, and

computers to other knick-knacks such as books, shoes, and

lamps.

B. Recognition on Model Dataset

We evaluate how many training examples are necessary for

our system to accurately classify these functional categories.

Of the three function classes, we expect sittable objects to be

the most challenging because the objects in it vary the most.

For example, drinking vessels tend to be small and similarly

sized, and most tables and desks are of similar height,

although their widths and lengths vary. Sittable objects, on

the other hand, range from desk chairs to sofas to bar

stools, all of which have very different sizes and expected

distributions.

1http://grabcad.com and http://archive3D.net

For each test, the dataset was split randomly into equally

sized training and testing sets. As described in Sec. III-C,

roughly 30% of the training set is used for cross validation

to select the best radii. This makes classification challenging

until a sufficient number of examples of each function type

have been seen to ensure a positive example appears in both

the training and the cross validation set. The radius with

the highest F-measure on the cross validation set is used to

evaluate the test set. The results can be seen in Fig. 3, where

the total number of training examples of all classes is plotted

against the F-measure for each function class. These results

are an average obtained over 10 trials which used the same

200 objects but varied the test set.

The score is a result of higher recall and lower precision,

as is indicated in the confusion matrices in Fig. 4, where

there are more false positives than false negatives. This

means more objects are identified as having a given function

than actually do, but most objects that have it are correctly

identified. The confusion matrices show the membership

classifications for the test data given 20, 45, and 85 total

training examples, and are from one of the trials averaged

in Fig. 3. The rows represent the function classes the

objects actually belong to, and the columns represent which

functions they are classified as. Although this dataset has no

overlapping function classes, membership is not restricted

to a single class. Despite not having this restriction, most

objects were predicted to belong to only one class. The

few exceptions are evident in the confusion matrices which

sum to more than 100, as this indicates a single object was

classified positively by more than one function classifier.

Fig. 5 shows a matrix of function classification for each

object in our dataset. Each object was functionally classified

using the other 199 objects as training examples. Each row

of the matrix represents predicted membership in a given

function class. Additionally, “no predicted memberships”

is indicated in the bottom row. In order for an object to

be classified as having no functions it must be negatively

classified by each function classifier, as there is no “none”

classifier. Every column represents a different object from

the dataset, grouped by their labeled functions. These labels

are somewhat subjective as, for example, people sometimes

sit on tables or desks. For this work we chose to label

objects only with their primary functional property. Among

the challenging objects to classify were bar stools, which

have the height of a table and do not have backs like most

chairs, mid-sized filing cabinets, bookshelves, and counters

which were confused for tables (and which are, indeed, large

flat surfaces often put to similar uses as tables), and vases

and shoes which were often confused as drinking vessels.

These results show the proposed feature set can function-

ally classify objects that belong to a given class, though in-

creased precision may be desired. The results were obtained

using only the features derived from the physical simulation.

One could imagine integrating other feature types, such as

those based on appearance, into the classifier. Such features

are largely orthogonal to our current feature set and would

provide very different information. We hypothesize that a



Fig. 5: Classification of each object in the 3D model dataset. This matrix shows the function classification for each object in

our dataset, given the other 199 objects. If all objects were classified correctly, one would expect to see four unbroken lines.

Note that there is no “none” classifier, so correctly identifying an “other” object requires all the other classifiers correctly

classifying it as a negative example.

(a) 3D point cloud of a dining room. (b) Segmentation of dining room (c) Objects identified with functional proper-
ties.

Fig. 6: Object function classification on real world data. Using the point cloud of this room obtained by a Kinect, the table,

bench, and one of the chairs were correctly identified with their functional properties. Objects identified with functional

properties have color-coded boxes drawn around them. Cyan boxes indicate objects that are sittable, while magenta indicates

table-like objects.

system that used both types of features would perform even

better.

C. Recognition with Real-World Data

We evaluated our method on real data, obtained with a

Microsoft Kinect, in order to investigate the performance

impact of imperfect models arising from occlusion and noise.

We captured several scenes that contained sittable and table-

like objects, including the dining room shown in Fig. 6 as

well as several office environments. Drinking vessels were

not tested because their bottoms would not be observed by

the Kinect and so their simulated counterpart would not be

able to hold any spheres. An assumption that all objects have

a flat bottom even when the bottom cannot be seen by the

robot may help solve this.

The dining room shown in Fig. 6 is representative of how

well functional properties were recognized in all the analyzed

scenes in terms of how well objects are classified and

some incorrect segmentations. Although an RGB-D scene

is shown in the first image, only the depth data is used

for segmentation and classification. 3D segmentation is a

challenging problem on its own, and in this work we assume

a correctly segmented scene. For this experiment we use

scenes with few overlapping objects to maximize our simple

segmentation algorithm’s likelihood of segmenting correctly.

A scene is segmented by identifying and removing the floor

plane using RANSAC [20]. Points are then agglomerated

into objects based on the Euclidean distance between them.

Points within 2 cm of one another are considered part of

the same object. This somewhat large threshold is a result

of the Kinect’s noisy range data, which varies from a few

millimeters up close to 4 cm at the edge of its range [21]. We

believe better segmentation algorithms should have at least

equivalent function classification performance.

The point cloud for each segmented object is tested for

membership in the three function categories. The full CAD

model dataset provides training examples for each function

type and is used to select the radius for each function class.

Simulated spheres are dropped onto the point clouds using

the method described. The majority of the segmented objects

in the scenes (which includes several slices of the wall and

the legs of the front-most chair in Fig. 6) were not positively

categorized by any of the function classifiers. Objects that

were positively classified are indicated with a box. The

dining room table was correctly classified as a table, and

the bench as sittable. The closest chair was too reflective

for the Kinect to obtain depth measurements, but the further

chair, while poorly segmented, was correctly identified as a

sittable surface.

V. CONCLUSION

This work is a step toward incorporating features dis-

covered through physical simulation into object function

recognition. Additional simulated interactions, such as “drop-

ping” balls from all directions instead of just from above, or

considering multiple objects in conjunction with each other

might create features with strong predictive capabilities. Such

features could supplement other methods of function and

affordance recognition.



In this work we explored the features that can be obtained

for function classification and recognition from basic sensory

data beyond the more commonly used camera and depth

data. We show that informative features can be discovered

by simulating physical interactions with an object. We have

begun exploring this concept by simulating bombarding

an object with spheres of differing radii and calculating

the distribution of the spheres that land on it. Using the

distribution of spheres as a feature vector, a classifier is

able to predict whether the object belongs to three different

function classes. We are able to learn the appropriate radius

size for each function classes that leads to high classification

accuracy. We obtain reasonable classifications using a dataset

of 3D models, and further show real-world objects detected

with a Kinect can be correctly functionally classified using

the models as training examples.

ACKNOWLEDGMENTS

This research was supported by ONR grant # N00014-13-

1-0217.

REFERENCES

[1] D. G. Lowe, “Object recognition from local scale-invariant features,”
in Proceedings of the seventh IEEE international conference on

Computer vision, vol. 2. Ieee, 1999, pp. 1150–1157.
[2] E. Rivlin, S. J. Dickinson, and A. Rosenfeld, “Recognition by func-

tional parts,” in Proceedings of IEEE Computer Society Conference on

Computer Vision and Pattern Recognition. IEEE, 1994, pp. 267–274.
[3] L. Stark and K. Bowyer, “Generic recognition through qualitative

reasoning about 3-d shape and object function,” in Proceedings of

IEEE Computer Society Conference on Computer Vision and Pattern

Recognition. IEEE, 1991, pp. 251–256.
[4] Z. Duric, J. A. Fayman, and E. Rivlin, “Function from motion,”

Proceedings of IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 18, no. 6, pp. 579–591, 1996.
[5] A. Gupta and L. S. Davis, “Objects in action: An approach for com-

bining action understanding and object perception,” in Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition.
IEEE, 2007, pp. 1–8.

[6] M. Stark, P. Lies, M. Zillich, J. Wyatt, and B. Schiele, “Functional
object class detection based on learned affordance cues,” Computer

Vision Systems, pp. 435–444, 2008.

[7] E. Erdemir, C. B. Frankel, K. Kawamura, S. M. Gordon, S. Thornton,
and B. Ulutas, “Towards a cognitive robot that uses internal rehearsal
to learn affordance relations,” in Proceedings of the IEEE International

Conference on Intelligent Robots and Systems. IEEE, 2008, pp. 2016–
2021.

[8] A. Stoytchev, “Behavior-grounded representation of tool affordances,”
in Proceedings of the 2005 IEEE International Conference on Robotics

and Automation. IEEE, 2005, pp. 3060–3065.

[9] S. Brown and C. Sammut, “An architecture for tool use and learning in
robots,” in Australian Conference on Robotics and Automation, 2007.

[10] J. Sinapov and A. Stoytchev, “Detecting the functional similarities
between tools using a hierarchical representation of outcomes,” in
Proceedings of the IEEE International Conference on Development

and Learning. IEEE, 2008, pp. 91–96.

[11] E. Biçici and R. S. Amant, “Reasoning about the functionality of
tools and physical artifacts,” Department of Computer Science, North
Carolina State University, Tech. Rep. 22, 2003.

[12] T. E. Horton, A. Chakraborty, and R. St. Amant, “Affordances
for robots: a brief survey,” AVANT. Pismo Awangardy Filozoficzno-

Naukowej, no. 2, pp. 70–84, 2012.

[13] T. E. Horton, L. Williams, W. Mu, and R. S. Amant, “Visual affor-
dances and symmetries in canis habilis: A progress report,” in AAAI

Fall Symposium Technical Report, 2008.

[14] J. Gibson, “The ecological approach to visual perception,” 1979.

[15] E. Uğur and E. Şahin, “Traversability: A case study for learning and
perceiving affordances in robots,” Adaptive Behavior, vol. 18, no. 3-4,
pp. 258–284, 2010.

[16] S. Griffith, J. Sinapov, V. Sukhoy, and A. Stoytchev, “How to separate
containers from non-containers? a behavior-grounded approach to
acoustic object categorization,” in Proceedings of the IEEE Interna-

tional Conference on Robotics and Automation. IEEE, 2010, pp.
1852–1859.

[17] S. Griffith, V. Sukhoy, T. Wegter, and A. Stoytchev, “Object categoriza-
tion in the sink: Learning behavior–grounded object categories with
water,” in Proceedings of the ICRA Workshop on Semantic Perception,

Mapping and Exploration, 2012.

[18] E. Bar-Aviv and E. Rivlin, “Functional 3d object classification using
simulation of embodied agent,” in Proceedings of the British Machine

Vision Conference, 2008, pp. 32–1.

[19] R. Smith, “Open dynamics engine,” accessed July, 2013. [Online].
Available: http://www.ode.org/

[20] M. A. Fischler and R. C. Bolles, “Random sample consensus: a
paradigm for model fitting with applications to image analysis and
automated cartography,” Communications of the ACM, vol. 24, no. 6,
pp. 381–395, 1981.

[21] K. Khoshelham, “Accuracy analysis of kinect depth data,” in ISPRS

workshop on laser scanning, vol. 38, 2011, p. 1.


