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Abstract

Mobile robots are dependent upon a model of the environment for many of their basic
functions. Locally accurate maps are critical to collision avoidance, while large-scale
maps (accurate both metrically and topologically) are necessary for efficient route
planning. Solutions to these problems have immediate and important applications to
autonomous vehicles, precision surveying, and domestic robots.

Building accurate maps can be cast as an optimization problem: find the map
that is most probable given the set of observations of the environment. However, the
problem rapidly becomes difficult when dealing with large maps or large numbers of
observations. Sensor noise and non-linearities make the problem even more difficult—
especially when using inexpensive (and therefore preferable) sensors.

This thesis describes an optimization algorithm that can rapidly estimate the
maximum likelihood map given a set of observations. The algorithm, which iteratively
reduces map error by considering a single observation at a time, scales well to large
environments with many observations. The approach is particularly robust to noise
and non-linearities, quickly escaping local minima that trap current methods. Both
batch and online versions of the algorithm are described.

In order to build a map, however, a robot must first be able to recognize places
that it has previously seen. Limitations in sensor processing algorithms, coupled with
environmental ambiguity, make this difficult. Incorrect place recognitions can rapidly
lead to divergence of the map. This thesis describes a place recognition algorithm
that can robustly handle ambiguous data.

We evaluate these algorithms on a number of challenging datasets and provide
quantitative comparisons to other state-of-the-art methods, illustrating the advan-
tages of our methods.
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Chapter 1

Introduction

1.1 Motivation

Intelligent robots must answer a fundamental question: given a number of noisy sensor
observations, what does the world actually look like? The quality of the world model is
dependent on the quality of the sensors, of course, but as the environments that robots
operate in get larger and more complicated, the limiting factor becomes algorithmic:
the amount of computational effort required to process sensor observations grows
quickly with the number of observations.

While robots like the Roomba vacuum can get by with limited world models (i.e.,
detecting obstacles by bouncing off of them), an autonomous vehicle travelling at
highway speeds needs a more sophisticated obstacle avoidance strategy. High-quality
maps are critical.

Many basic robot capabilities, such as collision avoidance and path planning,
depend upon a map of the environment. Consequently, map building is a critical
component of almost every autonomous robot, particularly if they must operate in
unfamiliar environments. Many applications fall into this category, including cars in
urban driving scenarios, military convoy vehicles, indoor delivery robots, and assistive
robots for the elderly and infirm. Maps are also useful in non-autonomous applica-
tions: a human can become disoriented when teleoperating a search-and-rescue robot
amidst rubble; a real-time map can make the operators more productive. In these
cases, robots use maps in order to complete their missions. The accuracy and quality
of the map directly affects their ability to effectively carry out their missions. If an
obstacle is poorly localized, a robot may collide with it. If the topological structure
of an environment is not properly modeled, a robot may take a needlessly circuitous
route to a destination, or fail to find a route entirely.

The map itself is the goal of an increasing number of systems. These include cap-
turing data for Geographic Information Systems (GIS) (both indoors and outdoors),
along with other survey applications (such as measuring the sag of a bridge by driving
a robot beneath it). The value of these systems is directly related to the accuracy of
the map and the cost of constructing it.

Map building is hard. The real world is a complex, dynamic, and cluttered place.
A sensor’s view of this world is noisy and often ambiguous (different things often look

9



Chapter 1. Introduction

Figure 1-1: Robot Applications. Map building arises in many contexts, including autonomous
cars [37], indoor surveying [68], underwater robots for ship-hull inspection [75], and human-centric
assistive robotics [57].

about the same) and there is an economic incentive to use less expensive sensors;
the limitations of these sensors often magnify the challenges. In short, the aim of
mapping research is to accurately model large, complex, and cluttered environments
using cheap sensors that produce poor data.

Mapping has been extensively studied by many researchers, serving as a cen-
tral research topic for roboticists for decades. Early approaches were largely derived
from the Extended Kalman Filter (EKF) [65] and it continues to be used in many
applications. The EKF, however, has computational and memory costs that grow
quadratically with the map size. The Extended Information Filter (EIF) [58] im-
proves these costs, as do the many variants of Sparse Extended Information Filters
(SEIF) [69, 70, 71, 13, 14, 74, 76, 76]. New variants, offering not only computational
cost improvements but also interesting cost-versus-quality trade-offs, continue to be
developed.

The mapping problem has also been approached by means of Rao-Blackwellized
particle filters [44, 66, 22] and non-linear optimization [41, 12, 34, 72, 20, 16, 10, 24,
48, 50]. These methods offer additional cost/quality trade-offs, and have incorporated
ideas and techniques from the machine learning and numerical computing community.

10



1.1. Motivation

Figure 1-2: An automatically built map of an indoor office environment. Above the map, the
trajectory (blue) is plotted with height corresponding to time. The large number of detected loop
closures (shown in red) allow a high-quality posterior map to be computed.

However, the limited penetration of robots into our daily lives is a testament
to the shortcomings of the state-of-the-art; at best, we see very expensive robots
operating in rather limited environments. The challenge is to extend the state of
the art by making these systems faster (so they can handle larger environments and
greater numbers of sensor observations) and more robust to noise and ambiguity.
Computational efficiency and robustness are the central themes of this thesis.

This thesis describes several new algorithms that extend the reach of mapping
algorithms. We begin with a review of basic concepts in Chapter 2. The problem
of identifying when a robot has revisited a particular place, loop closing, is a critical
component of map building. Recognizing a place can be difficult because today’s
sensor processing algorithms can not always discriminate between similar (but dis-
tinct) places. We describe an algorithm that can automatically reject incorrect place
recognitions that could otherwise result in poor maps in Chapter 3.

Given a set of correct place recognitions, the map building problem can be formally
represented as a non-linear optimization: compute the map that is most consistent
with all of the disambiguated sensor data. We describe a new algorithm for performing
this optimization in Chapter 4, which is characterized by high speed and an unrivaled
ability to escape local minima. As a result, our method can compute correct maps
in cases where existing algorithms fail. In Chapter 5, we describe a variant of this
algorithm that can be used in online settings— i.e., where the optimization problem is

11



Chapter 1. Introduction

constantly changing as new sensor data continuously arrives. Together, the methods
of this thesis allow maps to be constructed even when sensor data is highly ambiguous,
with computational costs that scale well with increasing environment size.

The remainder of this chapter provides a brief introduction to robot mapping and
a high-level overview of this thesis’s contributions.

1.2 Probabilistic Problem Formulation

In general terms, the map building problem can be described as finding the posterior
probability distribution function of a map x given a set of sensor data z and a set of
commanded robot motions u. We can divide the map into two parts: the trajectory
of the robot s sampled at discrete times, and the location of other features f in the
environment.

Unfortunately, most sensors do not unambiguously identify the features that they
sense: they detect the presence of some feature, not the presence of a particular
feature. The process of assigning feature identities to sensor observations is known as
data association. Let di represent the identity of the ith sensor observation zi. The
posterior probability distribution that we wish to discover is:

p(x | u, z, d) = p(s, f | u, z, d) (1.1)

In the common case, sensors are mounted on the robot. Sensors observe the en-
vironment relative to the robot’s current position, and the noise contaminating these
robot-relative observations is independent. Projecting these observations into a global
coordinate frame requires only the knowledge of the robot’s position. In other words,
sensor observations (in the global coordinate frame) are conditionally independent
given the robot trajectory. This is the key insight behind FastSLAM[44], as it allows
the posterior distribution (Eqn. 1.1) to be factored into terms corresponding to the
robot trajectory and the individual position of each feature in the environment:

p(s, f | u, z, d) = p(s | u, z, d)
∏

i

p(fi | s, z, d) (1.2)

The advantage of this factorization is that the conditional posterior distribution
for a single feature p(fi | s, z, d) is easy to compute (e.g., with a Kalman filter). The
posterior distribution for the trajectory is much harder: FastSLAM samples over this
trajectory with a particle filter, whereas the approach in this thesis is to use non-linear
optimization methods to compute it.

In short, once the trajectory of the map has been determined, a map can be
easily computed. The critical role of the robot trajectory in map building has led to
trajectory-centric approaches like the one presented in this thesis.

In principle, the data associations d are unknown and are correlated through the
motion of the robot. Ideally, we would like to know the joint distribution:

p(d | u, z) (1.3)

12



1.3. Loop Closing

In this thesis, we make the common (but sub-optimal) approximation of comput-
ing di at about the time we observe zi. Additionally, we do not revisit data associa-
tions based on subsequent sensor observations. Consequently, each data association
di is a function of zi and earlier sensor observations and their data associations.

p(d | u, z) ≈
∏

i

p(di | u0...i, z0...i, d0...i−1) (1.4)

The data-associations d assign particular observations to particular features. This
is a discrete-valued assignment, in contrast to the continuously-valued variables com-
prising the map x. Since it has both discrete and continuous aspects, map building
is a hybrid estimation problem. The discrete nature of the data associations is es-
pecially vulnerable to errors: assigning an observation to the incorrect feature can
have a profound impact on the quality of the resulting map. Chapter 3 will illustrate
a robust means of computing data-associations d, using an approximation similar to
Eqn. 1.4.

Maintaining posterior distributions over the entire map is both computationally
expensive and often unnecessary. The maximum likelihood map is generally the
single most useful quantity for path planning, obstacle avoidance, and other practical
applications. Some marginal distributions, such as the probability distribution of the
robot’s current position and some nearby feature (p(slast , fi, |u, z, d)), can be easily
estimated without maintaining the full posterior distribution. Chapter 3 will show
how to estimate marginal distributions of this form.

Consequently, while this thesis explores mapping from a probabilistic perspective,
the primary goal is not to compute distributions, but instead to estimate the maxi-
mum likelihood map. Chapters 4 and 5 will then estimate the maximum-likelihood
map x using non-linear optimization methods.

1.3 Loop Closing

As a robot drives around, its dead-reckoning error grows without bound. Suppose
that a robot revisits a previously observed place, collecting similar sensor data each
time. How can the robot determine that it is in fact in the same place it was before,
versus some other place that looks about the same? How can the robot determine its
position and orientation within that place? Loop closing algorithms seek to answer
these questions.

The term “loop closing” arises from the common case where a robot drives in a
large loop, returning to its starting point. If, after travelling around the loop, the
robot can recognize that it is at its starting position, it “closes” the loop, creating a
geometric relationship between the first and last position of the robot. This geometric
relationship has two major effects:

• It establishes a topological relationship between temporally distant parts of the
robot’s trajectory. The robot can use this new topological link as a “short-cut”
when planning routes.

13



Chapter 1. Introduction

• It provides a metrical relationship between the beginning and end of the robot’s
trajectory that can be used to refine the estimate of the robot’s trajectory,
improving upon the estimate provided by dead-reckoning.

In general, the larger the loop, the more difficult it is to recognize a closure. This
is due to accumulating dead-reckoning error as the robot traverses the loop: when
the robot returns to its starting point, it must determine that it is back at its starting
point— not merely somewhere that looks like its starting place. Large loop closures
may be more difficult, but they also are much more valuable in terms of refining the
trajectory of the robot. Consequently, it is critical that a loop closing algorithm be
able to close very large loops.

Loop closing is related to place recognition, which has applications beyond path
planning and map building. For example, the same algorithms could be used by a
robot to find a recharging station and properly align itself to it.

Figure 1-3: Sample sensor data. Different sensor modalities present different challenges when
trying to “close the loop”. Left: Camera-derived visual features can be richly descriptive, but are
also cluttered and not consistently repeatable under changing lighting and viewpoint. Right: Laser-
scan data from an indoor environment is composed principally of walls at 90 degree angles. While
the scan is very precise, many indoor environments produce similar looking scans.

Loop closing is typically performed via explicit data association: recently observed
landmarks are associated with previously mapped landmarks. Optimal data associ-
ation is NP-hard, though a number of heuristics are often effective [46, 2]. Unfortu-
nately, data association errors can lead to divergence of the map; this is combated by
performing joint data association on large numbers of observations, which increases
the computational costs.

An alternative approach relies on pose-to-pose matching, in which the global iden-
tities of locally-observed features are never explicitly computed. We consider two
instances of this problem. The first is based on laser scan matching, in which case
the match is the result of a numerical optimization that attempts to align two scans
so that they overlap as much as possible. The second instance is based on visually
tracked objects in the environment. Possible alignments between poses are recovered
by attempting to align these locally tracked features.

In both of these cases, the computational burden of globally identifying all land-
marks is eliminated. The trade-off is that these pose-to-pose alignments, while com-
paratively easy to compute, have a fairly high error rate. For example, failures can

14



1.4. Pose/Feature Graphs

be caused by matching two similar-looking (but physically distinct) features, or by
getting stuck in a local minimum when attempting to align two laser scans.

This thesis describes a loop-closing verification algorithm that allows robust loop
closing using these simple pose-to-pose correspondences. The algorithm does not
attempt to globally register landmarks, and thus does not require their expensive-to-
compute covariance matrix. The algorithm considers a set of pose-to-pose “hypothe-
ses” and extracts the subset that is maximally self-consistent. The algorithm exploits
the property that correct hypotheses must be mutually consistent (since there is only
one true configuration), whereas incorrect hypotheses are often inconsistent.

In Chapter 3, we illustrate how this maximally self-consistent set can be com-
puted from the dominant eigenvector of a carefully-constructed matrix of pair-wise
consistencies. We evaluate our system using both laser and camera data, and briefly
describe our method for obtaining pose-to-pose hypotheses.

1.4 Pose/Feature Graphs

Pose/Feature graphs are an intuitive representation of map optimization problems.
The nodes of a pose/feature graph represent the positions whose exact location are of
interest, while the edges represent information about the relative geometric position
of those positions.

pose 0
pose 1 pose 2

landmark

Figure 1-4: A Simple Pose/Feature graph. The robot’s trajectory is discretized into a series of
poses (triangles). These poses, as well as landmarks (stars), are nodes in the pose graph. Edges
in the pose graph represent constraints between the positions of nodes, such as those derived from
odometry (green) and a landmark detector (orange).

For example, the position of the robot at a particular point in time can be rep-
resented as a node in the graph. These types of nodes are known as poses. Features
(or landmarks) in the environment can also be represented as nodes in the graph:
when sensors detect a landmark, the sensor observation is represented as an edge
connecting the landmark to the pose from which the observation was made. Fig. 1-4
illustrates a simple pose/feature graph; see Fig. 1-2 for a real-world example.

A graph containing both poses and features is a “pose/feature graph”. A graph
consisting of only poses and edges between poses is simply a “pose” graph.
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Chapter 1. Introduction

1.5 Map Optimization

Loop closing adds edges to the graph, making it cyclic. Each edge relates the ge-
ometrical position of the two nodes it connects and has a cost function associated
with deviations from that relationship. We now wish to find the maximum likelihood
(minimum cost) position of each node. This is the map optimization step, and is
what makes the map “line up” (see Fig. 1-5).

Figure 1-5: Map Building Example. Given the robot’s trajectory (left), we must first identify loop
closures (middle). Finally, the maximum likelihood positions of all the nodes, given the loop closures
and the original trajectory, are computed (right). The result is a map that is much better than the
map resulting from dead-reckoning.

The pose graph encodes a non-linear optimization problem: the goal is to estimate
the position of all the nodes (the state variables) such that the constraints have the
minimum possible error. The large number of state variables, the non-linear nature
of the constraint equations, and the poor initial estimate (typically derived from
dead-reckoning) combine to make the optimization problem difficult. Its importance
and difficulty have made optimization a heavily researched topic, but performance on
large problems (those with many nodes and edges) remain computationally difficult.

Robustness to noise is an important performance metric: if an algorithm converges
to the wrong answer (a local minimum), it hardly matters how quickly it managed
to compute it. Sensor noise increases the likelihood of an algorithm getting stuck
in a local minimum, and the desire to use less expensive sensors (e.g., wireless RF
ranging to base stations, radars, cameras) often results in noisier measurements. The
robustness of optimization methods has not been a focus of previous research, despite
its importance.

We describe an optimization algorithm based on stochastic gradient descent that
computes updates to the state vector by considering a single constraint at a time.
This yields fast updates that rapidly explore the state space, allowing the algorithm
to escape local minima that slow or trap existing algorithms. A batch version of this
algorithm (for off-line use) is described in Chapter 4, followed by a version suitable
for on-line use in Chapter 5.

1.6 Contributions

We have identified two major challenges in robotic mapping: loop closing and map
optimization. This thesis describes several contributions that demonstrably advance
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the state of the art for both of these challenges. These contributions include:

• A place recognition system based on pair-wise correspondences that can robustly
identify loop closures, even when many hypotheses are incorrect.

• A map optimization algorithm whose iterations depend on only a single con-
straint at a time. The algorithm is robust to optimization hazards such as local
minima, producing good maps when existing algorithms fail. The algorithm is
generally competitive with, or faster than, existing methods.

• An incremental on-line map optimization algorithm, based on the batch algo-
rithm, that is well-suited for real-time use on robots.

These algorithms can construct maps with greater speed and robustness than
existing algorithms. As a result, robots can successfully operate in larger, more
complex, and more ambiguous environments than was previously possible.
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Chapter 2

Preliminaries

This thesis is about how to construct accurate maps. There are several ways of
describing this problem; in this thesis, we use the pose graph metaphor. This chapter
describes pose graphs and then moves on to more mechanical matters such as our
geometrical and mathematical conventions.

2.1 Pose/Feature Graphs

The position and orientation of a robot at a particular point in time is a pose, graph-
ically denoted in this thesis as a triangle (see Fig. 2-1). Over time, the continuous
trajectory of the robot is discretized into a set of poses. A landmark in the environ-
ment is graphically represented as a star.

Information relating the position of two nodes, along with the uncertainty of that
information, is known as a constraint1. A constraint is represented as an edge in the
pose graph. Constraints can express virtually any type of information, including a
range constraint, bearing constraint, or a full rigid-body transformation. We model
the uncertainty of these constraints as Gaussian, associating each with a covariance
matrix.

This thesis focuses on two-dimensional pose graphs and rigid-body constraints,
due to their ubiquity and applicability to many terrestrial mapping systems. We will
also consider the case in which the robot is continuously moving and making new
observations. This results in the addition of new nodes and edges to the graph. For
simplicity, we assume that individual nodes do not move.

2.2 Graphical Models

Mapping problems can alternatively be described in terms of a graphical model of a
Markov Random Field [30]. These graphical models are closely related to pose/feature

1The term “constraint” is used in some contexts to mean an inviolable criterion that any solution
must satisfy exactly. In the map optimization context, a constraint is uncertain: violation of a
constraint incurs a cost that is a function of the magnitude of the violation. It is usually impossible
to satisfy all constraints exactly— instead, we wish to minimize the total cost of all constraints.
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Figure 2-1: Sample Pose/Feature Graph. The robot trajectory is discretized into a series of poses
(blue triangles) from which the robot observes landmarks (yellow stars). Both poses and landmarks
are nodes in the graph. Graph edges represent information about the relative position and orientation
of the two nodes.

graphs. The nodes of a pose/feature graph are the same as the random variables of
a graphical model. A constraint between two nodes in a pose/feature graph im-
plies a dependence between the same two nodes in a graphical model, which is also
represented by an edge.

The difference between the two is a primarily an issue of connotation. A pose/feature
graph describes the “experience” of a robot: its entire trajectory and its entire set
of observations. It represents a complete statement of the structure of a particular
mapping problem. For every such pose graph, there is an exactly equivalent graphical
model.

In contrast, graphical models describe a joint probability distribution over the
nodes in the graph. For example, the robot trajectory can be marginalized out.
The resulting graphical model has no poses— only landmarks that are connected
directly to each other. Naturally, landmarks cannot observe other landmarks, and
so a marginalized graphical model does not correspond to a real set of observations.
The use of a graphical model also implies a particular set of inference methods (e.g.,
belief propagation).

In this thesis, we use the term pose/feature graph to refer to a complete statement
of the mapping problem (i.e., one in which no variables have been marginalized out).

2.3 Geometrical Conventions

A 2-D rigid body transformation is parameterized by three values, a translation in x̂,
a translation in ŷ, and a rotation θ. Subscripts will be used to identify particular sets
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of parameters (e.g., xA, yA, and θA). These parameters can be used to compute a
3× 3 transformation matrix, which we will identify by a capital letter. For example:

A =




cos(θA) − sin(θA) xA

sin(θA) cos(θA) yA

0 0 1


 (2.1)

A point p, expressed in homogeneous coordinates [27] (e.g., p = [x y 1]T ) is
transformed by A by simply p′ = Ap. Transforming p first by B, then by A is
computed by p′ = ABp. When dealing with chains of rigid-body transformations,
such as the path of a robot, we will write our transformations such that the rigid-
body transformations project a point (whose coordinates are expressed relative to
one pose) to a point whose coordinates are expressed relative to the previous pose.
Consequently, the order of multiplication will be the same as the temporal order of
the links. If the robot visits poses a and b (see Fig. 2-2), the matrix relating b to the
global frame is B = AT (not TA).

pose a

pose b

Global Frame (G)

B

T

A

p

Figure 2-2: Coordinate transformations. Each robot pose represents a local coordinate system
which can be related to the global coordinate by a rigid-body transform. Two local coordinate
systems can also be related, e.g., B = AT . Point p, expressed with respect to coordinate frame B,
can be projected to coordinate frame A by Ap and to the global coordinate frame by either Bp or
ATp.

The product of two rigid-body transformations can be expressed directly in terms
of their parameters. For example, consider B = AT :

xB = cos(θA)xT − sin(θA)yT + xA (2.2)

yB = sin(θA)xT + cos(θA)yT + yA

θB = θA + θT

It is also convenient to solve B = AT for T ; this will arise in the prediction
steps of the Extended Kalman Filter and in the residual computations for non-linear
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optimization:

xT = cos(θA)(xB − xA) + sin(θA)(yB − yA) (2.3)

yT = − sin(θA)(xB − xA) + cos(θA)(yB − yA)

θT = θB − θA

Finally, it is also useful to invert a rigid-body transformation. This can also be
done directly via the parameters. Letting T = A−1, we have:

xT = − cos(θA)xA − sin(θA)yA (2.4)

yT = sin(θA)xA − cos(θA)yA

θT = −θA

Constraints are uncertain quantities, having arisen from noisy sensor observations.
This uncertainty can be represented as a probability distribution over the parame-
ters of the rigid-body transformation. We assume that the probability distribution
can be well-approximated as a multi-variate Gaussian distribution. This common
approximation is motivated both by the quality of fit and by the computational con-
veniences that result. This distribution can be written in terms of the parameters of
the rigid-body transformation:

Σ =




Σxx Σxy Σxθ

Σyx Σyy Σyθ

Σθx Σθy Σθθ


 (2.5)

When performing the operations on transformations, we must also compute the
covariance of the new transformations. This is done by computing the Jacobians of
the output as a function of the inputs, and summing the scaled covariances of the
inputs. For example, consider the composition of two rigid-body transformations,
C = AB. Let ΣA be the covariance of the transformation A, and JA be the Jacobian
of the parameters of C with respect to the parameters of A. The covariance of C is
then:

ΣC = JAΣAJT
A + JBΣBJT

B (2.6)

ΣA is the covariance of transformation A, JA is the Jacobian of the parameters of
C with respect to the parameters of A, and JB is the Jacobian of the parameters of
C with respect to the parameters of B.

2.4 Constraints

A constraint (or edge) is a set of simultaneous equations f that relates the state
variables x to some observed quantity z. For a particular constraint i, we write:

zi = fi(x) (2.7)
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The difference between the observed and predicted values of an observation is the
residual ri:

ri = zi − fi(x) (2.8)

When the residual is scaled by the constraint’s confidence Σ−1
i , the result is the

χ2 error. Note that the confidence is the inverse of the covariance matrix.

χ2
i = (zi − fi(x))T Σ−1

i (zi − fi(x)) (2.9)

As with virtually all previous work on robotic mapping, we assume that each edge
is uncorrelated with other edges in the graph. In many cases, this is a reasonable
assumption: errors in sensors are often well-modelled as additive independent noise.
In reality, however, sensor observations are often correlated, at least to a minor de-
gree. For example, a laser range scanner might be sensitive ambient temperature
fluctuations, and a vision-based system is sensitive to intrinsic calibration errors. In
both of these cases, multiple observations are affected by a single error source. This
makes the measurements correlated. Since this effect is typically minor, we neglect
it.

2.4.1 Common Constraint Forms

Different types of sensors produce different types of geometrical information. A lidar,
for example, can measure the relative position and orientation of features with respect
to the robot. Such an observation fully specifies the position of the feature with
respect to the robot, and is called a rigid-body constraint. The observation equations
for a rigid-body constraint are given in Eqn. 2.3.

Monocular cameras can only measure the bearing to a feature. If the bearing of
node B is observed from node A (a “bearing-only” constraint), we have:

zi = arctan2(by − ay, bx − ax) (2.10)

Various radio-frequency and acoustic sensors are capable of measuring the range
between a feature and the robot, but cannot determine the bearing. A range-only
constraint is described by:

zi = ((bx − ax)
2 + (by − ay)

2)1/2 (2.11)

2.4.2 Linearization

As seen above, the observation equations are not generally linear in the state vari-
ables. However, a serviceable approximation can usually be obtained by linearizing
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the equations around the current state estimate x0:

Fi = fi(x0) (2.12)

Ji =
∂fi

dx

∣∣∣∣
x0

(2.13)

fi(x) ≈ Fi + Ji(x− x0) (2.14)

We can write the χ2 error in terms of this linearization. First, we write the residual
(error) of the constraint as ri = zi− fi(x0) = zi−Fi. We also let d = (x−x0). These
substitutions allow us to rewrite Eqn. 2.9 as:

χ2
i ≈ (Jid− ri)

T Σ−1
i (Jid− ri) (2.15)

The χ2 error for the entire pose/feature graph is the sum of the χ2 error of each
edge, since each edge is assumed to be statistically independent:

χ2 =
∑

i∈edges

χ2
i (2.16)

If we stack the Ji and ri matrices, and create a block-diagonal matrix from the
Σ−1

i matrices, we can write:

χ2 ≈ (Jd− r)T Σ−1(Jd− r) (2.17)

where

J =



· · · J1 · · ·
· · · J2 · · ·

...


 r =




r1

r2
...


 Σ−1 =




Σ−1
1

Σ−1
2

. . .


 (2.18)

As a preview of the optimization methods to come, we can differentiate Eqn. 2.17
with respect to d to find the value of d that minimizes the χ2 error:

∂χ2

∂d
= 2JT

i Σ−1
i Jd− 2JiΣ

−1
i ri = 0

d = (JT Σ−1J)−1JT Σ−1r (2.19)

The value d represents a change in the state variable that will minimize the χ2

error. However, inverting (JT Σ−1J) is impractical in many cases. This has spurred
the development of many algorithms, including those in Chapter 4 and 5.

Due to the non-linearity of the constraints, computing d will generally not reduce
the error to the global minimum in a single iteration: several iterations are often
required.
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2.4.3 Interpretation of the Chi-Squared Error

The χ2
i error is the square of the Mahalanobis distance, which has a natural geometric

interpretation: it is the number of standard-deviations of error between the predicted
and observed values. Mahalanobis distances are used as plausibility tests: values
above three occur with a probability of about 0.2% and thus strongly indicate either
an error in z (e.g., a measurement outlier), the confidence Σi, or the state.

The number of degrees of freedom k of a graph is equal to the number of indepen-
dent components (the number of observation equations) minus the size of the state
vector [73]. For example, a 2D pose graph with N nodes and M edges has 3M − 3N
degrees of freedom, assuming that each constraint is a rigid-body transformation.

The chi-square distribution gives the probability of the maximum likelihood map
having a given χ2 error as a function of the number of degrees of freedom. The
chi-square distribution for k degrees of freedom has mean k and variance 2k.

We can compare our χ2 error to the value predicted by the chi-square distribution.
If our χ2 error is highly improbable, it indicates one of two potential problems. The
first possibility is a mismatch between the sensor noise model and the actual noise of
the sensor. For example, if the sensor noise model indicates a much lower noise level
than is present in the actual observations, the χ2 error will be larger than expected.
The second possibility is that our current state estimate is not close to the maximum
likelihood map. In this case, it is an indication that we should attempt to further
optimize the map.

When comparing the performance of optimization algorithms across a number
of different optimization problems, the dependence of the χ2 error on k makes it
difficult for a human to determine whether the χ2 error is probable or not. Instead,
we consider the probability density function for χ2/k: its expectation is always 1.0
and its variance is 2/k. Consequently, for large k, the distribution will be ever-more
tightly centered around 1.0.

If we trust our sensor noise model, a χ2/k value near 1.0 indicates that the state
estimate is near the maximum likelihood solution. Larger values indicate that addi-
tional optimization is needed.

Conversely, if the optimization algorithm has converged to a value that is far from
1.0, it indicates a problem with the sensor noise model. If the observation covariance
matrices are incorrectly scaled by a factor α, the normalized χ2 will be 1/α.

Because of these useful properties, the χ2 values reported in this thesis are always
normalized by the number of degrees of freedom.

2.4.4 State Squared Error

Different optimization algorithms will produce different estimates of the global mini-
mum xopt over time. Evaluating these algorithms requires us to be able to determine
which estimates are better than others.

The χ2 error gives us a means to compare different estimates, and it is a good
measure in that it is the quantity that the optimization algorithms are explicitly
attempting to minimize. However, from a practical perspective, we wish to know how
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similar the maps are to the optimal map: the χ2 error tells only about the errors of
the constraints, not the positions of the nodes.

As Fig. 2-3 illustrates, χ2 error is not necessarily a good indicator of map quality.
In this figure, a map with a χ2 error of 3.6 is of much lower quality than a map with
a χ2 error of 33.2.

Ground Truth
χ2 = 3.6

SSExy = 42.3
SSEθ = 0.075

χ2 = 33.2
SSExy = 0.44
SSEθ = 0.023

Figure 2-3: State Squared Error Example. χ2 error is not always a good indicator of map quality.
From a practical perspective, the right map is superior to the middle map, despite the fact that the
middle map has one-tenth the χ2 error. The SSE metrics, in contrast, clearly identify the map on
the right as being better than the middle map.

The χ2 error is not necessarily a good measure of map quality because different
map distortions affect the χ2 error to different degrees. In particular, the non-linear
nature of the mapping problem results in local minima and long valleys in which the
χ2 error is both small and slowly changing. It is thus possible to have a small χ2

error and yet have a map that is very different from the maximum likelihood map.
As we will see in Chapter 4, this is one of the reasons that many map optimization
algorithms either get stuck or converge very slowly. The opposite is also true: it is
possible to have a high χ2 error and be very close to the maximum likelihood map.

When xopt is known, we can compute the distance of the current graph configu-
ration x from the optimal value xopt. The metric ||x − xopt||2 is not a good choice,
however, since it intermixes components of the state vector having different units
(positions in meters and rotations in radians). Instead, we compute two different
metrics so that positions and rotations are considered separately. In both cases, we
use the mean squared error, but to avoid confusion with the χ2 error (which is the
squared error of the constraints), we will call these metrics the “state squared error”,
reflecting that they are the squared error of the state variables.

We define SSExy to be the mean squared error of the (x, y) positions of each node
in the pose graph relative to xopt, and SSEθ to be the mean squared error of the θ
positions of each node in the pose graph.

Implementing this error metric presents a minor wrinkle, however: in most map
building applications, the position of the map has no global “anchor”: translating
and rotating the whole map has no effect on errors of node-to-node constraints, but
has an obvious effect on the (x, y, θ) coordinates of those nodes. In other words,
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projecting the whole map x by a rigid-body transform will not affect the χ2 error but
it will affect the SSE metrics as defined above.

Consequently, it is desirable to modify our definitions of the SSE metrics so that
they are invariant to rigid-body transformations of the whole map. To do this, we
introduce another rigid-body transformation T that we will apply to the map before
computing the mean squared error of x with respect to xopt. We will pick T to be the
rigid-body transformation that minimizes SSExy. Minimizing SSExy has a tendency
to minimize SSEθ, but does not do so exactly. We have chosen to minimize SSExy

rather than SSEθ since all landmarks have a position, whereas some types of point
features do not have an orientation.

The transform T can be computed in time proportional to the number of nodes
using an algorithm developed by Horn [28]. Let a be the set of points corresponding
to the positions of nodes in our current state estimate, and b be the positions of those
points in the maximum-likelihood (or ground truth, if available) configuration. We
write the position of the ith point of a as (ai

x, a
i
y). Let ax be the average x coordinate

of the points in set a. We can compute the rigid-body transformation T in terms of
intermediate variables M and N :

M =
∑

i

(ai
x − ax)(b

i
y − by)− (ai

y − ay)(b
i
x − bx) (2.20)

N =
∑

i

(ai
x − ax)(b

i
x − bx) + (ai

y − ay)(b
i
y − by) (2.21)

The parameters of the rigid-body transform T , which optimally projects points b
to align with a (minimizing the sum of squared distances between ai and Tbi), are
then given as:

Tθ = arctan2(M, N) (2.22)

Tx = bx − ax cos(Tθ) + ay sin(Tθ) (2.23)

Ty = by − ax sin(Tθ)− ay cos(Tθ) (2.24)

The SSE error metrics are complementary to χ2 error. Map optimization is defined
in terms of minimizing the χ2 error, and so it remains an important consideration.
However, different optimization algorithms will take different paths through the state
space as they minimize the χ2 error: the SSE measures give us insight into how
rapidly these paths lead to xopt, independently of the χ2 error of those paths.
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Chapter 3

Loop Closing

3.1 Introduction

Place recognition is a central problem in many robot applications. Whether a robot
is delivering a package or guiding a tour, being able to recognize a location is critical.
With a place recognition system, a robot could be trained to identify rooms or even
particular areas inside rooms (e.g., the robot’s recharging station).

In mapping applications, place recognition is especially important. Without the
ability to recognize previously-visited places, the position uncertainty of a robot in-
creases without bound due to the ceaseless accumulation of dead-reckoning error.
Place recognitions serve as constraints on the motion of the robot, allowing a correc-
tion of its dead-reckoning error. In the mapping context, place recognition is called
“loop closing”: if the robot drives in a loop and back to its starting position (and
recognizes it), the robot “closes” the loop. The quality and accuracy of the map is a
function of the quantity and quality of the loop closures.

Figure 3-1: Three laser scans from the CSAIL dataset. Some environments present rich alignment
cues (left: an elevator lobby). Incorrect matches arise from both spartan areas (middle: a corridor)
and from repetitive/cluttered areas (right: office cubicles).

Loop closing is difficult for several reasons. Algorithms must be robust to modest
changes in the environment caused by things like moving chairs or humans. Sensing
limitations play a critical role. The data produced by laser scanners, for example,
is metrically accurate (see Fig. 3-1), but it is often difficult to distinguish one room
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from another: indoor environments tend to be composed of sets of straight walls and
corners whose appearances are similar.

Camera-based systems, like those using the SIFT feature detector [38], provide a
richer description of the environment (able to distinguish different posters on a wall,
for example), but are still susceptible to ambiguity. Different offices, for example,
may contain the same type of chair, and different outdoor environments contain the
same types of street signs. The length of these feature vectors has a major impact
on both total memory usage and the time required to index and search for similar
features. Consequently, it is desirable to use shorter descriptors (such as PCA-SIFT
[32]). Reducing the descriptor size generally increases the error-rate of matching:
matching algorithms that are robust to higher error rates are thus very desirable.

Some authors have proposed using globally unique beacons, such as RFID tags [33],
wireless networking base stations [25], or specialized sensor networks [54]. The re-
sulting descriptors are concise and globally unique, but require the deployment of
beacons and are not broadly applicable to all robotics applications.

In outdoor settings, GPS can provide a positional cue, however the accuracy of
GPS (especially in consumer-grade devices) is insufficient for many applications. For
example: while GPS can usually tell a car what road it is on, it can’t reliably indicate
which lane it is in. For many applications, greater accuracy is needed. This additional
accuracy can be achieved by recognizing places: each recognition allows the map to
be refined.

In a map-building context, place recognition is known as “loop closing”, reflecting
the common case in which a robot travels around a large loop and returns to its
original position (thus “closing” the loop). However, any place recognition adds an
edge to the pose graph, creating a new cycle— the robot does not need to physically
travel in a circle in order for a loop closure to occur.

Loop closing has been approached in a variety of ways. The discovery of topo-
logical loop closures has been performed with odometry alone using hidden Markov
models [61]. Folkesson [17] uses negative information to validate loop closure hypothe-
ses, while Kuipers uses bootstrap learning to identify places [35]. Bosse validated his
loop closures using a loop-consistency test [5].

In robotic mapping applications, place recognition has generally been cast in terms
of explicitly associating landmarks with previously observed landmarks. This process
is called “data association”. Data association on one (or just a few) features at a
time is highly susceptible to errors, and data-association errors can cause catastrophic
divergence of the map.

In an attempt to decrease their error rate, data association algorithms typically
perform association on groups of observations at once. In analogy, it is easier to rec-
ognize astronomical constellations than single stars. Given the mean and covariance
of a set of tracked landmarks, the probability of a set of observations matching that
set can be computed. However, as the number of landmarks grows, the number of
possible assignments grows exponentially. Many authors have proposed solutions to
this problem, providing reasonably efficient search heuristics that often perform well
[46, 2]. Error rates can also be addressed by revisiting data associations previously
made [26].
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Even if the number of landmarks is kept small enough to ensure good performance,
such methods still require that the position estimates and covariances of landmarks
be maintained. This is a major imposition for robots that do not otherwise care
about landmarks and would not otherwise maintain their covariance. It is also an
imposition for mapping robots that use an optimization method in which landmark
covariance data is not readily available, such as FastSLAM [44], information-form
filters [70, 13, 76], non-linear optimization methods (Gauss-Seidel relaxation [12],
Multi-Level Relaxation [20]), and the methods described in Chapters 3 and 4 and its
derivatives [24, 23].

In this chapter, we describe an approach that attempts to close loops by per-
forming a number of simple pose-to-pose matches. Given a number of naive matches
(“hypotheses”), our goal is to identify those that are correct. A set of these hypothe-
ses has an interesting property: the correct hypotheses all agree with each other
(since there is only one true configuration), whereas the the incorrect hypotheses
tend to be incorrect in different ways (and thus do not agree with each other). Our
algorithm exploits this property by computing the subset of hypotheses that is most
self-consistent. In comparison to the exponential cost of performing data association
amongst N features, the cost of our approach is O(N2) in the number of hypotheses.
Our approach is similar to CCDA [2], except that our notion of consistency is not
limited to discrete boolean quantities.

Our approach does not require landmarks to be tracked, and thus does not require
covariance information about the landmarks or a data association algorithm. All that
is required is the ability to compute possible rigid-body transformations between two
sensor scans. Our approach can be viewed as a outlier-rejection step, extending
previous pose-to-pose methods [41].

A major advantage of our proposed method is that it computes the “second-best”
set of mutually-consistent hypotheses as well. When using RANSAC [15] or Joint
Compatibility Branch and Bound (JCBB) [46], the second-best solution is generally
a trivial variation on the best solution: it is thus not very informative. In contrast, the
second-best solution reported by our new approach is orthogonal to the best solution–
i.e., represents a substantially different interpretation of the data. Our method allows
the quality of these two solutions to be quantitatively compared, allowing ambiguous
solutions to be safely discarded. (If the data can be equally well explained in two
different ways, it is not safe to trust either explanation.) In these ambiguous cases,
our method will occasionally reject hypotheses that are correct. Rejecting correct
hypotheses has an impact on the quality of the final map (since some information is
lost), but it does not result in the sort of rapid divergence that accepting an incorrect
hypothesis can cause.

This chapter presents our algorithm and results using both camera-derived fea-
tures and laser-derived features, illustrating the flexibility of the method.
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3.2 Method Overview

Our loop-closing algorithm operates in several stages. We first generate a number of
hypotheses. Given two robot positions (at different points in time), we can estimate
the probability that those two positions are close enough together for them to have
observed the same environmental features. If so, we attempt to generate a hypotheses
relating the position of those poses. The particular hypothesis-generation algorithm
varies according to the types of sensors being used: cameras and lidars, for example,
produce very different types of data that require different matching algorithms.

We group the resulting hypotheses into “hypothesis sets”. Our task is to identify
those hypotheses that are correct. By considering pairs of these hypotheses at a time,
we will identify which hypotheses are pairwise-compatible. Using an algorithm based
on the spectral properties of the pair-wise compatibility matrix, we can identify the
set of hypotheses that are most compatible with each other.

3.3 Hypothesis Generation

3.3.1 Determining when poses overlap

The first step in identifying loop closure hypotheses is to identify those poses that
might contain overlapping sensor readings. Given a pose a, we wish to find all other
poses in the graph whose sensor readings might overlap those from pose a. This
could be determined from the posterior distribution (Eqn. 1.1) by marginalizing out
pose a and any landmarks. Instead, we describe a conservative approximation that
is much easier to compute. In particular, our method does not require knowledge of
the posterior pose and landmark covariances.

Dijkstra Projection

We estimate the relative positional uncertainty between nodes a and b by searching for
the minimum-uncertainty path through the pose/feature graph that connects them.
This path can be found by using variant of Dijkstra’s Algorithm [55]:

In order to compare the uncertainty of two paths, we use the determinant of the
paths’ covariance matrices. Geometrically, the determinant can be interpreted as the
area of the covariance ellipse, and is thus proportional to the area of the region in
which pose b is likely to be found given the position of pose a. Larger search areas
generally result in more computational effort. Consequently, picking the path with
the smaller determinant generally minimizes the amount of computation needed to
find pose b.

The Dijkstra Projection is conservative in the sense that it will overestimate the
uncertainty. For example, if a pose graph contains multiple independent paths be-
tween nodes a and b, the uncertainty of their relative positions will be less than that
computed by the Dijkstra projection. Overestimating the uncertainty will result in
larger search areas and thus greater computational effort when searching for loop
closures.
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Algorithm 1 Dijkstra Projection from node a

Initialize a set of paths P = {}
for all edges e leaving node a do

P = P ∪ e
end for
visited(a) = true
while some nodes unvisited do

find p, the minimum-uncertainty path in P
if !visited(destination(p)) then

optimal-path(b) = p
visited(b) = true
for all edges e leaving node b do

P = P ∪ compose-transforms(p, e)
end for

end if
end while

However, even if the exact covariance could be easily computed, the search areas
are often artificially enlarged in order to ensure that loop closures can be found
whenever possible. Over-confident sensor-noise characterizations, for example, cause
the “exact” covariance to be too small, and can result in missed loop closures. If
loop closures are consistently missed, the quality of the map will suffer. In short, the
conservatism of the Dijkstra algorithm does not typically cause any problems.

Sensor range

In addition to the relative positions (and uncertainties) of two nodes, we must know
the sensor range in order to determine whether two sensor scans might overlap: large
sensor ranges make it more likely that nodes will have overlapping fields of view. In
indoor environments, the effective sensor range varies dramatically depending on the
environment: a robot may only be able to sense a few meters when inside an office,
but may be able to sense tens of meters outdoors.

We model the sensor range at a particular node a as a circle with center ca (whose
coordinates are expressed in terms of a) and radius ra. We compute ca as the centroid
of the landmarks observed, with ra being the average distance of the landmarks to the
centroid. In order to test whether sensor observations at node b might overlap with
those at node a, we similarly compute a circle for node b with center cb and radius
rb, but project cb into the same coordinate system as ca using the Dijkstra projection
between poses a and b. Let Σab the uncertainty of the transformation from a to b as

33



Chapter 3. Loop Closing

given by the Dijkstra projection. We can write the Mahalanobis distance as:

d = (cb − ca) (3.1)

s = max(0, ||d|| − ra − rb)
d

||d|| (3.2)

mahl = sT Σ−1
ab s (3.3)

In the equations above, d is the Euclidean vector between the circle centers, and s is
the separation vector between their sensor ranges (the vector d reduced in magnitude
by the sum of the sensor ranges). If the resulting Mahalanobis distance is less than 3,
it is reasonably likely that the two nodes have overlapping sensor data. In aggregate,
our approach for computing the pair-wise “compatibility” is similar to the metric
used by GraphSLAM [72], with the improvement that we explicitly consider sensor
range. Our use of these pair-wise compatibilities differs, however.

3.3.2 Searching for a match

Given a prior on the relative position between a and b (as computed by the Dijkstra
projection), and sensor observations from pose a and b, the task is now to compute a
rigid-body transformation that is likely to correctly align a and b. The techniques for
doing this are sensor-dependent; we have implemented both a vision-based method
and a laser-based method. These are described in more detail in Appendix A, but
are summarized here.

Vision-derived Local Landmark Matching

Our vision data sets were collected during the 2007 DARPA Grand Challenge National
Qualifying Event by Team MIT’s vehicle, Talos [37]. Our vision data sets use SIFT
features extracted from an array of calibrated cameras providing a nearly 360 degree
field-of-view. Note that these cameras were essentially monocular: their fields of view
did not significantly overlap.

In addition to cameras, Talos had a high-end inertial measurement unit (IMU)/GPS
system giving it very good positioning capabilities. In our experiments, we evaluate
the performance of our algorithm on both the high-quality IMU data as well as arti-
ficially degraded data that is representative of a more typical vehicle.

SIFT features are extracted from each camera frame and are matched against a
set of active “tracks”. A track is comprised of a SIFT feature descriptor and a list
of the observations of that feature (the position of the car and the bearing to the
feature).

Periodically, the measurements for each track are examined to see if the position
of the SIFT feature can be determined. Since each observation of a feature consists
of only a bearing to the feature, the feature must be observed from several different
positions in order to compute its position. Each bearing to the feature corresponds
to a ray: when the rays from different observations intersect, we can estimate of the
location of the feature. Once the feature is localized, the track is reset so that the
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Figure 3-2: Overhead view of vision dataset area. The car made three counter-clockwise loops,
with each loop approximately 610m in length.

feature can be independently localized again and again. The result of this process
is a sequence of independent rigid-body transformations relating the vehicle to the
feature.

At this point, we have a list of SIFT landmark observations (rigid-body con-
straints) for every node in the graph. In order to find the rigid-body transformation
between two nodes, we compute the matches between the SIFT landmarks of the two
nodes. These SIFT correspondences are computed based on the SIFT descriptors.
Given two sets of matching SIFT features, we compute a rigid-body transformation
that best aligns those landmarks. We can score each rigid-body transformation by
counting the total number of landmarks from node b that are projected near their
counterpart in node a; using this metric, we find the best rigid-body transform using
RANSAC [15].

The rigid-body transform output by RANSAC is a hypothesis relating nodes a
and b. The quality of this hypothesis is strongly dependent on the reliability of
matching SIFT features based on their descriptors. When the whole 128-dimensional
SIFT descriptor is used, these SIFT matches are often correct, leading to good rigid-
body transformations. As the descriptors are reduced in size, however, the transforms
become increasingly unreliable.

Another source of error results from correct but undesirable SIFT matches. For
example, portions of the car are visible in some cameras: these produce SIFT ob-
servations that move with the car. While these obvious parts of the car could be
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Figure 3-3: Sample SIFT detections. Cyan circles indicate SIFT features. Note how the other car,
the shadow cast by our own car, and portions of our own car (black regions on left and top) cause
undesirable SIFT detections.

masked out, other related effects are difficult to mask. For example, as the car drives
around, it casts a shadow on the ground. This shadow generates many SIFT detec-
tions. Other moving cars can also cause undesirable SIFT matches. Since many of
these sources of error are unavoidable, we did not attempt to mask any of them—
instead, we let our proposed method detect and correct the resulting errors.

Laser Matching

We have processed a number of datasets with laser scanner data, including several
common mapping benchmarks. These datasets were collected indoors using a sin-
gle scanner with a 180-degree field-of-view. The complexity of these datasets varies
significantly in terms of the noise of the range measurements, the rate at which ob-
servations are made, and the complexity and size of the environment.

Line features are extracted from individual point scans. Two correspondences
between node a and b (two lines from each pose) are used to compute a rigid-body
transformation. This rigid-body transformation is then scored by spatially correlating
the points from b with a rasterized version of the points from a. The rigid-body
transformation yielding the highest correlation is then subjected to a brute-force
refinement step, in which the rigid-body transformation is numerically optimized.

The result is a rigid-body transformation T that causes the points from scan b
to “line up” with the points from scan a. If the Mahalanobis distance of T is less
than a threshold (typically 3) from the prior derived from the Dijkstra projection, T
is output as a hypothesis.
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In indoor environments (where there is often repeated structure), the probability
of an incorrect match increases with the uncertainty of the prior. Failures can occur
when the line correspondences are incorrect but happen to lead to a good correlation.

3.4 Hypothesis Sets

A single hypothesis by itself is impossible to validate. However, if two hypotheses
are considered jointly, it is possible to test them against each other, even if those two
hypotheses relate different pairs of nodes.

3.4.1 Pairwise Consistency

Given two hypotheses, we can construct a closed loop comprised of two hypotheses
plus two additional rigid-body transformations obtained from Dijkstra projections
(see Fig. 3-4).

Figure 3-4: Hypothesis Set Loop. A hypothesis set contains a number of hypotheses (top). Given a
pair h0 and h1 of them (bottom), a loop can be formed by adding a pair of Dijkstra links. The rigid-
body transformation around this loop is compared to the identity transform. If either hypothesis is
incorrect, it is unlikely that the resulting transformation will be close to the identity transform.

Naturally, the rigid-body transformation around any closed loop should be the
identity matrix. Due to measurement errors (even for “good” hypotheses), it isn’t
ever quite the identity matrix, but this uncertainty is captured by the uncertainties
associated with the hypotheses. Thus we can compute the rigid-body transformation
around the loop (including its net covariance), and compute the probability that the
resulting rigid-body transformation is actually the identity matrix. This probability
is the pair-wise consistency of the two hypotheses. If both hypotheses are correct, it
is likely that the probability will be large. However, if either hypothesis is wrong, the
rigid-body transformation of the loop will not be the identity matrix; this results in
a low probability.
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3.4.2 Finding the optimal subset

Given a set of N hypotheses, we compute the pair-wise consistency for each pair,
yielding an N × N “consistency” matrix A. We now wish to find the subset of
hypotheses that is maximally self-consistent. In other words, we wish to find a subset
of hypotheses whose pair-wise consistency is, on average, the greatest.

A hypothesis set can be viewed as a graph, with each hypothesis represented as
a node. The (weighted) adjacency matrix of this graph is the pair-wise consistency
matrix A.

Our solution is based on our previous work, an algorithm called “Single Cluster
Graph Partitioning” (SCGP) [51, 49, 4]. SCGP is a graph partitioning method that
attempts to find a single cluster of well-connected nodes, rejecting other nodes.
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Figure 3-5: SCGP versus Normalized Cuts. Given a set of (x, y) points, each representing a
hypothesis (top left), the goal is to identify the subset of hypotheses that forms the maximally self-
consistent cluster. The adjacency matrix is plotted such that the desired points have small indices:
their higher-than-average pair-wise consistency is clearly visible (top right). Our method, SCGP,
produces the desired segmentation (lower right). Normalized-Cuts, also based on spectral clustering,
uses a different clustering metric which results in a poor solutions on this type of problem.

Previous spectral clustering methods like Normalized-Cuts attempt to divide the
graph into two parts such that clusters have both high intra-cluster consistency and
low inter-cluster consistency. This metric does not work well on hypothesis filtering
problems since incorrect hypotheses do not generally form a coherent cluster.
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Consider a toy hypothesis filtering problem in which samples from a Gaussian
distribution are mixed with uniform noise (see Fig. 3-5). Each point represents a
hypothesis of the center of the Gaussian distribution: pair-wise consistency of hy-
potheses is simply a function of distance. As the figure illustrates, algorithms like
Normalized-Cuts do not produce the desired output.

Let v be an N ×1 indicator vector such that vi = 1 if the ith hypothesis should be
accepted, and vi = 0 otherwise. The sum of the compatibilities between the accepted
hypotheses is vT Av, and the number of accepted hypotheses is vT v. Thus, the average
pair-wise consistency λ(v) for a subset of hypotheses v is simply:

λ(v) =
vT Av

vT v
(3.4)

As an intuition-building exercise, suppose we have a set of accepted hypotheses
v0, and we want to decide whether to add another hypothesis to it. Adding a new
hypothesis will add N pair-wise consistencies (of differing weights) to the numerator,
but will also increase the denominator by 1. If adding those pair-wise consistencies
increases the average amount of pair-wise consistency per node, then we should add
that hypothesis. Note that our actual algorithm, unlike this exercise, does not greedily
select hypotheses one by one.

Now, our task is to find an indicator vector v that maximizes λ(v). Unfortunately,
this problem has an exponentially-large search space. In the tradition of spectral
graph-cutting methods like MinMaxCuts [11] and NormalizedCuts [62], we relax v to
allow continuous values. We will find an optimal answer for continuous-valued v, and
then later discretize v back into a proper indicator vector.

With v now a continuous-valued vector, we can look for extrema of λ(v) by dif-
ferentiating λ(v) with respect to v and setting the result to zero:

dλ(v)

dv
=

AvvT v − vT Avv

(vT v)2 =
Av − λ(v)v

vT v
= 0 (3.5)

Note that we have exploited the fact that A is symmetric. Rearranging terms, we
get:

Av = λ(v)v (3.6)

By inspection, we see that the value of v that maximizes λ(v) is the dominant
eigenvector of A (and λ(v) will be the dominant eigenvalue).

We note that the densest subgraph can be found in polynomial time by performing
a number of max-flow computations on the hypothesis graph [21]. Our spectral
approach is faster and (perhaps more importantly) leads to a confidence metric, as
described below.
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3.4.3 The Eigenvectors of the Consistency Matrix

As we have shown, the dominant eigenvector of the consistency matrix A yields the
optimal continuous-valued indicator vector v. The second-most dominant eigenvector
of A, however, is also useful.

Recall that A is symmetric and that the eigenvectors of a symmetric matrix are
orthogonal [67]. Intuitively, this means that the hypothesis sets described by the first
and second eigenvalues represent different explanations of the data. Thus, the ratio
of the first and second eigenvalues conveys the relative confidence of the solution.

In algorithms like JCBB or RANSAC, it is also possible to keep track of the second-
best answer, but the second-best answer is almost invariably a trivial variation on the
best answer. SCGP’s ability to evaluate the next-best orthogonal solution is unique,
and extremely useful.

The first two dominant eigenvectors e1 and e2 of a symmetric matrix A can be
efficiently computed using the Power Method as follows:

Algorithm 2 Power Method for extracting the two dominant Eigenvectors and Eigen-
values of a symmetric matrix A. A total of K power iterations are performed, with
K = 5 being a reasonable value.

for i = 1; i <= 2; i = i + 1 do
ei = a random N × 1 positive vector, ||ei|| = 1
for iters = 0; iters < K; iters = iters + 1 do

for j = 1; j < i; j = j + 1 do
α = ej · ei

ei = ei − αej

end for
ei = ei/||ei||
ei = Aei

λi = ||ei||
end for
ei = ei/||ei||

end for

This algorithm performs five iterations of the power method per eigenvector, which
is adequate in virtually all cases. (When the eigenvalues are closely spaced and
convergence is slow, the confidence test based on the ratio of the eigenvalues would
reject the eigenvectors anyway.) The inner loop in j removes any component of earlier
eigenvectors from the current eigenvector.

We reject the whole hypothesis set when the confidence ratio λ1/λ2 is less than a
threshold; we use a threshold of 2.

3.4.4 Discretization of the Indicator Vector

In an earlier step, we allowed v, an indicator vector nominally consisting of only zeros
and ones, to take on arbitrary continuous values. We now need to discretize v back
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into an indicator vector. We will denote the new discretized version of v as w. Given
a threshold t, we write w as:

wi(t) =

{
1 if vi ≥ t
0 otherwise

(3.7)

There are at least two reasonable ways of selecting t: picking t such that it max-
imizes the dot product ŵ · v, or so that it maximizes Eqn. 3.4. Both work well,
often producing the same answers. In our experiments, we have used the dot-product
method.

The dot-product method can be implemented in O(N log(N)) time. First, note
that there are at most N different w vectors, since there are at most N distinct values
in v. If the values of v are sorted, the dot product w(t) · v for increasing values of
t can be incrementally computed in O(1) time. Thus the total time complexity is
O(N + N log(N)) = O(N log(N)).

We note that the discrete indicator vector w is not necessarily the globally optimal
indicator vector. Instead, it is a discretized version of the optimal continuous indicator
vector. While v is an approximation, its performance is very good.

Once the discrete-valued indicator vector has been computed, we add the hypothe-
ses with vi = 1 to the graph, discarding the others. (We assume that low-confidence
hypothesis sets, as measured by λ1/λ2, have already been discarded.) Adding edges
to the graph allows an improved posterior to be computed; the computation of this
posterior is the subject of Chapters 4 and 5.

3.4.5 Improving Hypothesis Set Construction

The computation of the pair-wise consistencies incorporates information about ex-
isting edges in the graph, since these edges are used to compute the Dijkstra Links
shown in Fig. 3-4. As a reminder, the rigid-body transformations of the two hy-
potheses and the Dijkstra links are composed together, with the resulting rigid-body
transformation compared to the identity matrix. However, these Dijkstra links are not
known with certainty, and errors in those links can distort the resulting probability
calculations.

In general, the error (and uncertainty) between two poses is related to the length
of the trajectory between them: longer trajectories allow for greater accumulation of
error. With this in mind, we can construct hypothesis sets so that the Dijkstra links
will be derived from relatively short trajectory segments.

Each hypothesis relates a pair of nodes, which we denote as (a, b). Our strategy
is to restrict hypothesis sets to contain hypotheses of the form (a + ki, b + kj) where
each k is a relatively small number (|k| ≤ kmax ). Given two hypotheses (a+k1, b+k2)
and (a + k3, b + k4), we can construct a loop using two Dijkstra links, (a + k1, a + k3)
and (b+ k2, b+ k4). This strategy keeps the Dijkstra links short (at most 2kmax poses
long), allowing us to limit the amount of error they introduce.

The value of parameter kmax is based on the local-navigation accuracy of the robot.
In our systems, we set kmax to 8 poses, which typically translates to about 8 m of
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trajectory for our indoor robots, or about 16 m of trajectory for our full-sized car.
Larger values of kmax increase the number of opportunities to generate hypotheses for
any given hypothesis set: this is important since we require a set to have a minimum
number of hypotheses before it is processed (we used a minimum size of 4 in our
experiments).

Large values of kmax can lead to inaccurate Dijkstra links. In general, this causes
pair-wise consistency values to be smaller than ideal, not larger. (It is more likely
that an error will result in a bad loop than a good loop.) Our method is robust
to these types of errors: the algorithm continues to identify sets of hypotheses that
are correct, but there is an increase in the number of falsely rejected hypotheses. In
general, the performance of our method is good over a broad range of kmax values.

3.4.6 Analysis of Robustness to Outliers

At the heart of the SCGP is the pairwise consistency test which is used to construct
the adjacency matrix. The behavior of the pairwise test can have a profound effect on
the success or failure of the algorithm. SCGP can be applied to a large class of outlier
rejection problems [51]; in the current context, correct hypotheses can be viewed as
inliers, while incorrect hypotheses are outliers.

The most often encountered failure mode of SCGP is that SCGP selects most
or all of graph, rather than just the subset of inliers. This happens when there are
many outliers and those outliers have fairly high consistency with each other. In this
section, we show how much outlier consistency SCGP can tolerate while still returning
the correct answer.

Consider a scenario in which there are Nt true hypotheses and Nf false hypotheses.
Assume that the pairwise consistency test reliably assigns edge weights of Ct to pairs
of true hypotheses, and Cf to all other pairs. We assume that 0 ≤ Cf < Ct. The
adjacency matrix (with inliers indexed first) has the following structure:

A =

[
Ct Cf

Cf Cf

]
(3.8)

By inspection, we see that an adjacency matrix of the form described above is
rank 2, and has two non-zero eigenvalues. One non-trivial eigenvector corresponds
to the subset of true hypotheses, while the other corresponds to the set consisting of
the entire graph. The two non-zero eigenvalues are easily shown to be:

λ(vt) =
CtN

2
t

Nt

(3.9)

λ(vt + uf ) =
CtN

2
t + CfN

2
f + 2CfNtNf

Nt + Nf

(3.10)

We want SCGP to identify the set of true hypotheses, rather than the whole graph.
This will happen so long as λ(vt) > λ(vt + uf ). With some algebra, we see that this
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constraint is satisfied when:
Ct

Cf

>
Nf

Nt

+ 2 (3.11)

In other words, the ratio Ct/Cf determines how many outliers can be tolerated.
Thus, a good consistency metric should try to make Cf as close to zero as possible, in
order to maximize Ct/Cf . In the case of loop closure hypothesis filtering, Cf decreases
exponentially as the rigid-body transformation of the loop deviates from the identity
matrix. This helps ensure that the ratio Ct/Cf is large, allowing our algorithm to
operate correctly even when the number of outliers greatly exceeds the number of
inliers.

A different consideration for the pairwise consistency test is the “weight” of a
hypothesis with itself. If we change the self-consistency of hypotheses, it is equivalent
to adding a multiple of the identity matrix to the adjacency matrix.

(A + αI)u = λ(v)u

Au = (λ(v) + α) u (3.12)

We see immediately that the eigenvectors (and thus the SCGP solution) are un-
affected. However, α shifts the eigenvalues, which can affect the convergence speed
of Power Method-style algorithms for estimating the eigenvectors. Such a shift will
also affect the confidence value λ1/λ2. Both the confidence threshold and the self-
consistency value are under the control of the user, however, so they can be chosen
in a compatible manner.

3.5 Results

We evaluated our loop-closing method on both vision-based and laser-based datasets.
Our vision data set is a 1.9km trajectory comprised of three complete loops in an
outdoor urban environment. Our lidar-based data sets include standard map building
benchmark datasets, as well as several new real and synthetic datasets.

Loop closure algorithms are difficult to evaluate quantitatively: there are no stan-
dardized datasets for this purpose. The benchmark datasets that we have processed
are composed of raw sensor data, but because sensor processing methods vary be-
tween researchers, the resulting sets of hypotheses are not the same. Naturally, the
quality and reliability of the sensor processing (and hypothesis-generating) systems
has huge impact on the difficulty of the loop-closing problem.

We address this problem in two ways. First, we evaluate the performance of our
system repeatedly on the same dataset, with the quality of hypotheses purposefully
degraded to varying degrees. This allows us to determine the point (if any) at which
our algorithm can no longer produce useful output. Second, our hypothesis datasets
have been made available so that other researchers can perform a direct comparison
to our method.
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3.5.1 “Area C” Dataset

During the DARPA Urban Challenge, “Area C” was a testing area in which the ability
of autonomous cars to queue at intersections (waiting for other cars) was tested. Team
MIT’s vehicle logged a great deal of sensor data, including vision data, during its test.
This logged data now serves as a vision-based mapping test1

Figure 3-6: Area C dead-reckoning performance. Left: the dead-reckoning estimate, output by the
high-end IMU, has an SSE of 1.02 versus the GPS-augmented ground truth. To simulate a more
typical vehicle, additional noise was added (right): the initial configuration has an SSE of 487.

As described in Appendix A, we used SIFT features to initialize local landmarks.
These local landmarks were then associated with each other in order to compute a
rigid-body transformation relating two poses. This rigid-body transformation served
as a hypothesis.

SIFT descriptors are 128-dimensional vectors. At their full size, they provide a
fairly robust means of matching landmarks. However, hundreds of SIFT features can
be detected in a single camera frame, making the storage of these descriptors prob-
lematic. Data structures to perform matching on these features also becomes more
complicated. Other authors [32, 64] have described ways of reducing the dimensional-
ity of SIFT descriptors, but the risk is that the discriminative power of the descriptor
might be reduced. When designing new descriptors, it is important to know how
much discriminative capability the descriptors must have in order to be able to close
loops.

We answer this question by reducing the dimensionality of SIFT vectors in a simple
way; this causes an increase in the hypothesis error rate. We then measure the ability
of our approach to identify correct loop closures and reject incorrect hypotheses.

We reduce the dimensionality of SIFT vectors by dividing the descriptor into
equally sized blocks and summing the elements in each block to form a shorter de-
scriptor. While simplistic, our purpose is not to explore how to optimally reduce the

1The method described here was not used by MIT during the DARPA Urban Challenge itself;
the data here has been post-processed.
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dimensionality of SIFT descriptors, but to explore what happens when descriptors
become ambiguous. Our technique is a simple and easily repeatable means of doing
this.

In Fig. 3-7, two sets of SIFT features observed at different times (but near the same
place) are shown. The two sets of features are matched based on descriptor’s nearest-
neighbors; these correspondences are shown as lines. The RANSAC method described
in Appendix A is used to identify a set of “good” correspondences from which a
hypothesis is generated. As the descriptor is decimated, the matching performance
drops as expected, producing increasingly poor hypotheses.

Figure 3-7: Matching decimated SIFT features. The SIFT features from two different visits to
the same place are shown: dots correspond to features detected from the correspondingly-colored
vehicle. Thick green lines indicate RANSAC-accepted correspondences, thin gray lines are rejected
matches. As the size of the SIFT descriptor is reduced in size, the error rate increases. Our proposed
loop closing method can effectively handle the increased error rate.

Significantly, our algorithm is able to identify correct hypotheses even when gen-
erated hypotheses are of very low quality (due to severe SIFT feature decimation).
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In fact, our algorithm is still able to identify correct hypotheses even when those
hypotheses are the result of scalar-valued SIFT descriptors.

As expected, our algorithm rejects a large fraction of the hypotheses when the
SIFT descriptor is small (see Fig. 3-8); the acceptance rate rapidly increases with
increasing SIFT descriptor size. Most importantly, the posterior maps that result
from the filtered hypotheses are of high-quality (see Fig. 3-9).

The posterior map resulting from our vision-based approach, based on degraded
odometry, was better (SSE=0.87) than the map resulting from the map derived from
the expensive IMU alone (SSE=1.02). If we combine the high-quality IMU data with
our vision method, the SSE drops to 0.07— even if using SIFT descriptors of size 3.

SIFT feature extraction and tracking were implemented using relatively slow
methods and ran at about 10% of real time. Other authors have described ways
of accelerating these steps [63]. Loop closing and the algorithms described in this
chapter, in contrast, took between 7-9 s (depending on the size of the SIFT feature
descriptors)— about 62 times faster than real-time.

3.5.2 CSAIL Dataset

We collected the CSAIL dataset in the Computer Science and Artificial Intelligence
Laboratory’s 7th floor (see Fig. 3-10). Its relatively short length coupled with a
significant amount of clutter and fairly long loops make it an interesting test case.
Like all of the datasets that follow, its primary sensor is a 180-degree field-of-view
laser scanner. The robot trajectory was estimated via incremental scan matching,
and loop closure hypotheses generated using a combination of local feature matching
and scan matching refinement. The particulars of these methods are described in
greater detail in Appendix A.

We will use this dataset to examine an actual hypothesis set in detail. The hy-
pothesis set occurred in the area shown by Fig. 3-11. This hypothesis set contained
46 hypotheses, 34 of which were accepted as correct. Six representative samples of
both inliers and outliers are shown in Fig. 3-12. The outliers (on top) are subtly
misaligned; in contrast, the inliers (bottom) are well-aligned.

The pair-wise consistency matrix of those 46 hypotheses is shown as a graph in
Fig. 3-13. In this figure, each node represents a hypothesis (e.g., one of the panels from
Fig. 3-12): the length of a line represents the consistency between two hypotheses,
with shorter lines indicating greater consistency. The cluster of inliers is readily
discernible on inspection, and indeed, SCGP identifies it automatically.

A total of 5.3 s of CPU time was required to automatically generate loop-closure
hypotheses and filter them using the mechanisms in this chapter. The graph had 201
poses, and a total of 1057 hypotheses were generated. Of these, 710 were accepted.
(184 were rejected because they were members of hypothesis sets that had fewer
than four hypotheses; 63 were rejected because they were members of a hypothesis
set whose first two eigenvalues were too similar; and 100 were explicitly classified as
outliers.)
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Figure 3-8: Area C Robustness. Shorter SIFT descriptors present greater perceptual ambiguity,
and are more likely to produce incorrect matches. However, our method produces good maps in
each case, and most surprisingly, can do almost as well with 3-dimensional vectors as with 128-
dimensional vectors. The downward blip at x = 12 (bottom) was due to an usually large number
of ambiguous hypothesis sets, in which the ratio of the first to second eigenvalues was less than the
threshold of 2.0.
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Figure 3-9: Area C Pose Graphs versus Descriptor Length. The pose/feature graph for the Area C
dataset using 128-dimensional descriptors, 8-dimensional descriptors, and 1-dimensional descriptors.
As the size of the descriptor goes down, ambiguity increases, resulting in fewer loop closures (red
lines).

Figure 3-10: CSAIL Dataset Overview. Left: the pose graph is shown, with the trajectory in blue
and loop closures in red. Right: the same pose graph, shown from above.

3.5.3 Killian Court Dataset

The Killian Court dataset, first collected and processed by Bosse [5], is challenging
due to several long loops (see Fig. 3-15). Significant amounts of error can accumu-
late while the robot is traversing a long loop, which makes closing the loop harder.
Another interesting characteristic of the Killian dataset is that it was recorded with
a laser scanner with relatively high noise. This sensor noise makes it more difficult to
recognize areas based on fine details. As a result, the hypothesis generator produced
a greater number of incorrect hypotheses. The dataset also suffers from particularly
poor wheel-derived odometry, as seen in Fig. 3-15.

As a partial compensation for this greater noise, loop closing was performed on
larger sets of laser scans; i.e., instead of matching a single pose to another single pose,
a small group of poses was matched at a time. This provided greater context for the
hypothesis generator and reduced the rate of false positives.

In total, the Killian dataset consists of 1462 poses. These generated 6091 hypothe-
ses, of which 4142 were accepted. 1187 were rejected because they were members of
small hypothesis sets, 342 were rejected due to ambiguous eigenvalues, and 420 were
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Figure 3-11: CSAIL loop closure close-up. Before loop-closing (left), laser scans show significant
discrepancies. After recognition (right), not only are the discrepancies resolved, but the topological
relationships are discovered.

classified as outliers. A total of 82 s of CPU time was required to generate and filter
the hypotheses. The dataset corresponds to 2 hours and 9 minutes of robot driving.

3.5.4 Stanford Gates Building

Like many of the other datasets, the Stanford Gates dataset (a standard benchmark)
was recorded with a single 180-degree field-of-view lidar. The dataset is reasonably
large, and contains several often-visited areas. These result in a large number of loop
closures.

The Stanford dataset consists of 679 poses, which generated 7549 hypotheses. Of
these, 6398 were accepted, with 470 rejected because their hypothesis set was too
small, 253 rejected due to poor eigenvalue confidence, and 428 classified as outliers.
Processing time was 64 s; the dataset represents 34.5 minutes of data.

3.5.5 Intel Research Center

The Intel Research Center is a common benchmark dataset characterized by a large
number of loop closures. The robot travels several times around the entire lab space,
and visits each room. Of the datasets we processed, this dataset has the most loop
closures.

The Intel dataset consists of 875 poses, spanning 44.9 minutes of robot driving.
A whopping 15611 loop closure hypotheses were generated, and 12900 were accepted.
Of those rejected, 758 were members of small sets, 715 were members of sets that
failed the confidence test, and 1238 were classified as outliers. Total processing time
was 180 s.

3.6 Summary

Recognizing places is a critical capability for many robot systems. Loop closing is a
form of place recognition that is central to the task of map building: it prevents the
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Outliers

Inliers

Figure 3-12: Filtered loop-closure hypotheses. Twelve representative hypotheses from a hypothesis
set of size 45 are displayed. The outliers (top) and inliers (bottom) were automatically labelled using
Single-Cluster Graph Partitioning. The alignment errors (derived from the posterior) are shown as
gray lines: these errors are apparent in the outlier set.
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Figure 3-13: Adjacency graph for a set of 45 hypotheses. Each node represents a pose-to-pose
hypothesis: the inlier set is indicated by yellow nodes (towards the bottom), with outliers in blue.
Brightly-colored edges indicate greater pair-wise compatibility. The distance between two nodes is
roughly proportional to the joint probability of the two hypotheses.

unbounded growth of dead-reckoning error. However, it is a difficult task due to both
perceptual ambiguities and the large potential number of data associations.

In this chapter, we described an automatic loop closure system that can process a
set of unreliable loop closure hypotheses and produce a set of correct hypotheses. It
exploits the property that correct hypotheses generally agree with each other, whereas
incorrect hypotheses tend to disagree with each other. The set of correct hypotheses
is identified by examining the dominant eigenvectors of the pair-wise consistency
matrix.

A critical capability of our method is the ability to determine the confidence of
the solution. The second-best solution is not trivial variation on the best solution (as
is the case in other algorithms), but is an orthogonal explanation of the data. The
ratio of the eigenvalues of these two solutions serves as a useful confidence metric.

The method is also very fast, running much faster than real-time on all of the
datasets we examined. It is also adaptable to a variety of sensing modalities: we
demonstrated the system using local vision-based landmarks and laser-based scan
matching.

The robustness of the system was demonstrated by decimating SIFT features.
Originally 128-dimensional vectors, these were purposefully degraded to 1-dimensional
scalars. Even though SIFT matching performance was severely affected, our system
was able to identify correct loop closure hypotheses. The resulting loop closures
allowed better posterior maps to be computed.
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Figure 3-14: Killian Satellite Overlay. The long loops provide few opportunities for loop closing,
leading to small distortions near the bottom of the figure. Macroscopically, however, the map aligns
well with the satellite imagery.

Figure 3-15: Killian Odometry and Pose Graph. Top: the raw wheel odometry (plotted on a 50 m
grid). Bottom: The pose graph shows the relatively few areas in which loop closures are possible.
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Figure 3-16: Stanford Gates Building. Left: the pose graph resulting from our algorithm. Right:
the optimized map, viewed from above.

Figure 3-17: Intel research center. Left: the pose graph resulting from our algorithm. Top right:
the uncorrected map. Bottom right: the optimized map, viewed from above.
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Chapter 4

Batch Optimization of Pose Graphs

In this chapter, we describe our approach to optimizing pose graphs like those con-
structed in Chapter 3. The nodes of a pose graph represent particular places in the
environment: these nodes can represent physical things (such as landmarks that have
been sensed by the robot) or can represent the current or previous position of the
robot. The edges of a pose graph relate the positions of two nodes and describe a
cost as a function of the deviation from their preferred configuration. Pose graph
optimization is the task of computing positions for each node such that the edges
have minimum cost.

This optimization problem is critically important: the lowest-cost solution repre-
sents the best (maximum likelihood) map of the world. Whether a robot is avoiding
obstacles, planning routes to some goal, or is explicitly trying to map an environment,
the robot is dependent upon the fast and reliable optimization of the pose graph.

However, pose graph optimization is difficult for three central reasons:

• The state space is large. The size of the state vector is proportional to the
number of nodes in the graph; a problem with thousands of state elements is
small.

• The constraints are non-linear. As a result, the cost surface contains optimiza-
tion hazards like local minima and valleys.

• The initial estimate is often poor. Most robots have meager dead-reckoning
accuracy— as a result, the initial configuration of the pose graph can be far
away from the best configuration.

This chapter describes a new optimization method that is both fast and robust. It
can rapidly find the best configuration of nodes, and is robust to optimization hazards
that trap existing methods. Our method also has low memory requirements and is
relatively easy to implement.

Our method adapts Stochastic Gradient Descent (SGD) [56], commonly used in
training artificial neural networks, to the problem of pose graph optimization. SGD
has not previously been applied to map optimization, but has been used for localiza-
tion [53].
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We use a novel state-space representation, solving for the global-relative motions
between poses, rather than solving for the absolute positions of the nodes. This
representation allows faster reductions of error at each iteration, while a specialized
data structure allows each iteration to be computed very quickly.

We demonstrate that our approach is not only very fast (competitive with or faster
than other state-of-the-art methods), but is also significantly more robust: it finds
correct solutions in cases that other methods get stuck in local minima.

4.1 Prior Work

4.1.1 Recursive Linear Solutions

If the constraints of a pose graph are approximated as linear and the noise is assumed
to be Gaussian, pose graph optimization can be performed recursively using the
Extended Kalman Filter (EKF) [65] or its dual, the Extended Information filter [58]1.
In these approaches, constraints are incorporated into the optimization one at a time.
If the constraints are exactly linear, the resulting solution is optimal [43].

The Kalman filter maintains the covariance Σ and mean µ of the posterior dis-
tribution, while the Information filter maintains the information matrix Σ−1 and the
information vector η. The information matrix and covariance are simply the inverses
of each other, while the information vector is η = Σ−1µ.

These two representations provide an interesting trade-off in terms of the com-
putational complexity of incorporating new information versus the computational
complexity of extracting the posterior mean and covariance.

Kalman Filter Information Filter

Incorporate Constraint O(N2) O(1)
Recover posterior mean/covariance O(1) O(N2)

A large fraction of mapping applications, however, need to perform both oper-
ations. Even batch applications, in which the maximum likelihood solution is only
needed at the very end, often need to recover the mean and covariance matrix at
intermediate steps in order to perform data association. In other words, in order to
compute the constraints from raw sensor data, the mean and covariance are often
required. As such, in their naive forms, neither the Kalman filter nor Information
filter is clearly superior.

However, the information matrix has a key property that has motivated a signif-
icant amount of research: sparsity. Whereas the covariance matrix rapidly becomes
filled with significant non-zero values, the information matrix does not. The infor-
mation matrix can be interpreted as the adjacency graph of a graphical model: its
elements are non-zero only when variables are conditionally dependent (connected
by an edge). If no variables have been marginalized out, the information matrix is

1As opposed to the Kalman filter and the Information filter, the extended versions provide for
non-linear constraints.
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naturally sparse [13, 14]. This is because the observation range of a robot is limited,
and thus a robot can observe only a small fraction of the environment from any given
pose. A sparse information matrix can be stored in less memory than a covariance
matrix (which is almost always dense), and the sparsity allows much faster recovery
of the posterior mean and covariance.

In feature-based mapping methods, past robot positions are typically marginalized
out. This marginalization creates new edges in the graphical model and makes the
information matrix dense. However, the new edges tend to have small weights [18].
Thrun et al. described a method called Sparse Extended Information Filters (SEIF)
in which these small weights are truncated. The result is a sparse approximation of
the information matrix [69, 70, 71].

However, truncating elements of the information matrix can lead to over con-
fidence [74]. An alternative method called Exactly Sparse Extended Information
Filters (ESEIF) [75, 76] reimposes sparsity in a conservative manner by periodically
relocalizing the robot. These relocalizations sever the conditional dependence on new
robot positions from old positions. The resulting information matrix is truly sparse
(hence “Exactly Sparse”), but the posterior does not exactly match that of the full
information matrix: information about the previous position of the robot is discarded
whenever the robot is relocalized.

Unfortunately, all recursive formulations suffer from linearization error. When a
non-linear constraint is processed, it is linearized around the current state estimate—
the non-linear aspects of the constraint are discarded. If the state estimate is of
poor quality (i.e., far from the truth) when a constraint is linearized, the resulting
linearization error is injected into the solution. Worse, the resulting uncertainty
estimate is ignorant of this extra error. As a result, the uncertainty estimates are too
low.

Some of the impact of this linearization error can be ameliorated by using the
Unscented Kalman Filter (UKF). The Unscented Kalman Filter allows a more accu-
rate projection of the covariance matrix after each constraint update by employing a
small particle filter. Each particle is updated according to the non-linear form of the
constraint; the covariance computed from these particles can be more accurate than
the projection of the covariance based on only the first derivatives of the constraint.

The Iterated Kalman Filter [3] addresses linearization error in a different way.
When a constraint is incorporated, that constraint might result in a large change in
the state estimate. Since the constraint presumably brings the state estimate closer
to the truth than it was before, it would be preferable to linearize around the new
state estimate, rather than the previous state estimate. The Iterated Kalman filter
allows this: the linearization point for each constraint is iteratively updated so that
each constraint is linearized around a state estimate that reflects the contributions of
that constraint. However, as new constraints continue to arrive and change the state
estimate, older constraints are not relinearized.
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4.1.2 Graphical Models

When a graphical model has a tree structure, the posterior distribution can be com-
puted quite quickly [30]. Unfortunately, the graphical models corresponding to pose
graphs are cyclic in virtually all interesting cases. Paskin’s Thin Junction Tree Fil-
ters (TJTF) [52] and Frese’s TreeMap [19] impose a tree structure on the graphical
model by pruning edges. An advantage of this approach over SEIFs and ESEIFs
(which similarly sacrifice edges in the graphical model for computational efficiency)
is that constraints can be relinearized whenever inference is performed. Since edges
are removed from the model, these methods compute an approximation of the correct
posterior. These approximations can result in noticeable map artifacts.

4.1.3 Particle Filtering

Particle filters approximate the posterior distribution using a set of discrete sam-
ples. The best known method is Montemerlo’s FastSLAM [44]. FastSLAM particles
are samples of just the robot trajectory: Montemerlo showed that the position of
landmarks can be trivially recovered once the trajectory is known. (Landmarks are
conditionally independent given the robot trajectory, since landmarks can only be
observed from the robot trajectory).

The primary challenge inherent in particle filtering is accurately approximating the
posterior: this can require large numbers of samples, especially when the uncertainty
is large. Maintaining sufficient sample density and diversity has been an ongoing
challenge [66, 22].

A unique advantage of particle filter methods is that data association is simpli-
fied: since each particle represents a trajectory, and the position of landmarks are
independent given a trajectory, data association can be performed using a simple
nearest-neighbor rule. Each particle can represent a different set of data association
decisions.

4.1.4 Nonlinear Optimization

A growing family of iterative optimization methods can also be used to compute map
posteriors. These approaches operate on the whole pose graph, and do not require
any information to be discarded. Further, at each iteration, they can relinearize the
constraints.

A brute-force nonlinear least squares implementation was suggested by Lu and
Milios [41]. Their approach is similar in formulation to more modern approaches,
but is generally too slow. Gradient Descent and Conjugate Gradient Descent [34, 72]
have also been applied to map building.

Duckett et al. described an optimization method [12] using Gauss-Seidel relax-
ation. The basic approach is to repeatedly solve for the position of one node at a
time, fixing the position of all the other nodes. They assumed absolute knowledge
of the robot’s orientation, essentially making the problem linear. Fortunately, their
approach can be extended in a straight-forward manner to account for unknown ro-
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tation, and the resulting algorithm is quite good at fine-tuning a state estimate that
is already close to the global minimum. Unfortunately, when the state estimate is far
from the minimum, convergence can be impractically slow. Frese, Larsson, and Duck-
ett attempted to improve convergence speed with the Multi-Level Relaxation (MLR)
algorithm [20]. Folkesson’s Graphical SLAM method [16] is also based on Gauss-
Seidel relaxation: it is accelerated by explicitly grouping nodes into “star nodes”,
rather than automatically partitioning them as in MLR. Star nodes effectively reduce
the size of the state space, accelerating convergence.

Konolige proposes a method [34] for accelerating convergence by reducing the
graph to poses that have a loop constraint attached, solving for the other nodes
separately. This can save considerable CPU time, but requires the graph to have low
connectivity. This optimization is broadly applicable to most mapping algorithms.

Dellaert’s
√

SAM method [10] performs a sparse Cholesky decomposition on the
sparse information matrix. The factorization is greatly accelerated by selecting a good
variable reordering (which is equivalent to picking an order to marginalize features
in the corresponding graphical model). A key insight is that explicitly marginalizing
out variables can only increase memory usage and decreases the effectiveness of the
on-demand variable reordering algorithm. The method is generally one of the fastest
methods available for full nonlinear optimization. Its performance, however, is very
sensitive to the structure of the information matrix and the fill-in of the resulting
Cholesky factors.

All non-linear optimization methods run the risk of getting stuck in local minima.
Unfortunately, this risk is not hypothetical for map-building problems: non-linear ap-
proaches are susceptible to producing substantially different results depending on the
initial conditions, as previously shown [24] and further demonstrated in this chapter.

The linearizations of recursive formulations like the EKF and EIF guarantee a
quadratic and convex optimization surface with an easy-to-find minimum, but the
resulting answer may not be a good solution to the actual problem. Nonlinear opti-
mization methods generally offer better solutions, even if they do “get stuck”. This
chapter describes non-linear optimization methods based on earlier work [48, 50].

4.1.5 Hybrids

Bosse’s Atlas [5] uses linearized (EKF-based) submaps but stitches them together us-
ing nonlinear optimization. During this stitching operation, the submaps are treated
as rigid. The resulting “stitched” map generally has small errors where submaps do
not align exactly. The decoupling of large maps into smaller maps, however, requires
less computation.

4.1.6 State Space

Most map building algorithms use an obvious state space representation in which
the state variables corresponds to the positions of the nodes. However, this is not
the only possibility. Previous authors have used local submaps whose coordinate
system is defined by features in that submap [36], while others have used state space
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representations in which the relative position of nodes is used. This chapter will
introduce a new representation that encodes the motions of the robot as it moves
from pose to pose.

4.2 Overview and Intuition

Our approach is motivated by a simple intuition. Consider a pose graph constructed
by a robot as it travels around a large loop. The trajectory of the robot is periodically
sampled, with each sample point represented by a pose (a “node”) and connected to
its predecessor by an estimate of the robot’s motion (an “edge”). Note that every
edge has an uncertainty associated with it, so it is possible to compute its χ2 error.

Suppose the robot returns to its starting place and recognizes it; this adds an ad-
ditional edge between the first and last pose, creating a cycle (see Fig. 4-1). This edge
is commonly called a “loop closure”, since it closes a large loop of nodes. Recognizing
these loop closures was the subject of Chapter 3.

Figure 4-1: Map Optimization Intuition. The χ2 error of a graph with a poorly-satisfied constraint
(left, red arrow) can be reduced by distributing small adjustments around the nodes in the loop
(right).

The χ2 cost of any constraint grows as the square of its residual; a net reduction
in cost can be obtained by reducing the error of the high-error constraint at the
expense of adding a small amount of error to other constraints. We can do exactly
this, adding small motions to each of the constraints so that the final loop closure is
more closely satisfied. All of the constraints now have some error, but the χ2 error
has been reduced.

Konolige [34] pointed out that this simple problem can be solved “exactly” (up
to linearization error) in O(N) time by linearizing the constraints and recursively
dissecting the loop and optimizing each half using a trivial EKF. (We note that this
method is not immune to linearization error; in fact, this linearization error can cause
divergence when large errors are present.)

In general, pose graphs do not consist of a single loop, but rather a complex web
of interconnected constraints. Konolige’s method, which simultaneously optimizes N
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constraints, cannot be extended to this case, because the recursive dissection relies
on the nodes having only two neighbors.

However, each constraint can be viewed as part of a loop in which the constraint
forms a loop relative to the current state estimate. The error of the constraint can
be reduced by adjusting the position of elements of the state vector between the
beginning and end of the loop, just as in Fig. 4-1.

Unfortunately, it is generally impossible to satisfy all the constraints at the same
time. How do we know which constraints to satisfy at the expense of other con-
straints? Determining this is equivalent to performing a least-squares iteration, and
is a slow operation. Instead, our method iteratively finds an equilibrium in which
the conflicting updates of antagonistic constraints are in balance. This equilibrium
corresponds to our desired solution.

4.3 Method

In this section, we derive our method. The first step is to introduce a novel state space
representation that accurately encodes the cumulative nature of robot motion: the
position of a robot at time t is the integral of its motions over times [0, t]. This state
space representation is a key contribution, and is a critical factor in the algorithm’s
performance.

Second, we derive an iterative update to the state vector using a single constraint.
This update is based on stochastic gradient descent. It is simple, fast to compute, and
highly effective at reducing both the χ2 error and SSE of the graph. These traits make
the algorithm competitive with (and often superior to) other state-of-the-art methods.
However, our iterative update is particularly good at escaping local minima, giving
our algorithm an ability to find good solutions when other algorithms get stuck.

Finally, we describe a data structure that reduces the computational cost of each
update from O(N) to O(log N), where N represents the number of poses in the graph.

In this work, we assume that all constraints between poses are full-rank rigid-
body transformations. Rank-deficient constraints can, in principle, be treated as
well; however, we do not examine this case. (We note that rank-deficient constraints,
such as the bearing-only constraints arising from vision data, can often be combined
to form full-rank constraints; this is precisely the technique we use on our vision based
dataset.) We also limit ourselves to 2D, though our methods also apply in principle
to 3D.

4.3.1 Incremental State Representation

The choice of state representation has a large impact on the performance of our op-
timization algorithm. Picking a state space in which the state variables echo the
structure of the underlying random process results in significant performance im-
provements.

Consider a pose graph consisting of a single robot trajectory sampled at particular
times. The conventional state space is the global absolute (xglobal) state space— i.e.,
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a list of (x, y, θ) positions for each node. However, the position of a robot at time
t is the integral of all of its motions from time 0 through time t. The underlying
random processes of the robot trajectory are the motions between each pose, not the
positions.

Using the xglobal state space tends to obscure this underlying structure. Suppose a
and b are two poses from a robot trajectory and that their positions are constrained
by a rigid-body transformation. In the xglobal state space representation, the gradient
of this constraint is zero everywhere except for nodes a and b. In other words, while
the constraint gives information about the motion of the robot between a and b,
this information is not reflected in the position of other nodes, whose positions are a
function of this motion.

Virtually all contemporary algorithms incorporate the effects of all the constraints
at each update step, which avoids this problem. By including all the constraints (most
obviously the odometric constraints), their solutions reflect the underlying structure
of the problem. This comes at a cost: it takes more time to incorporate the effects of
all the constraints.

However, it is possible to use a state space that more directly reflects the structure
of the problem. This allows good state updates without having to consider the effects
of all the constraints at every iteration.
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Figure 4-2: State Space Representations. The commonly used state space xglobal, the rigid-body
transformation state space xrel, and our proposed “global incremental” state space xincr.

One way of “capturing” the cumulative nature of robot motion is to represent the
robot trajectory as a series of rigid body transformations. In this case, the position
of the trajectory node i in the trajectory is the composition of all the rigid-body
transformations T0 ⊕ T1 ⊕ ... ⊕ Ti−1, and the state space is a list of the rigid-body
transformations. We call this the “relative” (xrel) state space (see Fig. 4-2).

This state space, while accurately modeling the motion of the robot, is not stable.
In a well-behaved optimization problem, a change to the state vector should have a
commensurate effect on the cost function: small steps should lead to small changes in
cost, for example. This is not the case when using a relative state space representation.
A tiny change to a rotational component in one part of the graph can have a very
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large projective effect on another (distant) part of the graph. This can cause enormous
increases in the χ2 error of other constraints. Because these projective effects are not
well-modeled due to linearization error, a state change that is predicted to reduce the
χ2 error might actually increase it.

Instead, we propose a state space representation that approximates the cumulative
motion of the robot like xrel, but eliminates the projective effects of the relative
representation. We call it the “global incremental” state space representation, xincr :
the state vector contains the difference between the successive global positions. In
the absence of rotations (θi = 0), it is identical to the relative state space. With this
state space representation, there are no projective effects (the position of a node is
a simple sum of global motions, not the composition of rigid-body transformations),
and so updates are more stable.

4.3.2 Iterative optimization

Our approach is a hybrid of nonlinear least squares and stochastic gradient descent;
we begin by reviewing the “vanilla” versions of these algorithms.

Nonlinear Least Squares

Recall from Chapter 2 that the χ2 error for a graph, evaluated at a distance d from
the current state estimate, can be written in terms of the Jacobians of the constraints
J , the residuals r, and the block-diagonal information matrix Σ−1 of the constraints:

χ2 = (Jd− r)T Σ−1(Jd− r) (4.1)

We can compute the d that minimizes the χ2 error by differentiating with respect
to d and setting the result to zero:

∂χ2

∂d
= 2JT

i Σ−1
i Jd− 2JiΣ

−1
i ri = 0

(JT Σ−1J)d = JT Σ−1r (4.2)

Note that Eqn. 4.2 is of the form Ax = b, with A = JT Σ−1J (the information
matrix) and b = JT Σ−1r. This equation can be solved for d via a number of methods
such as inversion of A, LU decomposition, or Cholesky decomposition.

Algorithm 3 NonlinearLeastSquares
repeat

compute J and r at the current state estimate.
d = (JT Σ−1J)−1JT Σ−1r
x = x + d

until ||d|| < ε

Nonlinear-least squares computes state updates by simultaneously considering the
interaction of all the constraints. Often, only a few iterations are required for a very

63



Chapter 4. Batch Optimization of Pose Graphs

good solution. Unfortunately, Alg. 3 can be impractically slow.

Stochastic Gradient Descent

In Stochastic Gradient Descent (SGD), a constraint is selected and a gradient de-
scent step is taken to reduce the error of that constraint. However, a graph generally
contains antagonistic constraints, whose steps tend to conflict. Stochastic Gradient
Descent suggests a solution: introduce a learning rate λ that modulates the step
size, and reduce λ over time. Provided that a few technical conditions (described be-
low) are satisfied, the resulting method will find an equilibrium between antagonistic
constraints. This equilibrium indicates that a minimum has been found.

Naturally, we expect that single iteration of stochastic gradient descent will not
reduce the χ2 error as much as an iteration of non-linear least squares. The promise
of SGD is that each iteration is so easy to compute that the minimum will be found
faster, despite requiring more iterations.

The learning rate must satisfy two conditions in order to guarantee convergence [6];
the first ensures that the algorithm can enough “energy” to explore the whole state
space, while the second ensures that the gradients eventually vanish when the solution
approaches the optimal value:

∑
λt = ∞ (4.3)

∑
λ2

t < ∞ (4.4)

We use Robbins’ original suggestion [56], of a harmonically-decreasing learning
rate (i.e., λt = 1/t), which satisfies these properties. Other authors have explored
more complex (and adaptive) learning rates [7], but our experiments with these meth-
ods did not consistently improve performance over a simple harmonic progression.

Consider the χ2 error of a single constraint i, evaluated at the current state esti-
mate plus d (see Chapter 2 for more details):

χ2
i = (Jid− ri)

T Σ−1(Jid− ri) (4.5)

The gradient is:

∂χ2
i

∂d
= 2JT

i Σ−1
i Jd− 2JT

i Σ−1
i ri (4.6)

Evaluated at the current state estimate, where d = 0, gives just:

∂χ2
i

∂d
= −2JT

i Σ−1
i ri (4.7)

At time step t, let the learning rate λ be 1/t. The gradient descent step moves in
the opposite direction of the gradient, and can be written as:

d = λ2JT
i Σ−1

i ri (4.8)
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Algorithm 4 Stochastic Gradient Descent Algorithm

λ = 1/3
while not converged do

select a constraint i at random
compute Ji and ri at the current state estimate.
d = 2λJT

i Σ−1
i ri

x = x + d
λ = λ/(λ + 1)

end while

At each iteration, Stochastic Gradient Descent (see Alg. 4) reduces the error of a
single constraint (often unintentionally increasing the error of other constraints). In
early iterations, it will take large steps in order to reduce the residual, which causes
the state estimate to jump around the state space. This behavior allows SGD to
escape local minima. Intuitively, while many constraints may be satisfied at a local
minimum, there are generally one or more constraints that remain poorly satisfied.
These ill-satisfied constraints will cause a comparatively large jump away from that
local minimum. Conversely, near the global minimum, constraints tend to be better
satisfied: this means smaller jumps. In short, ill-satisfied constraints cause the state
estimate to jump around, but the state estimate tends to “stick” near the global
minimum once it is found.

The ability to rapidly explore the state space not only allows SGD to escape local
minima, but is conducive to rapid reductions in the χ2 error. This is a valuable
feature to the application of map optimization, where the initial state estimate can
be very poor. The disadvantage, however, is that this exploration never ends. Even
if the global minimum has been found, SGD continues to jump around (though the
jumps shrink over time due to the deceasing learning rate). In other words, while
convergence is very fast at the beginning, it is ill-suited towards “fine tuning” the
solution. As we will illustrate, while the effect is real, the practical consequences are
often negligible.

SGD is sensitive to the scaling of the Σ−1
i matrices: this scale proportionately

affects the size of the step d. Two optimization problems that differ only by the
scaling of their Σ−1

i matrices are equivalent, yet Eqn. 4.7 will yield different steps
for them. We can eliminate this sensitivity by normalizing the set of Σ−1

i matrices
according to the largest example.

Our Hybrid Method

Our method combines features of nonlinear least squares and stochastic gradient
descent. We also incorporate additional domain-specific knowledge to prevent the
state updates from making harmfully large steps.

First, note that the nonlinear least squares step (Eqn. 4.2) can be written in terms
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of contributions from each individual constraint:

d = (JT Σ−1J)−1JT Σ−1r (4.9)

=
∑

i

di (4.10)

=
∑

i

(JT Σ−1J)−1JT
i Σ−1

i ri (4.11)

The di’s computed by nonlinear least squares and stochastic gradient descent are
quite similar. The difference is essentially scaling: nonlinear least squares rescales
and reshapes the step according to the inverse of the information matrix. Intuitively,
this scaling accomplishes two things: it determines the relative importance of each
constraint, and it determines how error should be distributed around a loop. (Since
some nodes are more uncertain than others, a larger decrease of χ2 error can be
obtained by distributing more error to less-confident nodes.)

Nonlinear Least Squares Stochastic Gradient Descent

di = (JT Σ−1J)−1JT
i Σ−1

i ri di = 2λJT
i Σ−1

i ri

Our hybrid solution approximates this scaling by finding an M−1 ≈ (JT Σ−1J)−1.
We use a relatively low-fidelity approximation, computing M as the block-diagonal
of JT Σ−1J . This approximation is easy to compute and does a reasonably good
job of adjusting how error is distributed around a loop (i.e., it estimates the relative
confidence of each node), but it is nearly useless as a means of estimating the absolute
importance of each constraint. In other words, the shape of M is useful, but the scale
is not. To negate the effect of M ’s scale, we constrain di so that it has the same
magnitude as JT

i Σ−1
i ri. In summary, we can compare the three update formulas:

Nonlinear Least Squares Stochastic Gradient Descent Hybrid

di = (JT Σ−1J)−1JT
i Σ−1

i ri di = 2λJT
i Σ−1

i ri di = λM−1JT
i Σ−1

i ri

As mentioned earlier, the scale of Σ−1
i has an impact on the step size. This effect is

removed by scaling the steps by largest Σ−1
i in the graph.

Our algorithm, like stochastic gradient descent, takes steps whose size are propor-
tional to the errors of the constraints. In map optimization, however, we can often
compute a maximum permissible step size. Stepping farther than this maximum
would only start increasing the error again, and thus should be avoided. Conse-
quently, we clamp d such that it will not overshoot the constraint’s minimum. This
improves both the performance and stability of the algorithm.

4.3.3 Rigid-Body Constraints

We now illustrate how to apply the optimization method to a rigid-body constraint.
Suppose we have a rigid-body constraint T connecting poses a and b. In xglobal
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coordinates, the observation equations for the rigid-body constraint are:

xT = cos(θA)(xB − xA) + sin(θA)(yB − yA)

yT = − sin(θA)(xB − xA) + cos(θA)(yB − yA)

θT = θB − θA (4.12)

Let us write the incremental motions between consecutive x coordinates as ẋ,
such that ẋi = xi − xi−1. We do the same with ẏ and θ̇ such that we can write
xincr = [ẋ1 ẏ1 θ̇1 ẋ2 ẏ2 θ̇2 ...]T . We can now write Eqns. 4.12 in terms of the xincr state
variables.

xT = cos

(
a∑
0

θ̇i

)
b∑

a+1

ẋi + sin

(
a∑
0

θ̇i

)
b∑

a+1

ẏi

yT = − sin

(
a∑
0

θ̇i

)
b∑

a+1

ẋi + cos

(
a∑
0

θ̇i

)
b∑

a+1

ẏi

θT =
b∑

a+1

θ̇i (4.13)

The Jacobian of the rigid-body transformation T with respect to the state variables
xincr is:

∂[xT yT θT ]

∂[ẋi ẏi θ̇i]
=








0 0 −(xb − xa) sin(θA) + (yb − ya) cos(θa)
0 0 −(xb − xa) cos(θA)− (yb − ya) sin(θa)
0 0 0


 0 ≤ i ≤ a




cos(θa) sin(θa) 0
− sin(θa) cos(θa) 0

0 0 1


 a < i ≤ b




0 0 0
0 0 0
0 0 0


 otherwise

(4.14)

Given some thought, the block of Jacobians corresponding to 0 ≤ i ≤ a is some-
what odd. Intuitively, this Jacobian suggests that a translational error in the relative
positions of a and b can be reduced by rotating the nodes [0, a−1]. This is an artifact
of our state representation, which (purposefully) does not model the projective effect
of robot motion. If we consider the projective nature of the robot trajectory, we know
that rotating a node 0 ≤ i < a does not affect the relative positions of nodes a and
b: such a rotation will have the same projective effect on both nodes, leaving their
relative positions unchanged. If we instead computed the Jacobian of the constraint
between a and b in the xrel state space (a more accurate, if less stable representation),
we would find that the Jacobian for nodes [0, a − 1] is exactly zero. In other words,
over the interval 0 ≤ i ≤ a, the Jacobian is usually better approximated by zero than
by Eqn. 4.14.
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In summary, the Jacobian that we use is:

∂[xT yT θT ]

∂[ẋi ẏi θ̇i]
≈








cos(θa) sin(θa) 0
− sin(θa) cos(θa) 0

0 0 1


 a < i ≤ b




0 0 0
0 0 0
0 0 0


 otherwise

(4.15)

In order to compute a step, we also need to compute the block-diagonal approxi-
mation M of the information matrix JT Σ−1J . Since each constraint is independent,
Σ−1 is a block-diagonal matrix composed of the individual Σ−1

i matrices. Thus, we
can build up our approximation for M by considering each constraint one at a time:

JT Σ−1J =
∑

i

JT
i Σ−1

i Ji (4.16)

Let Ri be the repeated block of the Jacobian Ji for a ≤ i ≤ b, i.e.:

Ri =




cos(θa) sin(θa) 0
− sin(θa) cos(θa) 0

0 0 1


 (4.17)

From the repeated-block structure of Ji it is easy to see that the block diagonals
will be RT

i Σ−1
i Ri for blocks a < i ≤ b, and zero elsewhere. M can be computed

by adding up these blocks for each constraint, discarding all but the values on the
diagonal.

4.3.4 The Error-Distributing Tree

In the previous sections, we showed how the state update d can be computed for
a constraint. This computation requires the Jacobian of the constraint, which we
derived for the ubiquitous case of a rigid-body constraint. A simple implementation
could compute d literally and add it to the state vector x. For a graph with N nodes,
this would result in a runtime cost of O(N) per constraint.

However, the Jacobian for a rigid-body constraint has an interesting structure: it
is constant over the interval a < i ≤ b, and zero elsewhere. This means that the error
is distributed uniformly over the nodes in the loop, subject to the reshaping effect
of M . This section describes a specialized data structure for the state that allows
updates (including the effects of M) to be performed in O(log N) time.

D-Trees

This data structure makes extensive use of a simpler novel data structure we call
a distribution tree, or dtree. A dtree conceptually maintains an array of values vi

(0 ≤ i < N) and supports two operations: compute the value at a particular index
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i, and increase all values at indices ≥ i by some amount. These operations could be
implemented using a trivial array in O(N), but the dtree we describe here is O(log N).

1 2
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5
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9 10

11
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Figure 4-3: Distribution Tree. A dtree (a binomial tree) stores an array of data, allowing an
amount to be added to any contiguous portion of the array in O(log N) time. The value of an array
element i is the sum of the node values along the path from node i to the root. The indices of each
node are shown.

A dtree is a binomial tree: it has 2k−1 nodes (such that 2k ≥ N) and height k.
We give each node an index such that the parent node of node i is i&(i − 1) (see
Fig. 4-3). Each node also maintains a value, ni. We then define the value of vi to be
the sum of the node values nj along the path from the root to node i. The value vi

is computed in at most O(log N) time, as seen in Alg. 4.3.4.

Algorithm 5 dtree-get(i)

value = 0
loop

value = value + ni

if i = 0 then
return value

end if
i = i&(i− 1)

end loop

Adding an amount δ to all nodes [i, N − 1] is possible by adding δ to a set of
nodes such that every path from the root to node j ≥ i goes through exactly one
adjusted node. There is only one such set, which can be found by starting at node
i and repeatedly traveling to the right sibling, or to the right sibling of the parent if
there is no right sibling.

For example, adding δ to all nodes ≥ 3 can be accomplished by adjusting nodes n3,
n4, n8, n16, etc. For any given node j, the next node in the sequence is j + j&(j− 1).
This process guarantees that the right-most k bits of the node index are zero after k
steps, thus there can be at most O(log N) steps (see Alg. 4.3.4).
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Algorithm 6 dtree-add(i, δ)

while i < MAX do
n[i] = n[i] + δ
if i = 0 then

return
end if
i = i + (i⊕ (i− 1))

end while

We now note that we can add a δ to any contiguous subset of nodes [a, b] by simply
performing two updates: one which adds δ to each element after a and another which
subtracts δ from each element after b + 1. The operation remains O(log N).

Error Distribution Tree

The error distribution tree will allow a value ∆ to be distributed over a set of buckets
δi for i ∈ [a, b] in proportion to the “weights” wi of those buckets. In our map
optimization application, we are distributing error around a loop in proportion to the
positional uncertainty of each node2.

We define the cumulative weight Ci of a node to be Ci =
∑i

j=0 wj, which allows
us to write δi as:

δi = δi +





0 i ≤ a
∆ ∗ Ci−Ca

Cb−Ca
a < i < b

∆ i ≥ b

(4.18)

A simple dtree could easily implement the steps for i ≤ a and i ≥ b, since the
quantities are constant over their ranges of indices. The interval from a < i ≤ b is
more difficult, since it is a function of Ci, which is different for every element in the
interval.

Let us implement Eqn. 4.18 in terms of two dtrees, offset and scale such that:

δi = offset(i) + scale(i) ∗ Ci (4.19)

We can now rewrite Eqn. 4.18 so that each update is of the form K1 + K2 ∗ Ci,
such that K1 and K2 are constant over their intervals:

δi = δi +





0 + 0 ∗ Ci i ≤ a
−∆ ∗ Ca

Cb−Ca
+ ∆ 1

Cb−Ca
∗ Ci a < i < b

∆ + 0 ∗ Ci i ≥ b

(4.20)

We are now done; we can implement Eqn. 4.20 by updating the offset dtree
according to K1 and updating the scale dtree according to K2. These operations
require a constant number of dtree-add operations, each of which is O(log N). When

2Each error-distribution supports scalar operations. Since each node in the graph has three
degrees of freedom, we will use three separate trees in order to be able to distribute error over x, y,
and θ.
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Figure 4-4: Initial Learning Rate effect on χ2. The initial learning rate has an impact on the
convergence rate of the algorithm, as illustrated here by the χ2 value after 20 iterations. Very low
initial learning rates (less than about 0.1) incur a severe penalty, but the effect of larger learning
rates is fairly modest. Left: CSW data set, middle: Freiburg, right: Intel research center.

reading from the error-distribution tree, we must read from both the offset and scale
dtrees, multiplying the latter value by Ci as in Eqn. 4.19. Our total computational
cost for each of these operations is O(log N).

By using this data structure, we must pay O(log N) to compute the position of
any pose (i.e., to compute Eqn. 4.19). However, a constraint connects only two nodes,
and so requires only two lookups.

The total computational cost of processing a constraint is thus O(log N), a signif-
icant improvement over the naive O(N) implementation.

4.3.5 Initial Learning Rate

A free parameter of the algorithm is the initial, maximum learning rate. Learning
rates that are too large result in large steps that often clamp. If two antagonistic
constraints clamp in an iteration, little progress is made towards finding an equilib-
rium between them, since the constraint processed last will override the constraint
processed earlier.

Conversely, a learning rate that starts off too small will exhibit slow convergence,
and is less likely to escape a local minimum.

In Fig. 4-4, we have plotted the χ2 error after 20 iterations as a function of
the initial learning rate. Since the convergence behavior is also dependent on the
particular optimization problem, we have plotted results for three representative data
sets. It is quickly evident that low initial learning rates are far more detrimental to
convergence than higher learning rates: low initial learning rates have much higher
χ2 error than higher learning rates, and there is virtually no penalty for having “too
large” a learning rate. We consequently recommend an initial learning rate of about
1/3.

4.3.6 Algorithm Summary

In the previous sections, we have described the essential elements of the algorithm.
In this section, we provide a consolidated and concise description of the algorithm
(see Alg. 7). We also elaborate on some implementation details.
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Algorithm 7 SGD-Optimize-Graph

1: λ = 1/3
2: repeat
3: Randomly permute order of Constraints
4: {Update approximation M = JT Σ−1J . Let Mi be the ith diagonal block.}
5: for all {a, b, tab, Σab} in Constraints do
6: compute R using Eqn. 4.15
7: W = RT Σ−1

ab R
8: for all i ∈ [a + 1, b] do
9: Mi = Mi + W

10: Update error-distribution trees with M
11: end for
12: end for
13: Γ = max(Σ−1

i )
14:
15: {Modified Stochastic Gradient Descent}
16: for all {a, b, tab, Σab} in Constraints do
17: r = X−1

a ⊕Xb

18: r(3) = mod2pi(r(3))
19: compute R using Eqn. 4.15
20: s = −(b− a)λRT Γ−1Σ−1

ab r
21: smax = Xb − (Xa ⊕ Tab)
22: s = clamp(s, smax)
23: distribute(a + 1, b, s)
24: end for
25: λ = λ/(λ + 1)
26: until converged

The essential strategy is to compute the total correction s to the map, i.e., the
amount by which node b will be brought closer to the position predicted by the
constraint. We can then distribute this total motion over the nodes [a + 1, b], in
proportion to the confidence of each individual node (i.e., redistributed according to
M .)

The total correction s is easy to compute because of the block structure of the
Jacobian: a total of (b−a) state variables will each move by the same amount (subject
to subsequent reshaping via matrix M). Since the state variables are in the xincr state
space, the total motion is the sum of these individual motions.

4.4 Results

We now consider the performance of our algorithm versus other algorithms. We begin
with synthetic data sets, which allow us to more easily manipulate the characteristics
of the problem (and provide ground truth), then demonstrate the algorithm on real
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data.
Our first dataset, the CSW dataset, will include comparatively exhaustive anal-

yses of the performance of several algorithms (including our method). Much of this
analysis generalizes to other datasets.

4.4.1 CSW Dataset

The CSW dataset named after the CSAIL Student Workshop at which it was first
used. It has since become a common synthetic benchmark for non-linear optimization
algorithms. It has 3500 nodes in a “grid world” configuration with a total of 5598
edges (see Fig. 4-8). This gives it an average node degree of about 1.6, making it as
a relatively sparse problem.
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Figure 4-5: CSW Dataset, SGD Algorithm. The stochastic nature of the optimization method
causes the error estimate to fluctuate near the minimum. An application that used SGD, however,
would use the best-cumulative map (blue).

A typical application using SGD would not use the most recent state estimate
(which is constantly exploring new parts of the state space), but would instead use
the best known map to-date (as measured by χ2 error; SSE cannot be computed
when the global minimum is not yet known). The quality of the cumulative-best
map versus the stochastically optimized map is shown in Fig. 4-5. Note that since
SGD is a randomized algorithm, the behavior varies from run to run. We will use the
cumulative minimum plot for the remainder of the figures.

As we will see, our algorithm converges to lower-error configurations significantly
faster than several representative existing methods (see Fig. 4-6), with the exception
of sparse Cholesky Decomposition which achieved similar performance.

Extended Kalman Filter

We also processed the CSW dataset using an Extended Kalman Filter. The total
elapsed time was 2.5 hours, more than three orders of magnitude slower than either
the sparse Cholesky decomposition or our method. The quadratic growth in computa-
tional complexity can be seen in Fig. 4-7. At the end of the dataset, the EKF required
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Figure 4-6: CSW Dataset Convergence Performance. The χ2 error (top, and closeup in middle) and
state squared error (SSE, bottom) paint two complementary pictures of optimization performance.
Our stochastic gradient method (SGD) converges reduces both the χ2 error and SSE error very
quickly. Cholesky Decomposition converges more slowly in early steps, but finds the globally optimal
solution after about one second. Gauss-Seidel relaxation, while appearing to reduce the χ2 error
reasonably well, has actually produced a very poor map estimate, as seen in the SSE plots and in
Fig. 4-8.

841 MB of memory to store the covariance matrix, which grows as O(N2). The large
amount of memory usage caused our Java implementation to experience more garbage
collection operations, which caused some jitter in the timing measurements (readily
visible beginning around constraint 2500).

Cholesky Decomposition

We have implemented a sparse Cholesky decomposition routine very similar to Del-
laert’s

√
SAM algorithm. It differs in that instead of using COLAMD [8] for deter-
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Figure 4-7: CSW Dataset, EKF Performance. Seen above are the CPU time per constraint (total
elapsed time was 2.5 hours). Two trends are visible: the trend on top corresponds to the cost of
performing an observation step, while the lower trend corresponds to performing a time-projection
step (in which the state and covariance matrix are grown to accommodate a new state).

mining a variable ordering, it uses an exact minimum-degree ordering3 that yields less
fill-in during factorization at the expense of taking longer to compute the ordering.
Since the ordering needs to be computed only once (even if the Cholesky decomposi-
tion is iterated many times), and since reduced fill-in has a significant impact on the
cost of Cholesky factorization, this trade-off is often a net win. A careful comparison
of different variable ordering algorithms in the context of robot mapping problems
has not been conducted, however, and remains an area for future study.

In this experiment, the sparse Cholesky Decomposition processed an informa-
tion matrix of size 10500 × 10500. The information matrix was exceptionally sparse
(0.081% non-zero entries), due to the low average node degree. The resulting Cholesky
factor contained 0.166% non-zero entries. This sparsity allows significant memory
savings (only non-zero entries need be stored), and greatly accelerates the actual
factorization and subsequent back-solves.

Sparse Cholesky decomposition is one of the fastest map optimization algorithms
known, and represents a state-of-the-art algorithm. As the results show in Fig. 4-6,
our algorithm reduces the error (both χ2 and SSE) faster than Cholesky decomposi-
tion during the early iterations of optimization. However, once the Cholesky decom-
position lands near the global minimum, it exhibits quadratic convergence. In cases
where Cholesky decomposition finds the correct minimum, it generally finds a lower
χ2 error. However, this additional reduction in error often represents over-fitting to
the data, and is not representative of an increase in map quality. This is illustrated
in Fig. 4-8b, in which the χ2 error of the ground truth is significantly higher than
the χ2 error found by Cholesky decomposition. As with machine learning algorithms
in general, over-fitting can occur when a model (in this case a map) is fit to a rel-

3Finding the optimal variable ordering is NP-hard; the minimum-degree ordering is an effective
heuristic. COLAMD is, in turn, an approximation of the minimum-degree ordering which can be
significantly faster to compute.
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atively small amount of data (the constraints). In the map optimization context,
small average node degrees are fairly common, making optimization algorithms prone
to over-fitting.

Ground Truth Initial Configuration

Our method Cholesky Decomposition

Gauss Seidel Gauss Seidel Detail

Figure 4-8: CSW Dataset Graphs. Our method and Cholesky Decomposition produce nearly
indistinguishable output. Gauss Seidel converges exceptionally slowly, producing the figure above
after 1.5 hours of CPU time. The detail region indicates a “knot” which is irreversibly induced early
in the optimization.
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Gauss Seidel Relaxation

Gauss Seidel typically exhibits poor performance on large datasets that have signif-
icant errors in their initial configuration. Intuitively, this is because each node is
only affected by its immediate neighbors, but an error in one part of the graph often
requires an adjustment to a distant part of the graph. With Gauss Seidel relaxation,
it takes a long time for these adjustments to propagate through the graph.

This effect is significant on the CSW dataset, which is has two sub-graphs con-
nected by a “thin” chain of poses and edges. Individually, the sub-graphs have a
relatively small diameter (due to the nodes’ high average node degree). Consequently,
information can flow fairly rapidly throughout the sub-graph. As a result, the sub-
graphs converge to low-error configurations fairly quickly. In contrast, information
about the relative alignment of these two sub-graphs must pass through the thin
chain of poses, which slows the rate at which the two sub-graphs can find a mutually-
consistent configuration.

Consider a node j at the junction of the chain and one of the larger pieces: it has
many neighbors belonging to the locally-consistent sub-graph and only one neighbor
belonging to the chain. Gauss-Seidel iterations for node j will heavily favor the
sub-graph’s current configuration, since all but one of its neighbors support that
configuration. Thus, any new information propagated along the chain is rapidly
attenuated when it enters a sub-graph. As a result, the two sub-graphs converge to
a mutually-consistent arrangement very slowly.

The resulting graph can have very low χ2 error even when the two sub-graphs are
poorly aligned with respect to each other. This is because almost all of the edges
in the graph belong to one of the two large sub-graphs (which have found locally
consistent configurations)— the error is concentrated along just a handful of edges
belonging to the chain. The total χ2 error for the graph is thus quite low, even though
the positions of the nodes are far from the global minimum. This illustrates why χ2

error cannot be used as a quality metric by itself, and why our proposed SSE metric
is important for quantitative evaluations.

In early steps of Gauss-Seidel, large errors can cause nodes in the graph to move
dramatically. These large state updates generally reduce the χ2 error dramatically,
which leads to smaller steps later on. However, these initial large steps can introduce
large errors into the positions of some nodes that later (smaller) steps cannot undo
the damage. In the CSW dataset, a node near the junction of the right and left
halves of the graph experiences such a large update that it effectively ties a “knot”
into the robot trajectory. However, this knot has so much less χ2 error than the
initial configuration that subsequent Gauss Seidel iterations do not have the energy
to escape it. In other words, Gauss Seidel has become stuck in a local minima of its
own creation. (This knot is shown in more detail in Fig. 4-8.) Given a week of CPU
time, the Gauss-Seidel solution macroscopically resembles the solutions given by our
method and Cholesky decomposition— however, the knot remains.

A typical way of accelerating Gauss Seidel relaxation is by performing over-
relaxation. It addresses the fact that nodes tend to move too slowly in response
to distant constraints. The intuition is that moving past the locally-optimal solution
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may in fact move the state estimate closer to the globally-optimal solution. Indeed,
over-relaxation can increase the convergence rate of Gauss-Seidel (modestly, in our
experiments), but the larger step sizes also greatly increase the risk of “knots” and
divergence.

4.4.2 High Noise Dataset

Our second dataset illustrates the effect of noisy odometry and loop closures (see
Fig. 4-9). It is a synthetic dataset of 501 nodes with 544 edges, i.e., reflecting situa-
tions in which loop closures are difficult to obtain.

In other datasets presented in this thesis, it is usually possible to recover a map
that subjectively looks like the ground truth. In this high-noise dataset, this is not
the case: even the best map is visibly imperfect. Producing the best map possible,
even under high noise situations, is a key test of an optimization algorithm. Success
in these cases allows robots to operate in more difficult environments and use less
expensive (noisier) sensors.

In this dataset, the only algorithm to produce a good result is our method. The
convergence rate of Gauss Seidel, while initially rapid, quickly drops off and leads to
a poor solution in both terms of χ2 and SSE.

The Extended Kalman Filter solution, which took 17 s to compute, suffered from
significant linearization error, leading to both the worst χ2 score (31.9) and the worst
SSE score (45.6). While EIFs, SEIFS, and ESEIFs might be faster than the EKF,
they will exhibit similar error. This illustrates the importance of methods that can
relinearize its constraints.

The solution computed by Cholesky decomposition is visibly distorted (see Fig. 4-
9), and has a significantly higher SSE error (see Fig. 4-10) than our solution. The
first few iterations of Cholesky decomposition were very chaotic; the violent updates
to the state estimate resulted in a “knot” in the center of the map, much like the knot
that resulted when using Gauss-Seidel on the CSW data set. Additional iterations of
Cholesky decomposition have no effect on this knot.

The similarity of the χ2 errors (3.5 for Cholesky, 3.06 for our method), illustrates
that χ2 error is not always a good indicator of solution quality; SSE is more revealing
in this case.

4.4.3 P5K20K Dataset

P5K20K is a synthetically generated dataset with 5000 nodes and 20000 edges. This
gives it a fairly high average node degree, which, with the fairly large size of the state
vector, makes it is a challenging optimization problem (see Fig. 4-11 and Fig. 4-12).

The Cholesky factorization is much slower on this problem than on previous ex-
amples due to the fairly high average node degree and relatively large sensing range.
The result is that the Cholesky factor is an order of magnitude more dense than on
the CSW dataset: the information matrix has a similar density (0.086%), but the
Cholesky factor has a density of 1.96% (versus 0.166% on the CSW dataset).
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Ground Truth Initial Configuration

Our method Cholesky Decomposition

Gauss Seidel Extended Kalman Filter

Figure 4-9: High Noise Dataset. The true configuration (top left) and odometry-derived initial
configuration (top right) are shown. In this high-noise case, only our method finds a reasonable
solution. Cholesky Decomposition has become stuck in a local minimum (note the knot in the
center of the map), while Gauss Seidel and the Extended Kalman Filter have both produced poor
maps.
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Figure 4-10: High Noise Results. The χ2 error and SSE error are plotted for three different
algorithms. Each error metric is plotted twice: the second plot is an enlargement of the first to show
detail. Only our method finds the global minimum. Cholesky decomposition gets stuck in a local
minimum with fairly low χ2, but large SSE. (Not shown: EKF took 17.2 s, and had χ2 = 31.9 and
SSE = 45.6.)

It takes Cholesky Decomposition three iterations totalling 91 seconds of computa-
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Ground Truth Initial Configuration SGD Solution (2 s)

Cholesky t = 34 s Cholesky t = 63 s Cholesky t = 91 s

Figure 4-11: P5K20K Graphs. The true configuration (top left) and an odometry-derived initial
configuration (top middle) are shown. The configuration resulting from three successive iterations
of Cholesky Decomposition are shown (bottom, left to right). After 91 seconds, its solution is
comparable to our solution (top right), which was obtained in 2 seconds.

tion to produce a solution (χ2 = 1.47, SSE=0.0387) similar to the solution produced
by our method in 2 seconds (χ2 = 2.9, SSE=0.0307). Given a fourth iteration,
Cholesky Decomposition improves the estimate to χ2 = 0.9983 and SSE=0.00744,
but with a total elapsed time of 124 s. Interestingly, this solution is numerically op-
timal. Our method cannot typically recover the numerically optimal solution due to
its stochastic exploration of the state space and the effects of approximations made in
the algorithm. However, as this dataset illustrates, our method produces good maps
in a fraction of the time.

The χ2 error of the solution produced by our algorithm can be reduced significantly
by using a few iterations of Gauss-Seidel relaxation. Such a hybrid method combines
SGD’s ability to rapidly recover the basic structure of the graph with Gauss-Seidel’s
ability to fine-tune local structure (see Fig. 4-13).

The hybrid SGD/Gauss-Seidel method can noticeably reduce the χ2 error, but
has little effect on SSE error. Tiny perturbations in the positions of individual poses
can have a significant impact on the error of individual constraints, but so long as
these perturbations do not have a cumulative effect, their effect on SSE is small.
SGD’s stochastic exploration of state space tends to add noise to the position of each
node in the graph: this causes an increase in χ2 error of the constraints connected
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Figure 4-12: P5K20K Results. χ2 and SSE error are plotted (with enlarged versions for each) for
several algorithms. SGD converges much more quickly than the other methods. Unlike previous
data sets, however, all methods ultimately converge on a good solution.

to those nodes, even though those nodes are very close to their optimal position.
Running Gauss-Seidel allows the noise to be corrected, significantly reducing the χ2

error by making minute adjustments to the position of each node. However, these
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minute adjustments have little effect on SSE. This is precisely the behavior we see
in Fig. 4-13. This behavior also illustrates that χ2 error, by itself, is not necessarily
indicative of map quality.
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Figure 4-13: Hybrid Method Results on P5K20K Dataset. Our method can be combined with
Gauss-Seidel to produce results with lower χ2 error by using Gauss-Seidel to refine a configuration
produced by our algorithm. In contrast, the effect on SSE error is minimal; this shows that SGD
produces graphs whose quality is higher than χ2 alone would indicate.

4.4.4 Intel Research Center Dataset

The Intel Research Center dataset is composed of 875 nodes connected via 15605
edges, and represents a real data set spanning 44.9 minutes [29]. Cholesky, Gauss-
Seidel, and our method all perform well on this dataset. Although our method does
very well with respect to SSE error4, our method lags behind in terms of χ2 error.
Our method is an approximation that neglects certain projective effects (as seen in
Fig. 4-16). That, coupled with its stochastic exploration of the state space, limits
its ability to find extremely low-error configurations. In this case, all the methods
achieved very low errors (χ2 < 1), and so SGD’s larger χ2 error is more conspicuous.
However, as we have seen in earlier datasets, this does not mean that the map is worse.
If minimizing χ2 error is critical, Gauss-Seidel relaxation can be used to fine-tune the
solution computed by SGD.

4In the absence of an actual ground truth, we compute SSE with respect to the global minimum
solution.
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Initial Configuration Optimized Configuration

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

Time (s)

C
hi

2  E
rr

or

 

 
SGD
Cholesky
GS

0 0.5 1 1.5 2 2.5 3
0

0.02

0.04

0.06

0.08

Time (s)

S
S

E
 E

rr
or

 

 
SGD
Cholesky
GS

Figure 4-14: Intel Research Center. All the methods achieve very low error, though their conver-
gence rates differ. Note that our method takes a quick and early lead in SSE error, though it lags
in χ2 error.

4.4.5 Stanford Gates Dataset

The Stanford Gates dataset includes 34.6 minutes of data. As processed by our lidar
loop-recognition algorithms (described in Chapter 3), the raw data resulted in a graph
containing 679 nodes and 7121 edges. Fig. 4-15 shows the initial configuration and
optimized configuration, with timing results for three algorithms.

Only Gauss-Seidel produces a poor result: Cholesky Decomposition, EKF, and
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Initial Configuration Gauss-Seidel (3s) Optimized Configuration
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Figure 4-15: Stanford Gates Building Results. Once again, Gauss-Seidel quickly reduced the χ2

error, but results in a map with noticeable distortions (and large SSE). Both Cholesky decomposition
and our method quickly produced good maps, with our method producing low-error maps earlier.
(Not pictured: a map produced by an EKF with χ2 = 0.134 and SSE=0.00031 in 881 s.)

our method all produce very good maps. Our method converges faster than other
methods initially, though Cholesky Decomposition ultimately produces a graph with
lower χ2 error. The Extended Kalman Filter is orders of magnitude slower than either
Cholesky Decomposition or SGD.

4.4.6 Dog Leg Configuration

In certain contrived cases, errors due to our approximation of the Jacobian can be
observed. We have purposefully eliminated many projective effects in both our state
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Figure 4-16: Dog leg configuration. The dog leg initial condition (left) has a single ill-satisfied
constraint; the optimal solution is shown in the middle. Our proposed algorithm converges to an
approximate solution that does not reflect all of the projective constraints in the configuration. This
effect is minor in non-contrived cases, however.

representation and in our Jacobians. These allow fast and robust updates, but they
are not exact.

Fig. 4-16 shows the “Dog Leg” configuration5. The nodes are initialized along
a straight line. A constraint is added between the first and last node that suggests
a different position (but not a different orientation) of the last node. In the initial
configuration, the orientation error for every constraint is zero, and so the state
updates computed by our method include no rotational component. A lower χ2 error
can be obtained by rotating the intermediate nodes, as seen in the middle of the
figure.

Real-world datasets rarely exhibit artifacts as noticeable as those in this contrived
case. This type of error is significant only when there are large rotational errors
between physically distant nodes and there are no other constraints available to help
guide the orientation of the intermediate nodes.

4.4.7 Robustness

Compared to other algorithms, our proposed method is substantially more robust to
initialization error. Specifically, our method can find the global minimum even when
other methods get stuck in local minima.

This robustness can be measured. The likelihood of an algorithm getting stuck in
a local minimum increases with the noise of the observations in the graph: noisy ob-
servations are more likely to cause the algorithm to erroneously step in a sub-optimal
direction. We can test the robustness of an optimization algorithm by generating
a large number of synthetic datasets with varying degrees of noise, and counting
the number of graphs that each algorithm successfully solves. We detect failure by
comparing the normalized χ2 to 1.0, its expected value at the global minimum: con-
vergence to significantly larger values indicates a local minimum.

Using a synthetic graph generator, we generated about 15000 graphs. Each graph
consisted of 1000 nodes and 200 landmarks; nodes were connected by odometry mea-
surements (whose noise was the independent variable). Finally, 5000 landmark ob-
servations were generated with constant-magnitude noise.

We expect, a priori, that algorithms will have an increasing tendency to get stuck
in a local minimum with increasing noise. For this study, we continue to optimize
until either a generous time bound is exceeded or until the algorithm’s convergence

5We thank Udo Frese for suggesting the Dog Leg configuration.
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Figure 4-17: Convergence Robustness. On problems with significant noise and poor initial esti-
mates, our algorithm finds the global minimum much more often than a Cholesky-Decomposition
based method.

rate has slowed dramatically. We cannot reliably distinguish between a true local
minimum versus a long valley that ultimately does lead to the global minimum, but
from a practical standpoint, these two cases are equally problematic to applications.

We compare our approach to a Cholesky Decomposition-based method similar to
Dellaert’s

√
SAM . This Cholesky Decomposition based approach is one of the most

stable and fastest performing algorithms that we have tested (and generally out-
performs Gauss-Seidel and non-iterated forms of the Kalman filter and Information
Filter). However, our algorithm consistently produces better results (normalized χ2

values near the expected value of 1.0) at much higher noise levels than Cholesky
Decomposition. In practical terms, this means that our algorithm can produce correct
answers when Cholesky Decomposition (and other similar methods) produce unusable
maps.

Our algorithm selects constraints in a pseudo-random way, taking care to ensure
that every constraint is processed before any constraint is processed a second time.
Processing the constraints in random order increases the algorithm’s ability to explore
the state space (and thus to escape local minima).

We have observed that when our algorithm fails to produce a good map, the
optimization often diverges: the χ2 increases by orders of magnitude. Since χ2 error
has an expected value of 1.0, such divergences are easy to detect. A robot could
conceivably perform some fail-safe behavior when failure was detected. In contrast,
when Cholesky Decomposition produces a bad map, the χ2 error is often large, but
not terribly so (e.g., less than 100). In cases where sensor noise covariances have
been poorly modelled, it could be difficult to differentiate between map divergence
and covariance modelling error.
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4.5 Summary

We have presented a new map optimization that is not only fast, but remarkably ro-
bust to poor initial conditions and noisy observations. Our approach adapts stochastic
gradient descent, a learning algorithm previously used in training neural networks,
and introduces a state-space representation that approximates the cumulative nature
of robot motion.

We compared our method to the previous fastest non-linear method, which is
based on sparse Cholesky factorization. Numerous experiments demonstrate that
our method is competitive with, or faster than, existing methods. More critically,
we demonstrated that Cholesky Decomposition and similar methods are significantly
more susceptible to getting stuck in local minima than our algorithm. In short, these
methods produce poor maps in cases where our algorithm succeeds.

We also introduced a new error metric, the mean squared error of the state esti-
mate (SSE). Our results show that it provides a useful measure of the graph quality,
and that χ2 error alone does not paint a complete picture of optimization performance.
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Chapter 5

Incremental Optimization of Pose Graphs

When a robot obtains new information about the environment, this information must
be rapidly incorporated into the model of the world so that the robot’s obstacle
avoidance and path planning activities can take that information into account. An
incremental optimization algorithm allows new information (nodes and edges) to be
added to a pose graph, and provides for an efficient incremental update of the posterior
map.

Most existing optimization methods are inherently incremental1. Recursive linear
solutions (e.g., Extended Kalman Filter (EKF), Extended Information Filter (EIF),
and their many variants) explicitly compute the importance of a new observation in
relation to all previous observations: this allows new information to be incorporated
in a single step. However, the cost per step increases quadratically in the size of the
map, and poor maps can result due to the effects of linearization error.

Non-linear optimization methods like Gauss-Seidel [12] and Multi-Level Relax-
ation (MLR) [20] maintain no state aside from the state estimate itself. The graph
can be updated between iterations without any complications. TreeMap [19] and
Thin Junction Tree Filters [52] do maintain some auxiliary state (a pruned tree), but
adding new nodes is relatively straightforward. Once nodes are added to the tree, the
actual optimization algorithm is unchanged.

Dellaert’s
√

SAM [10] method also maintains additional state, namely a variable
reordering. More problematic, however, is the fact that the information matrix must
be factored at each iteration— a potentially slow operation. Kaess has proposed mod-
ifications that make incremental usage more efficient, including incremental variable
reordering strategies and using QR (instead of Cholesky) decomposition [31].

Our batch algorithm, based upon stochastic gradient descent, has been shown
to be both fast and robust. Naturally, these attributes would be very useful in an
incremental context. Stochastic gradient descent (SGD), however, assumes that the

1The terms iterative and incremental describe distinct concepts. An iterative algorithm is one
in which the quality of the solution can be improved by running the algorithm repeatedly. An
incremental algorithm is one in which the underlying problem can be modified without requiring
the algorithm to restart from initial conditions. They are orthogonal features of an algorithm. Both
the batch algorithm described in Chapter 4 and the algorithm described here are iterative, but this
chapter adds an incremental capability.
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underlying optimization problem does not change over time. SGD uses a learning rate
that varies as a function of time: this learning rate modulates the step size, allowing
an equilibrium between all the constraints to be found.

Quickly adapting the posterior estimate to reflect new information can require
large steps, which are hampered by small learning rates. Consequently, the learning
rate may need to be increased when new information is added to the graph.

A simple strategy would be to reset the learning rate to its initial value, but
this would be equivalent to restarting the batch optimization. This is undesirable:
even though SGD rapidly decreases the error of the posterior, the robot may have
already expended significant computational resources optimizing the map. Turning
the learning rate back up will undo much of this work, since all the constraints will
once again take large steps.

In this chapter, we describe an incremental version of stochastic gradient descent.
The central contribution is a spatially-varying learning rate that allows us to incor-
porate new information without obliterating the results of previous iterations. To
our knowledge, this is the first instance of stochastic gradient descent being used to
estimate the parameters of a dynamic optimization problem.

We also describe a technique for performing iterations on only the parts of the
graph that are most poorly optimized. New information most often perturbs areas
near the robot much more than distant areas. Our method allows computational
effort to be focused on optimizing the area near the robot, without needlessly refining
already-optimized areas farther away.

5.1 Method

The learning rate scales the update step produced by each constraint. If we wish to
rapidly incorporate information from a new constraint, the learning rate may need to
be increased. In the case of the batch algorithm, in which there is a single (global)
learning rate, an increase of the learning rate will cause every constraint to start
taking larger steps. As a result, even if the effect of the new constraint is limited
to a small portion of the graph, the whole graph will be perturbed away from the
minimum.

Our solution is to allow different parts of the graph to have different learning
rates. When a new constraint is added to the graph, the learning rate can then be
selectively increased. This allows unaffected parts of the graph to retain their low-
error configurations while volatile parts of the graph are allowed to rapidly find a new
equilibrium.

Specifically, instead of a single global learning rate λ, we will give each node i its
own learning rate Λi. These learning rates represent the volatility of each node in
the graph. The bulk of this chapter is devoted to a set of rules describing how these
learning rates should be adjusted in order to accommodate new information. The
batch algorithm can be described as a special case of the incremental algorithm: in
the absence of new observations, the learning rates Λi will all equal the learning rate
λ of the batch algorithm.
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In general, we note that the maintenance of learning rates is a matter of con-
vergence speed, rather than correctness. Even if the learning rate is never increased,
stochastic gradient descent will ultimately arrive near a local minimum— but it might
take a long time to do so. The methods in this chapter comprise an effective set of
heuristics for managing the learning rates; they model the interactions of constraints
so that the learning rate can be increased sufficiently to allow rapid convergence.
Simultaneously, they attempt to avoid unnecessary increases in learning rates, but as
we saw in Chapter 4, there is generally a bigger performance penalty associated with
picking too small a learning rate than picking too large a learning rate.

There are three basic operations that affect the learning rates: adding a new con-
straint (which can selectively increase learning rates), processing existing constraints
(which may propagate the effects of previous learning rate increases to additional
learning rates), and reducing the learning rates according to a generalized harmonic
progression.

5.1.1 Adding a new constraint

When adding a new constraint, we must estimate how large a step should be taken
to reduce its residual. Once determined, we can compute the learning rate that will
permit a step of that size.

The graph’s current state estimate already reflects the effects of a number of
other constraints. The step resulting from the addition of a new constraint should
reflect the certainty of the new constraint relative to the certainties of the constraints
already incorporated into the graph. Let gain β be the fraction of a full-step that
would optimally fuse the previous estimate and the new constraint. β can be derived
by differentiating the χ2 cost of two Gaussian observations of the same quantity, or
manipulated from the Kalman gain equation:

β = Σ−1
i (Σ−1

i + Σ−1
graph)

−1 (5.1)

Computing β exactly would be a computationally expensive operation (equivalent
to performing a Kalman step). Instead, we estimate Σ−1

graph from the diagonals of the
information matrix. We have already approximated these uncertainties in our diag-
onal approximation to the information matrix M , which we described in Chapter 4.
This is an approximation because, in truth, the states are correlated. However, it
still yields a serviceable approximation.

We now compute the learning rate that will allow a total correction s of size βri.
Consider the state update equation (unchanged from Chapter 4), where s represents
the total correction:

si = λ(b− a)RT
i Σ−1

i ri = βri (5.2)

Using Eqn. 5.2, we can solve for the learning rate that would result in a step of
size s = βri. Because there are three degrees-of-freedom per pose, we obtain three
simultaneous equations for λ; we could maintain separate learning rates for each, but
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Figure 5-1: Three overlapping constraints. A disturbance in constraint X will be propagated
through Y to Z, even though X and Z do not overlap. At each step, the effect of the disturbance is
attenuated.

we use the maximum value for all three. With ® representing row-by-row division,
we can write:

λ = maxrow

(
1

b− a

(
βri ® ΩRΣ−1

i ri

))
(5.3)

This value of λ is then propagated to all of the poses after pose a, since the
resulting state update will adjust all of those nodes. This is due to our use of the
xincr state space: we are estimating the robot’s motion at each time, and the position
of the robot is the sum of its previous motions. Note that monotonicity of learning
rates Λi is important since an adjustment to an incremental state variable i has an
effect on all the subsequent positions j ≥ i:

Λ′i = max(Λi, λ) for i > a. (5.4)

5.1.2 Processing existing constraints

When processing an old constraint, we must determine what effective learning rate
should be used when calculating its step size. If a new constraint has been added to
the graph, it may upset existing constraints. In order for all of these constraints to
rapidly find a new equilibrium, the effective learning rate of other constraints needs
to increase in response to the newly added constraint.

The learning rates for each node are set in proportion to how much they are
perturbed by new constraints. Thus, the average amount of perturbation affecting
a constraint between a and b is the average of learning rates Λi for i ≤ a ≤ b.
Constraints that overlap with a new constraint will see an increase in their effective
learning rate in proportion to their overlap with the new constraint. The resulting
state update will perturb all subsequent poses (again due to our use of the xincr state
space); as before, we update the learning rates so that all the affected poses have a
learning rate at least as large as the effective learning rate.

Consider an example with three constraints (see Fig. 5-1) with a newly-added
constraint X between poses 100 and 200, and existing constraints Y (between poses
50 and 150) and Z (between poses 25 and 75). The learning rate increase caused
by constraint X will cause an increase in the effective learning rate for constraint Y .
On the next iteration, constraint Z will also see an increase in its effective learning
rate, due to the learning rate increases caused by Y . In other words, constraint Z
will be affected by constraint X, even though they have no poses in common. Their
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interaction is mediated by constraint Y . Each interaction attenuates the learning rate
increase in a manner related to the overlap between the constraints. This “percolat-
ing” effect is important in order to accommodate new information, even though the
effect is generally small.

5.1.3 Algorithm Summary

In summary, adding a new constraint (or constraints) to the graph requires the fol-
lowing initialization:

1. Compute the constraint’s effective learning rate λeff using Eqn. 5.3 and perform
a step.

2. Increase the learning rates, as necessary:

Λ′i = max(Λi, λeff ) for i > a (5.5)

Updating an existing constraint between poses a and b involves three steps:

1. Compute the constraint’s effective learning rate λeff by computing the mean
value of the learning rates for each pose spanned by the constraint:

λeff =
1

b− a

b∑
a+1

Λi (5.6)

2. Compute and apply the constraint step, using learning rate λeff ;

3. Update the learning rates of the affected poses, as in Eqn. 5.5.

After processing all of the constraints, the learning rates Λi are decreased according
to a generalized harmonic progression, e.g.:

Λ′i =
Λi

1 + Λi

(5.7)

These rules guarantee the increasing monotonicity of Λi with i. I.e., at any given
time step, Λi ≤ Λj for all i < j.

5.2 Partial Iterations

In the case of the batch algorithm, a “full iteration” includes a step for every con-
straint in the graph. The learning rate is controlled globally, and the graph converges
more-or-less uniformly throughout the graph.

In the incremental algorithm that we have described, the learning rate is not
uniform and different parts of the graph can be in dramatically different states of
convergence. In fact, it is often the case that older parts of the graph have much
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lower learning rates (and are closer to the minimum-error configuration) than newer
parts, which are far from a minimum. This is because new constraints are generally
added near the robot.

Suppose a robot explores two buildings, first A then B. While the robot is in B,
the map for A is more-or-less unaffected, whereas the map for building B may be
undergoing dramatic changes as new loop closures are identified.

A reasonable goal for an optimization algorithm is to reduce χ2 error per CPU
time used. Building B, in this simple example, represents low-hanging fruit. It would
be highly advantageous if we spend more CPU time optimizing building B than A.

Suppose we have a graph with a maximum learning rate of λmax. If we performed
a full iteration (without adding any new constraints), the maximum learning rate in
the graph would be reduced to λ′max = λmax/(λmax + 1). Now suppose that there is a
constraint whose effective learning rate is less than λ′max. Processing that constraint
will not significantly improve the state estimate, since other constraints are taking
larger steps (which will have a dominant effect on χ2 error). That constraint will also
not reduce the largest learning rate in the graph. Consequently, this constraint will
have virtually no effect on the state estimate and can be skipped. In short, processing
constraints whose effective learning rate is less than λ′max is unproductive.

The following algorithm exploits this property to optimize only a recent subgraph
of the pose graph. It does not actually compute the effective learning rate for each
constraint; instead, it identifies constraints whose effective learning rate must be lower
than λ′max by virtue of not including any nodes whose learning rate is higher. As a
result, some constraints that could be skipped will be processed anyway, but the
resulting algorithm is simpler.

1. Look up the maximum learning rate in the graph, e.g., λmax = Λnposes−1. If we
performed a full iteration, the maximum learning rate after the iteration would
be λ′max = λmax/(1 + λmax).

2. Find the oldest pose p such that λp ≥ λ′max

3. Perform steps only on those constraints that involve a pose ≥ p.

4. Set λi = λ′max for all i ≥ p

In other words, this algorithm reduces the maximum learning rate in the graph
by a full harmonic progression by computing and operating on only a subset of the
graph’s constraints. The procedure above conservatively identifies the set of con-
straints that should be considered.

In many cases, large reductions in learning rate can be achieved by considering
only a handful of constraints. In the Freiburg data set, the technique is very effective,
with an average of only 6.73% of the constraints updated at each iteration (see Fig. 5-
2). Since computational cost is linear in the number of constraints processed, this
yields a speed-up of almost 15x. The χ2 error is naturally somewhat higher (see
Fig. 5-6) in absolute terms, since older parts of the graph are not being fine-tuned
when there are high learning-rate subgraphs. However, when the total amount of
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Figure 5-2: Partial Updates. Left: Freiburg, Right: Intel Research Center. Selective processing of
constraints leads to large speed-ups. In the figure, the line indicates the total number of constraints
in the graph; the points show the actual number of constraints that were processed. In the Intel
dataset, more constraints tend to be processed since the robot repeatedly revisits the same areas,
causing new constraints to disturb larger portions of the graph.

CPU time is taken into account, the selective method is substantially more efficient
at reducing the χ2 error.

The same approach on the Intel Research Center data set processes 59% of the
constraints on average. The lower performance is due to the fact that the robot is
orbiting the entire facility: many constraints perturb virtually the whole graph. Still,
on this near worst-case data set, a significant speedup of 69% is achieved.

The approach outlined here is somewhat greedy: it attempts to reduce the worst-
case learning rate to Λ′max. This goal determines both the oldest pose p and thus
the number of constraints that are necessary to perform the partial update. On
very-well connected graphs with many large loop closures, the learning rate tends
to be relatively flat. This leads to very small values of p and thus large numbers of
constraints to be processed. It is possible that picking a larger Λ′max (i.e., settling for
less than a full harmonic progression) would result in a more economical update—
this is an area of future work.

Similarly, if a robot knew that it was leaving an area and that it would not return
for some time, it would be reasonable to expend additional iterations performing com-
plete updates, lowering the learning rate throughout the graph and thus improving
the quality of the map.

5.3 Learning Rate Data Structure

An obvious data structure for maintaining the values Λi is an array. The operations
required by Eqn. 5.5 and 5.6 would run in O(N) time for a graph with N poses.
Since every constraint step requires updating the learning rates, this would increase
the time complexity per constraint from O(log N) to O(N).

An augmented binary tree can be used to implement both of these operations in
O(log N) time. The learning rates for each pose correspond to the leaves of the tree.
Each non-leaf node in the tree nominally stores the minimum, maximum, and sum of
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Figure 5-3: Learning-Rate Data Structure. Our learning-rate data structure, an augmented binary
tree, allows all critical learning-rate functions to be implemented in O(log N) time. Each node in the
tree tracks the minimum, maximum, and sum of all the elements beneath it; however, any parent
can override all of its children by having min=max. The node indexing scheme allows the tree to be
stored in-place in an array.

its children. However, a parent overrides the value of its children when its minimum
field equals its maximum field. The values stored in the descendant nodes of such a
parent are invalid.

The tree supports a variety of operations, each of which runs in O(log N) time.
Since any node can override its children, operations begin at the root and descend
towards the leaves; if they encounter a node at which min == max (which signals
that the parent is overriding the data stored in its descendants), the tree descent
ends.

Most operations terminate at the first overriding node. (Note that leaves always
have min == max and thus can be considered “overriding” nodes, even though
they have no children.) The procedure setLowerLimitRecurse is somewhat more
complicated, since it must traverse all the way to a leaf, possibly passing an overriding
node along the way. During its recursion, any overridden value is passed along and
used to “patch up” the tree as it goes.

The fixup procedure recomputes a nodes min, max, and sum values from its chil-
dren. The procedure mean can be trivially computed from cumulativeSum.

The node indexing scheme (see Fig. 5-3) permits computation of parent, child, sib-
ling, and number of children using constant time arithmetic expressions. For example,
the arithmetic mean of two child node ids gives the parent node id.

Aging the learning rates requires O(N) time: the learning rates are extracted
from the tree into an array (via a recursive traversal of the tree), aged, and then
reinserted back into the tree. However, aging the learning rates only occurs after
all the constraints have been updated. The amortized time is O(N/M) for N nodes
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Algorithm 8 getValue(node) : Return the value vnode

i = ROOT
loop

if mini == maxi then
return mini

end if
i =descendTowardsNode(i, node)

end loop

Algorithm 9 cumulativeSum(idx) : Compute
∑idx

0 vi

sum = 0
i = ROOT
loop

if mini == maxi then
return sum + mini ∗ (idx−leftMostDescendant(i) + 1)

end if
i =descendTowardsChild(i, idx)
if isRightChild(i) then

sum = sum + sumleftSibling(i)

end if
end loop

and M constraints; since M must increase at least linearly with N , this runtime is
typically sub-linear.

5.4 Analysis

Our approach for updating the learning rates in order to perform incremental stochas-
tic optimization has a number of appealing properties.

• When the robot travels to a new location, a new pose and a new constraint
connecting that pose to the graph are created. Since the residual of this new
constraint is zero (because there is only a single constraint to that node), no
learning rate increase results.

• When a new loop closure is identified, but the residual is small (perhaps because
the area is already well-mapped), little or no learning rate increase results.

• When a new loop closure is identified, and the residual is large (closing a very
large loop for the first time, for example), a larger learning rate increase results.

Algorithm 10 setUpperLimit(ulimit) : For all i, set v′i = min(vi, ulimit)

setUpperLimitRecurse(ROOT, ulimit)
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Algorithm 11 setUpperLimitRecurse(i, ulimit)

if maxi ≤ ulimit then
return

end if
if mini == maxi then

mini = ulimit
maxi = ulimit
sumi = ulimit ∗ (numberOfChildren(i) + 1)

end if
setUpperLimitRecurse(leftChild(i), ulimit)
setUpperLimitRecurse(rightChild(i), ulimit)
fixup(i)

Algorithm 12 setLowerLimit(idx, llimit) : For all i ≥ idx, set v′i = max(vi, llimit)

setLowerLimitRecurse(idx, ROOT, llimit, false, 0)

This is to be expected, since the positions of many nodes must be updated.
However, any portion of the graph prior to the loop closure will be insulated
from this increase.

On a graph with N poses and M constraints, memory usage of the algorithm is
O(N + M), the same as the batch algorithm. Runtime per constraint also remains
O(log N).

The actual CPU requirements, as with the batch algorithm, are difficult to specify.
The nature of the stochastic optimization provides no guarantees that the error will
go down at each iteration. It is also the case that the amount of map optimization
required for any particular application varies. Consequently, we cannot prescribe a
specific number of iterations to compute after adding a constraint.

That said, the convergence of the algorithm is typically quite rapid, especially in
correcting gross errors. Further, the fact that individual iterations are inexpensive
affords users a great deal of granularity in controlling their CPU requirements versus
their map quality requirements.

5.5 Results

We compared the runtime performance characteristics of our approach to that of
LU decomposition (LU), the Extended Kalman Filter (EKF), and Gauss-Seidel Re-
laxation (GS). Our assumption is that the robot requires a full state estimate after
every observation; this makes the performance of the EKF comparable to that of
an information-form filter. Fig. 5-6 shows the cumulative computational time ver-
sus step (with one constraint added per step). For the Gauss-Seidel implementation,
every state is iteratively updated once after each constraint. Our method is plotted
twice: first, using all the constraints in the graph (“Whole”), and second, using only
a subset of the constraints (“Partial”).
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Algorithm 13 setLowerLimitRecurse(idx, i, llimit, overriding, overrideValue)

if overriding then
mini = overrideV alue
maxi = overrideV alue
sumi = overrideV alue ∗ (numberOfChildren(i) + 1)

end if
if descendants of i are all < idx then

return
end if
if mini == maxi and descendants of i are all ≥ idx then

mini = llimit
maxi = llimit
sumi = llimit ∗ (numberOfChildren(i) + 1)
return

end if
if mini == maxi and not overriding then

overriding = true
overrideV alue = mini

end if
setLowerLimitRecurse(idx,leftChild(i), llimit, overriding, overrideV alue)
setLowerLimitRecurse(idx,rightChild(i), llimit, overriding, overrideV alue)
fixup(i)

Our approach, especially with partial updates enabled, is significantly faster than
any of the other methods. In terms of quality (as measured by χ2 error), our approach
produced somewhat worse maps. However, the difference is very subtle. When using
the constraint selection algorithm (plots labeled “partial”), our algorithm is signifi-
cantly faster than the other approaches. The CPU time and χ2 results on the Freiburg
data set are shown in Fig. 5-6. Similar behavior occurred on the Intel Research Center
dataset (see Fig. 5-7).

A brute force LU decomposition at each iteration is the slowest method by far.
The EKF’s O(N2) time complexity amounted to 588 s, making it an unappealing
approach. Gauss-Seidel took 110 s, and our approach took 15.1 s. The EKF, Gauss-
Seidel (GS), and our method (not using the partial updates optimization) had similar
χ2 errors at each step, tracking the actual minimum quite well. When selectively
processing constraints, our method’s χ2 is naturally somewhat higher; subjectively,
the quality of the maps was acceptable. We note that Gauss-Seidel relaxation does
not perform this well in all cases, as was demonstrated in [48] and in Chapter 4.

The algorithm, even if all constraints must be processed, is very fast. Processing
all 8000 constraints on the Freiburg graph with 906 poses required a total of 16.8ms.
When using the partial updates algorithm, only a small fraction of these constraints
need to be processed: the algorithm took an average of 1.1ms to add each of the
final 10 constraints on the Freiburg graph: for each, it only needed to consider an
average of 73 constraints. Several Freiburg maps are illustrated in Fig. 5-5, including
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Figure 5-4: Intel Research Center. Top-left: open loop trajectory; top-right: just before closing
the first loop, middle-left: just after closing the first loop; middle-right: about half way through the
data set; bottom: the posterior map.

the learning rates (as a function of pose).

Putting these numbers in perspective, the Intel Research Center dataset (Fig. 5-4)
represents 45 minutes of data; incorporating observations one at a time (and out-
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Figure 5-5: Incremental Processing of Freiburg dataset. The open-loop graph (top-left) is incre-
mentally optimized; the state of the graph is shown at two intermediate configurations and the final
configuration. The colors used in the maps indicate the learning rates Λi, which are also plotted
on the bottom as a function of pose number; earlier parts of the graph are clearly insulated from
learning rate increases affecting poses closer to the robot. When closing large loops (middle-left
figure), the learning rate is increased over a larger portion of the graph.

putting a posterior map after every observation) required a total cumulative time of
27.9 s with partial updates enabled, and 50.9 s without.

Several maps from the Intel Research Center are shown in Fig. 5-4. The open-
loop trajectory is shown, as well as several intermediate maps. In the first map, a
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Figure 5-6: Cumulative Runtime and Error Comparisons, Freiburg dataset. Each constraint was
added one at a time. EKF and LU computational time dwarfs the others. Our proposed method
(with partial updates) is by far the fastest at 21 s; our method (without partial updates) beats out
Gauss-Seidel relaxation. In terms of quality, LU, EKF, and Gauss-Seidel all produce nearly optimal
results; our methods have marginally higher χ2 error, as expected, but the maps are subjectively
difficult to distinguish. (Partial: 15.5 s; Whole: 82.5 s; Gauss Seidel: 128.3 s, EKF: 650 s.)
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Figure 5-7: Error Comparisons, Intel Research Center. Our methods are able to stay relatively
close to the nearly-optimal χ2 error produced by the EKF and Gauss-Seidel, however, did so at a
fraction of the run time. (Partial: 14.5 s, Whole: 45.4 s, Gauss-Seidel: 65.2 s, EKF: 132.3 s)

loop closure is just about to occur; prior to this, the learning rate is low everywhere.
After the loop closure, the learning rate is high everywhere. The final map exhibits
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sharp walls and virtually no feature doubling; the incremental algorithm matches the
quality of the batch algorithm. We also validated our algorithm on countless synthetic
datasets with consistently good results.

As with the batch algorithm, the optimization rapidly finds a solution near the
global minimum, but once near the minimum, other algorithms can “fine tune” more
efficiently. On a large synthetic data set, our method requires 24.18 s for incremental
processing; after a post-processing using 2.0 s of Gauss-Seidel relaxation, the normal-
ized χ2 error drops to 1.18. This is far better than Gauss-Seidel can do on its own:
it requires 168 s to reduce the χ2 error by the same amount.

5.6 Summary

We have presented an incremental map optimization algorithm based upon stochastic
gradient descent. Our algorithm provides very fast updates, rapidly incorporating new
data into the map estimate. We introduced the idea of spatially-dependent learning
rates as a means of isolating different parts of the graph. This allows distant and less
volatile parts of the graph to be largely unaffected by the addition of new constraints.
We also described a data structure that allows the spatially-dependent learning rates
to be efficiently updated over time.

Finally, we showed how to optimize only the subgraph that has the largest learning
rate. This allows the χ2 error of the graph to be rapidly decreased by focusing
computational effort on the part of the graph that needs it most, making the algorithm
even more computationally efficient.
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Chapter 6

Conclusion

Building maps is a fundamental capability for robots operating in unknown or chang-
ing environments. In some instances, the map itself is a useful output of the robot,
while in others, the map allows the robot to avoid obstacles and plan paths.

Map building is difficult. Environments are often cluttered and ambiguous, and
are perceived only through imperfect sensor systems. Existing methods can construct
maps in many environments, but when environments are large, or when the sensor
data is ambiguous, those methods can become slow or produce incorrect answers.

Map building can be decomposed into two basic pieces, both of which are critical to
success. The first is loop closing: recognizing when a robot has revisited a place it has
been before. Each loop closure represents a constraint on the trajectory of the robot;
the more over-constrained the trajectory is, the more accurately the trajectory—and
thus the map—can be estimated. Loop closing is difficult, however, due to ambiguities
in sensor data. Many environments can appear similar, making it hard to determine
whether two sets of sensor readings correspond to the same or different places.

The second challenge is to compute the maximum-likelihood map once the loop
closures have been detected. This optimization problem is difficult due to the size of
the state vector, the non-linear nature of the constraints, and the poor quality of the
initial state estimates.

6.1 Contributions

This thesis has described algorithmic improvements for both loop closing and map
optimization. We show how relatively easy-to-generate loop-closure hypotheses can
be filtered so that only correct loop-closure hypotheses remain. Our approach is based
on the spectral properties of the pair-wise consistency matrix. A key feature of our
approach is that the ratio of the first and second eigenvalues can be interpreted as
a confidence metric, allowing perceptually ambiguous sensor data to be detected. In
this thesis, we simply reject ambiguous hypothesis sets; a natural direction for future
work would be to resolve ambiguous hypothesis sets by collecting additional data.

The second major contribution of this thesis is a new family of map optimiza-
tion algorithms. These algorithms are based on stochastic gradient descent, which
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Figure 6-1: The author with several indoor robots.

improves the state estimate by considering a single constraint at a time. Stochastic
Gradient Descent has previously used in machine learning (particularly in the train-
ing of neural networks), but we showed how the method could be adapted to the
map optimization problem. Our resulting algorithm rapidly explores the state space,
giving it two key advantages: it escapes local minima that trap existing methods, and
it can rapidly find solutions near the global minimum. This thesis describes both a
batch and online version of the algorithm and evaluates the algorithms on a variety
of real and synthetic data sets.

6.2 Future Work

The methods described in this thesis allow robots to operate in larger and more
perceptually ambiguous environments than before. Still, the map building problem
has not been definitively solved. Both loop-closing and map optimization continue to
offer difficult challenges.

Loop closing is primarily difficult due to perceptual ambiguity. Robots are unable
to recognizes places as well as a human, even though a robot’s sensors are superior
in some important respects. For example, planar lidars can easily measure distances
with centimeter precision—far better than an unaided human. Humans make up for
this, at least in part, by having a better understanding of the environment. A human
might recognize an office copier room by noting the presence of a copy machine,
whereas to a lidar, a copier is essentially indistinguishable from any other piece of
furniture. In the short term, there is room for improvement in both low-level sensor
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processing (like feature detectors) as well as higher-level processing (like the loop-
closing method described in Chapter 3).

Current optimization methods, augmented by the techniques described in this
thesis, can often successfully solve map optimization problems. The problem can be
made arbitrarily harder, of course, by increasing the size of the problem: more nodes
and more sensor observations will tend to bog down any method. However, with
several fast methods now available, robustness becomes a distinguishing factor. If
an algorithm arrives at the wrong answer (by getting stuck in a local minimum, for
example), the speed of that algorithm is largely irrelevant.

Problems in which there is a great deal of noise make the optimization harder, but
the type of observation also has an effect on difficulty. This thesis, for example, focused
on edges that fully constrain the position of two nodes. Range-only and bearing-only
observations do not fully constrain the position of two nodes: they constrain the
position of one node to lie on either a circle or ray (respectively).

Range-only observations have proven to be fairly easy to incorporate [47, 49].
Bearing-only observations, in contrast, are more difficult. Bearing-only measure-
ments, such as those naturally obtained from monocular cameras, exhibit a singular-
ity: if the predicted position of a landmark is near the robot, small changes in the
robot’s position cause large changes in the predicted bearing to the landmark. In the
worst case, if the robot happens to be on top of the landmark’s predicted position, the
predicted bearing to the landmark is undefined. While these effects can be mitigated
to some degree (by skipping observations that are near a singularity, for example),
the likelihood of the optimization failing increase. Failure modes include both local
minima and divergence.

It is important that map building performance continue to improve. Better map-
ping algorithms will allow robots to operate in environments that are currently too
complex. For example, autonomous cars have the potential to reduce the number of
traffic fatalities— with humans at the wheel, more than 40,000 die every year on road-
ways in the United States [1]. Other potential applications, from charting abandoned
(and hazardous) mines to helping the elderly move about their homes, all illustrate
the practical usefulness of robotic map building.
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Appendix A

Sensor Processing

A.1 Overview

This appendix describes some of the implementation details of the sensor processing
methods used in this thesis. The central contributions of this thesis are largely sensor
agnostic, but an understanding of the underlying systems can build an appreciation
for how complexities that arise from real data.

The bulk of this thesis uses two sensor modalities: vision and laser scanners
(lidars). This appendix discusses each in turn.

A.2 Vision Processing

A.2.1 Data Collection Platform

Our vision data set was collected by MIT’s DARPA Grand Challenge vehicle (see
Fig. A-1) during an autonomous run of the National Qualifying Event. Five calibrated
cameras recorded a nearly 360-degree field of view. For these experiments, each
camera’s data stream was reduced to 376 × 240 at 10 fps. These cameras were
essentially monocular since their fields of view did not significantly overlap. In other
words, the range to objects in the environment could not be determined from a single
set of camera images.

The motion between poses is estimated by the inertial measurement unit (IMU)
attached to the robot. This IMU, coupled with a three-antenna GPS system, provides
a good ground truth estimate. For many of our experiments, we purposefully degraded
the IMU data in order to mimic the lower-quality odometry data available on a typical
vehicle.
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Figure A-1: Talos. Our vision test-bed was MIT’s DARPA Grand Challenge vehicle. The vehicle
has five cameras (two forward, left, right, rear), and a high-quality IMU/GPS system for both
dead-reckoning and ground-truthing.

A.2.2 Feature Detection

We applied Lowe’s Scale-Invariant Feature Transform (SIFT) [38, 39] detector to our
images, resulting in a large number of SIFT detections (see Fig. A-2)1. SIFT features
occur at so-called interest points, which corresponding to extrema of the difference-
of-Gaussian function applied over a multi-resolution image pyramid. Each feature is
described by a 128-dimensional vector that allows features to be reliably associated
over time.

Using known camera calibrations, the ray on which the SIFT feature lies can be
computed.

A.2.3 Feature Tracking and Landmark Initialization

Unlike some previous SIFT-based feature tracking and mapping work [59, 60], we did
not use stereo/trinocular vision to determine the range to detected SIFT features:
the minimal overlap of our cameras’ fields-of-view precluded this. This means that
individual observations constrain the position of a feature to a ray— the distance
to that feature cannot be determined from a single observation. Davison accounted
for unknown range by tracking features with a particle filter whose particles were
distributed all along the ray [9]. Our approach is to triangulate the position of a
feature by using several observations of the same collected while the robot moves2.

Whenever a camera frame arrives, a new set of SIFT features are extracted. These
features are matched against a set of “tracks”: each track maintains a “reference”
SIFT descriptor and a list of observations matching that descriptor. Each observation
includes both a vehicle position and the bearing to the SIFT feature.

1My thanks to Albert Huang for generating the SIFT detections and for guidance on how to
process them.

2Initializing features based on bearing-only observations shares similarities with using range-only
observations [49].
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Figure A-2: Extracted SIFT features. Clockwise: left camera, forward camera, right camera, rear
camera. Cyan circles represent extracted SIFT features: the size of the circle encodes the scale of
the feature.

Observations are matched to tracks using the SIFT descriptor alone. We use
commonly-accepted matching parameters: in order for a match to be valid, the mean
squared error corresponding to the best match must be less than 60% of the mean
squared error of the next best match. Additionally, if two newly detected features
match to the same track, both matches are discarded. (This is similar to “marriage”,
in which two descriptors a and b match only if a is the best possible match for b,
and b is the best possible match for a. Our faster rule is “monogamous”, in that it
requires that a is the only feature whose best match is b.)

The set of observations for each track are periodically tested to see if they can
be used to localized the landmark. The position of the landmark is estimated by
taking the pair-wise intersection of every observation ray, with a maximum distance
set to 100m. For N observations, this yields up to N(N − 1)/2 points. The mean
and covariance of these points is used as the landmark position estimate and its
uncertainty. If the landmark’s covariance is under a threshold (2m in both x̂ and ŷ),
and the landmark has been observed over at least 5 degrees of motion, a landmark is
initialized (see Fig. A-3). When a landmark is initialized, the track is reset so that the
landmark can be independently observed and estimated again. The result is that the
same landmarks are repeatedly reobserved with respect to the car’s current position.
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Figure A-3: SIFT Landmark Initialization. Landmarks are computed by tracking SIFT features
over short motions of the robot: when the intersection of the bearings converges near a single point,
a landmark is initialized.

A.2.4 Landmark matching

When initializing landmarks, a fairly restrictive set of parameters are used to ensure
that features are not erroneously associated. When closing loops, however, the robot
may be viewing the features from a different angle, distance, and under different
lighting conditions. While SIFT features are somewhat robust to these variations,
a conservative set of matching requirements (like those used in tracking) can result
in very few matches. Instead, we independently compute the best match for each
feature, without any additional restrictions such as “marriage” or “monogamy”.

Suppose that a robot has initialized a set of landmarks A from one pose, and
a different set of landmarks B from a different pose. Using this greedy matching
process, we find the best matches between these two sets by comparing the SIFT
descriptors of each landmark. Suppose the indices of the landmarks A and B are
assigned such that (Ai, Bi) represent a matched pair.

Given two correspondences, e.g. (Ai, Bi), (Aj, Bj), we can compute a rigid-body
transformation that would approximately align the landmarks. For example, one
correspondence could be used to establish the translational component of the rigid-
body transformation, while the second correspondence could be used to compute the
rotational component. (In practice, a lower-error rigid-body transformation can be
found using Horn’s algorithm [28]).
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Figure A-4: SIFT Landmark Matching. The SIFT features observed from two different visits to
the same place are shown: blue dots correspond to SIFT features observed from the blue pose, red
dots correspond to SIFT features observed from the red pose. Matched SIFT features are connected
by lines: heavier lines indicate matches that were accepted by the RANSAC validation.

The best rigid-body transformation is then found via RANSAC (see Fig. A-4).
Each putative rigid-body transformation is scored by counting the number of features
Bi that, when projected, lie near their counterpart Ai. We used a distance threshold
of 1 m in our implementation. The rigid-body transformation with the largest score
is output as a candidate loop closure hypothesis, which can be filtered using the
techniques in Chapter 3.

A.3 Laser Scan Processing

Laser scanners measure the range and distance to other objects in the environment. A
typical SICK laser scanner (see Fig. A-5) captures 180 points at one degree intervals
with a range accurate of a few centimeters. Bearings are accurate to a fraction of a
degree.

We use laser scanners (often called “lidars”) in two different ways. First, we
use lidars to produce an initial estimate of the robot’s trajectory by scan matching
consecutive scans. Our approach is to search for a rigid-body transform that aligns
two scans by using a brute-force search (i.e., by considering a range of translations
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Figure A-5: SICK Laser Scanner on a small indoor robot.

and rotations). This incremental scan matching generally produces a much better
initial estimate of the robot trajectory than the robot’s wheel-derived odometry.

We also use laser scanners as a means of generating loop closure hypotheses (see
Chapter 3). In this case, we attempt to determine the alignment of two scans taken
at very different times: the initial uncertainty is much larger than in the incremental
scan matching case, making a brute-force search impractical. Our system uses a
feature detector in order to generate rough candidate alignments; these candidate
alignments are then refined by a much smaller brute-force search.

In this section, we describe our both aspects of our lidar data processing. First,
however, we begin by describing some of the challenges inherent in lidar data.

A.3.1 Challenges

Laser data is often thought to be a panacea, providing precise and accurate data
that makes map building trivial. While laser range finders produce accurate metrical
descriptions of the environment, they also present a number of challenges.

The most significant limitation of laser scanners is that they measure only the
shape of the environment (and even that, only on a single plane). In many common
cases, such as in office buildings, matching laser scans can be ambiguous. This is
due to the fact that the environments are composed of objects that are hard to
distinguish from laser data alone. For example, in an office environment, virtually all
rooms contain a similar-looking set of walls and corners.

Lidar data, often consisting of only a single cross-sectional slice of the environ-
ment, often lacks cues useful for navigation. In a long straight hallway, for example,
longitudinal motion can be difficult to detect since the cross-sectional profile of the
environment does not change (see Fig. A-6).

It is often difficult to exploit the subtle cues that are present, since algorithms
must be robust to small changes in the environment. Algorithms must continue to
work, for example, even if a chair has been moved or if a human is walking down a
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hallway with the robot.

Figure A-6: Ambiguous long corridor. As a robot travels down a long corridor, the data from the
lidar changes very little; this makes it difficult for the lidar to estimate the robot’s motion from the
lidar data. This data also includes a pedestrian (two dots near the center of the figure).

Figure A-7: Laser challenges. Left: an interlaced scan providing 0.5 degree resolution is combined
from two separate scans taken 13.3 ms apart. When the robot is moving, visible artifacts result.
Right: coarse range quantization creates false “scalloped” textures.

Planar laser scanners are also difficult to use in cluttered outdoor scenes. Since
they scan in only a single plane, any pitching or rolling of the sensor results in different
cross-sectional views of the environment. Not only can this make the appearance of
objects change (since they are being sampled at different heights above the ground),
it introduces range distortions when the scanning plane is no longer horizontal.

Laser scanners do not directly capture the shape of the room: instead, they sample
the shape at discrete points. The position of these sample points varies as the robot
moves around, meaning that the set of points from a scan taken at time t+1 may not
all be near the points taken from a scan at time t. Consequently, it is necessary to
infer the actual contours of an environment so that the “closeness” of two scans can
be meaningfully computed. Since laser scanners sample points at a fixed angular in-
tervals, the spatial resolution decreases rapidly with range: this makes any inferences
about the geometry of the environment increasingly error-prone with range. Partially
transparent surfaces complicate this inference (see Fig. A-8).

One common error made with laser scanners manufactured by SICK is to configure
them to produce interleaved sub-degree resolution scans. A typical SICK sensor can
only produce samples at one degree angular spacing; in order to produce a scan with
quarter degree spacing, four scans (each with an angular spacing of one degree) are
performed sequentially. Each scan is offset a quarter degree from the previous scan,
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Figure A-8: Partially transparent surfaces. Inferring the correct geometry of a scene is complicated
by partially transparent surfaces. Left: the laser data can partially see through the guard rail,
detecting both the guard rail and wall on the opposite side. Right: a camera’s view of the same
environment.

and the results from all four scans are then interleaved. Motion of the robot between
these scans, especially rotation, can cause artifacts in the interleaved scan (see Fig. A-
7). Instead, it is better to operate SICK sensors in “dithered mode”: each successive
scan is still offset by a quarter degree, but each scan is individually output. This
allows the motion of the robot to be incorporated for each individual scan, avoiding
interlacing artifacts. This is the ideal mode for SICKs, as it increases the effective
resolution of the sensor when the robot is stationary, but does not create artifacts if
it is moving.

A.3.2 Scan Matching

Scan matching is the process of finding a rigid-body transformation that best aligns
two scans. Incremental scan matching is the special case of examining temporally-
consecutive scans: it is used to enhance or replace conventional odometry sensors.

In Fig. A-9, two scans acquired approximately 133ms apart are shown in an
poorly-aligned configuration (the alignment corresponds to the odometry-derived es-
timate).

Scan matching is an optimization problem with three free parameters correspond-
ing to the parameters of a rigid-body transformation. For each rigid-body trans-
formation, a cost function is computed that indicates the quality of the alignment.
An optimization algorithm then attempts to find the minimum-cost alignment. This
section describes these steps.

Contour Extraction

As previously discussed, each lidar scan samples the shape of the environment at a
set of discrete points. When matching two scans, the point samples do not generally
correspond to the same points in the environment. Consequently, matching points
directly can produce poor results. Instead, we explicitly estimate the shape of the
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Figure A-9: Scan Matching. Two scans taken 133 ms apart are poorly aligned. Scan-matching is
the process of finding a rigid-body transformation that improves the alignment of two scans. This
alignment corresponds to the motion of the robot.

environment that led to a set of samples. Given a shape estimate, we can then test if
a second set of point samples is consistent with that shape. We represent the shape
of the environment with a set of poly-lines we call contours. This section describes
our contour extraction algorithm.

Initially, each point forms a zero-length contour. Contours are agglomeratively
merged by repeatedly finding the pair of contours whose endpoints are the closest. If
these two endpoints are within a threshold distance, the contours are merged. This
process repeats until there are no more nearby endpoints. This algorithm preferen-
tially connects nearby points, and produces reasonable contours even in environments
with partially-transparent surfaces (as in Fig. A-8).

Our implementation maintains a MinHeap [55] of candidate contour merges, sorted
according to the distance between their endpoints. We repeatedly extract the next
best candidate from the MinHeap: if the endpoints of the candidate’s contours have
not already been merged with other contours, then the candidate’s contours are
merged. The algorithm is very fast: on a typical scan with 180 points, it takes
about 0.2 ms to extract the contours.

Computing the Probability of an Alignment

We wish to determine the cost associated with a particular alignment of one laser
scan with another. The noise model of the laser scanner involves uncertainty in
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Figure A-10: Contour Extraction. A laser scanner measures only a discrete set of points; it is
necessary to infer the contours of the surface being sampled as shown here.

both range and bearing. Range is typically more uncertain than bearing, and so
the probability distributions resemble radially-oriented ellipses. In other words, the
probability distribution of an observed point is dependent upon the position of that
point relative to the scanner. In practice, we approximate the distribution as a circle
(regardless of its position). Specifically, given a laser scan point (x, y) and the distance
d to the nearest contour C, we approximate the probability of a single lidar point as:

P (x, y | C) ∝ e−d2/σ2

(A.1)

The variance parameter σ is determined by the sensor’s noise characteristics. This
approximation yields good results, and allows a lookup table for P (x, y) to be easily
constructed. This lookup table greatly accelerates scan matching since each scan
matching operation evaluates the probability for a large number of rotations and
translations.

We compute a look-up table by rendering each of the extracted contours with an
intensity pattern corresponding to the log-likelihood of Eqn. A.1. The log-likelihood
of a scan with N points is proportional to the sum of the N lookups.

Laser scanners are strictly line-of-sight, and are susceptible to occlusions. In
general, better scan matching results can be obtained by building the cost lookup
table using several previous scans. This increases the completeness of the lookup
table (and thus the likelihood of getting a good match) at the expense of potentially
introducing errors into the lookup table if the alignment of those earlier scans is
incorrect.

While Carmen’s “Vasco” scan matcher[45] assumes a good initial estimate and
relies on gradient descent to achieve a good solution, our approach is more brute-
force, computing the cost function over a wide range of translations and rotations.
The cost surface can be very complicated, even in simple environments as seen in
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Figure A-11: Scan Matching Cost Lookup Table. The cost function is precomputed into a 2D
lookup table (left) allowing the probability of a particular alignment to be computed very quickly.
The cost surface for an incoming scan, parameterized by the rigid-body transformation, can very
complicated (right). This cost surface is one slice of a 3-dimensional surface, corresponding to pure
translations given the correct rotation.

Fig. A-11. This complexity can cause gradient-descent methods to get stuck in local
minima. The primary motivation behind our brute-force approach is to improve the
scan matcher’s ability to find better solutions. This robustness comes at the cost of
increased computational complexity, but our method can still run much faster than
real-time on modern hardware if it is implemented carefully.

Scan Matching Optimization

Our brute-force approach to scan matching is robust, but is also fairly computationally
expensive. This section describes an optimization that helps make the algorithm run
faster than real time.

Our goal is to compute the cost function for a range of rigid-body transformations,
outputting the rigid-body transformation with the minimum cost. Each rigid-body
transformation corresponds to a point in a three-dimensional parameter space; our
algorithm will evaluate the cost function on a 3D grid of points in that parameter
space.

A straight-forward implementation would independently consider each rigid-body
transformation, projecting each lidar point in order to find the appropriate cell in the
lookup table and summing the resulting values. However, the computational cost of
repeatedly projecting the lidar points can be substantial. Our optimization reduces
the number of projections by simultaneously considering all the translations for a
particular rotation.

Let us consider one slice of the 3D grid of rigid-body transformations: this 2D slice
corresponds to the set of possible translations for a fixed rotation. For a single lidar
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point, the cost of a translation is computed by projecting the point into the lookup
map and sampling the value. Importantly, translating the lidar point is equivalent to
translating the lookup table by the same amount. This means that the 2D cost map
for that point can be obtained by simply copying data out a rectangular window of
the lookup table. This operation is particularly fast if the 2D search grid is the same
resolution as the lookup table.

The cost for all of the translations can be determined as a group by summing
the rectangular windows corresponding to each point. The best translation for that
particular rotation can then be determined. Our scan-matching algorithm repeats
this process for each candidate rotation.

Naturally, there are an infinite number of possible translations and rotations. A
prior limits the range of rotations and translations that we search, while a quality
parameter determines how densely we sample the cost function within that region.
The fact that the cost function is the sum of a large number of lookups (one for
each lidar point) helps to reduce the effects of quantization noise stemming from the
finite resolution of the lookup table. Our experiments use a lookup table with 2.5 cm
resolution, but the accuracy is typically better than this.

A.3.3 Loop Closing Hypothesis Generation

In contrast to the incremental scan-matching case, the positional uncertainty between
two scans when closing a loop can be very large. Gradient-Descent methods are more
prone to failure since their initial estimate may be far from the optimal answer. With
the scan matching method described above, large uncertainties require large (and
slow) searches.

Instead, we extract features from the laser scans and match the features between
scans. If a feature match can be found, an approximate alignment between the scans
can be computed. This rough solution greatly reduces the uncertainty, making it
possible to use scan matching to refine the match.

Feature Extraction

Line segments are easy to detect and are common in most indoor environments. Even
in outdoor environments, lines can be fit around non-linear features like trees and
shrubs: despite their poorer quality-of-fit, these lines can still be used to bootstrap
the scan-matcher in order to compute good loop-closure hypotheses.

Line fitting is performed on one contour at a time: in cases of semi-transparent
objects like those in Fig. A-8, this allows us to fit lines to each guard rail individually.

Our line extraction algorithm is similar to our contour extraction method. A set
of lines are initialized for each pair of adjacent points within a contour (we constrain
our line features to include only contiguous sets of points from the contours). Nearby
line features are then repeatedly merged until the quality-of-fit of the merged lines
exceeds a threshold. When merging two line features, the resulting line represents
the optimal line fit of all the points associated with the input lines. Fortunately,
the optimal line can be computed based on a set of sufficient statistics of constant
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Figure A-12: Feature Extraction. Beginning with contours, lines are agglomeratively clustered
until the mean squared error of the line exceeds a threshold. Left: the input contours. Right: the
extracted line features (normals have been added for visualization purposes).

size [40, 42]: this makes the computational complexity of merging two lines O(1)
instead of linear in the number of points.

As with contour extraction, we use a MinHeap to keep track of the relative merits
of all possible line merges. Given that the computational complexity of inserts and
removals for a MinHeap is O(log N), and that there can be (at most) N − 1 merges,
the runtime is O(N log N). On a 2.4GHz Intel Core2 system, line extraction takes
about 0.8ms for a 180 point scan: i.e., its runtime is negligible.

Feature Matching and Refinement

Suppose that we extract line features from two different lidar scans. Given two lines
from each scan (and correspondences between those lines), a rigid-body transfor-
mation can be computed that approximately aligns those lines. The intersection of
the two lines serves as a common anchor point (determining the translational compo-
nent), and the angles of the lines with respect to that intersection allow the rotational
component to be determined.3

However, we do not initially know the correspondences. Instead, we select the
K best lines from each scan and compute the rigid-body transformation that results
from all possible correspondences amongst those lines. The number of possible pairs
of correspondences grows as O(K4), making it necessary to keep K relatively small.
The best lines are selected based on a heuristic incorporating the length of the line
and the number of points on the line. This heuristic favors lines resulting from long
and straight walls. In our experiments, we set K to 10.

The cost of each rigid-body transformation is computed using the lookup table; the
lowest-cost transformation is then refined using a brute-force scan-matching opera-
tion. The line-based alignment greatly reduces the search space, making the run-time

3In 3D, there is an additional “flip” ambiguity, but in 2D, we can force a unique solution by
forbidding reflections.
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cost manageable. The result of this refinement becomes a loop closure “hypothesis”,
as discussed in Chapter 3.

A.4 Summary

This appendix described our low-level sensor processing algorithms for both cameras
and laser scanners. The goal of these algorithms is to compute rigid-body transfor-
mations that relate the positions of the robot at different times.

Sensor processing algorithms tend to be difficult to design and implement, since
they must simultaneously minimize both their error rate and their runtime costs.
The methods described in this appendix are computationally efficient and generally
produce good results (i.e., have a low error rate). However, they can still produce
incorrect rigid-body transformations; the methods of Chapter 3 show how the error
rate can be reduced further.
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