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Abstract— Image feature descriptors composed of a series
of binary intensity comparisons yield substantial memory and
runtime improvements over conventional descriptors, but are
sensitive to viewpoint changes in ways that vary per feature.
We propose a method to improve the matching performance of
such descriptors by specifically reasoning about the reliability
of test results on a feature-by-feature basis. We demonstrate
an intuitive method to learn improved descriptor structures
for individual features. Further, these learned results can
be efficiently applied during matching with little increase in
runtime. We provide an evaluation using a standard, ground-
truthed, multi-image dataset.

I. INTRODUCTION

Feature descriptors generated by a sequence of two-pixel
intensity comparisons are capable of representing image fea-
tures tersely and quickly. These so-called binary or Boolean
string descriptors, which store a comparison’s outcome in a
single bit, require only a few bytes per feature (e.g. 8-64B,
often 32B), greatly reducing memory footprint and network
transfer bandwidth. In addition, computing and matching
these descriptors requires much less runtime than well-
known alternatives like SIFT and SURF, with comparable
matching accuracy [1], [2].

One such method, BRIEF [1], is notable due to its intuitive
formulation and ability to leverage vector instructions. But
unlike one of BRIEF’s predecessors, Randomized Trees [3],
[4], BRIEF’s comparisons are fixed and do not adapt to
the image content of individual image features. This makes
BRIEF sensitive to viewpoint change, as the intensities
shifting under the fixed sampling pattern can cause the test
outcomes, and thus the computed descriptor, to change. This
results in increased overlap between descriptor error distri-
butions for true and false correspondences, which ultimately
leads to a higher false match rate.

Two of BRIEF’s primary advantages are the small memory
footprint and fast runtime. These are suited to the demands
of real-time vision applications, with constrained bandwidth
and high-FPS runtime targets. However, they also set a high
bar for improvements – increases in descriptor robustness
must come with minimal side effects. How to do this given
the unique formulation of BRIEF – the Boolean string
representation and use of XOR/POPCNT – is not especially
clear.
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(a) Full set of intensity tests (b) Learned subset

Fig. 1: Illustration of BRIEF and TailoredBRIEF intensity
tests for the image patch shown. Learning is used to select
the subset of tests, (b), from the full set, (a), that produce
repeatable results under simulated viewpoint change. The
surviving tests for this image feature tend to compare the
patch center to the patch perimeter.

This paper proposes to effectively learn a unique descriptor
structure for every feature in an image, and to do this at run-
time. The key is in doing this efficiently and in a way that is
congruous with the suggested implementation of BRIEF. For
that, we propose tailoring for Boolean string descriptors, and
argue that this approach is suitable for real time systems.

Unlike most approaches for feature descriptor matching,
the proposed method uses an asymmetric division of labor
between reference features and query features. We define a
reference feature to be one in a keyframe or map, and a
query feature to be those matched against reference features.
Appropriate applications include Visual Odometry, SLAM,
and Localization. In addition, we propose an asymmetric
descriptor representation for reference and query features,
as an application like Visual Odometry can afford a larger
memory footprint or bandwidth requirement for the occa-
sional reference feature.

Despite this asymmetry, the runtime for matching with the
proposed method is basically unchanged, and the precision
and recall improved. We achieve this by simulating the
effect of viewpoint change on reference feature descriptors
and defining an appropriate weighting vector to suppress
unreliable intensity tests. Figure 1 shows an illustration of
the result, where the focus of the intensity tests has shifted
from random pixel pairs to center-perimeter comparisons for
the specific feature in question.

The remainder of this paper begins with prior work and
an explanation of BRIEF descriptor extraction in Sections II
and III. Experiments highlighting the sensitivity of intensity
tests to viewpoint change follow in Section IV. The method



is detailed in Section V and evaluated in Section VI.
The contributions of this work are:
• A demonstration of the viewpoint sensitivity of intensity

comparison descriptors
• A method for computing descriptor weighting vectors

through synthetic observations of an image patch
• An efficient distance function for weighted descriptors
• Evaluation of matching performance under typical ap-

pearance changes and comparison to prior art

II. RELATED WORK

This work is based on BRIEF [1], which stems from a line
of research from Lepetit, Fua, et al on intensity-test based
feature matching [3], [4], [5], [6], [7], [1], [8].

Lepetit and Fua investigated Randomized Trees as a way to
reformulate descriptor-based feature matching as a classifica-
tion problem [3], [4]. They consider a class to be all views of
the same scene feature, and perform offline training to learn
a decision tree composed of ternary intensity tests. Synthetic
views are generated to increase the available training data,
and multiple randomized trees are grown because of the
claimed intractability of building an optimal tree. Even
using randomized trees, they describe a learning time around
15 minutes in 2005 [3].

Özuysal, Calonder, Lepetit, and Fua addressed scalability
of this style of classification with Randomized Ferns [5],
[6]. The primary difference between randomized trees and
ferns is that while a randomized tree may perform different
tests given the outcome of the previous test, a fern converted
to a tree always performs the same test at a given depth.
Additionally, Özuysal et al consider combining the class-
membership probabilities estimated by each tree or fern
in a Naive Bayes manner, instead of simply averaging,
and observe a 10-20% increase in feature recognition rates.
Ultimately, joint probabilities are considered between tests
in the same fern, and independence assumed between ferns.
This allows some control over the size of the required joint
probability tables, which grow exponentially in the size of
the fern.

Calonder et al introduced BRIEF [1], [8], which is for-
mulated as a typical feature descriptor and does away with
the joint probability estimates. Additionally, they justify the
design by pointing out that the Hamming Distance between
two descriptors can be computed with XOR and POPCNT
instructions, greatly improving feature matching speed.

Offline learning was applied to binary string descriptors in
BinBoost [9]. An AdaBoost-like classifier is applied to deter-
mine each bit using image gradient orientations within sub-
regions of an image patch. Compared to BRIEF, BinBoost
descriptor matching requires less computation time, as fewer
bits may be used. However, the use of strong classifiers for
each bit does increase the descriptor extraction time, which
may not be desirable for a high-rate, real-time vision system.

Others have also contributed in this space. Rublee et al de-
scribed ORB [2], combining the FAST feature detector [10],
an orientation estimator, and a method to greedily choose
test positions. In particular, they choose tests that are less

correlated under rotation than a typical set of BRIEF tests.
Leutenegger et al described BRISK [11], which uses the
FAST score as a saliency measure to achieve invariance to
scale and a radially-symmetric sampling pattern.

In contrast to these approaches, we propose Tailored-
BRIEF, an extension to BRIEF that allows per-feature cus-
tomization of the tests used to robustly describe a feature.
TailoredBRIEF focuses on the descriptor and matching as-
pects of the problem, and does not attempt to construct
a full detector/descriptor system like ORB and BRISK.
Finally, unlike the offline training used for Randomized
Trees, Randomized Ferns, and BinBoost, TailoredBRIEF is
intended for online learning as new features are detected
for the first time, which is typical for a robot exploring an
unknown environment.

III. DESCRIPTOR EXTRACTION

The BRIEF descriptor summarizes local appearance
through intensity tests between pairs of pixels surrounding
an image feature. The Boolean outputs of the tests are stored
bit-packed to minimize memory usage. Further, stored in
this way, the XOR instruction can be used with POPCNT
to compute the number of bit errors between two BRIEF
descriptors, also known as the Hamming Distance. This
results in a very terse descriptor that can be matched much
faster than alternatives like SURF [1], [12].

Before computing a BRIEF descriptor, a set of test points
must be defined. Calonder et al explored the effect on feature
matching recall with test points drawn from a number of
parameterized random distributions [1]. We use a Gaussian
distribution, following from their results. Once defined, the
same test points are repeatedly used. However, for scale-
invariance, the relative test points’ positions may be resized
according to a feature’s scale. Finally, while the number of
tests is arbitrary, it is typically chosen to be a multiple of
the POPCNT operand length.

Algorithm 1 illustrates how a BRIEF descriptor is com-
puted for a given feature. For each pair of scaled test
points, both image intensities are looked up relative to the
feature’s position. If the second intensity is greater, the
appropriate bit in the descriptor is set. When computing the
error between two descriptors, each corresponding section
from the two descriptors is loaded, differenced using the
XOR instruction, and counted with POPCNT to determine the
Hamming Distance.

IV. MATCHING ERRORS DUE TO VIEWPOINT CHANGE

Image feature matching by computing nearest-neighbors
in a descriptor space can be confounded by image feature
appearance changes. These appearance changes result from
sensor noise, changes in the environment, such as variation
in lighting intensity or direction, and changes in the camera
viewpoint. For descriptors composed of two-point intensity
comparisons, viewpoint changes shift the test points across
the image patch, resulting in different outcomes for some in-
tensity comparisons. These instabilities increase the matching



Algorithm 1 BRIEF EXTRACT (tests, im, x, y, scale)

bits = zeros(length(tests))
for all test ∈ tests do

a = im(x + scale*test.x1, y + scale*test.y1)
b = im(x + scale*test.x2, y + scale*test.y2)
if a < b then

bits[test.index] = 1
end if

end for
return bits

error for a true correspondence, which leads to false matches
when the true error is too great.

We can explore this relationship by simulating BRIEF
descriptor extraction under viewpoint changes. Figure 2
shows an image patch centered about a road sign, which
contains sharp transitions, flat regions, and small text. As
we sweep over changes to scale and both in-plane and out-
of-plane rotations, we transform the BRIEF test positions
and compute the intensity comparison results in the original
image. This corresponds to applying the inverse transforma-
tion to the image before descriptor extraction, but is simpler,
as the full set of transformed test positions can be cached.

The descriptors computed under simulated viewpoint
change are then compared to the original descriptor. Figure 2
shows plots of the matching error, the Hamming Distance,
for two of the simulated viewpoint changes. As we move
along the axes away from the nominal scale or orientation,
the true matching errors reach just under 33% of the total
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Fig. 2: Intensity tests on a road sign patch, (a), under simu-
lated viewpoint changes. (b – e) Viewpoint change examples
show the transformed positions of the nominal intensity tests.
The test outcomes are denoted with colored endpoints and
lines. Orange endpoints denote higher intensities. Red lines
denote tests that differ from the nominal viewpoint. (f – g)
Sweeping over viewpoint change parameters, we measure
test errors just under 33% under small viewpoint changes
(20% scale increase and +15◦ in-plane rotation)
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Fig. 3: Descriptor matching error distributions for example
patches with and without the proposed method.

number of bits, even for small viewpoint changes.
Often, we are interested in the matching error distri-

butions for true and false correspondences. When these
distributions have minimal overlap, we expect to compute
a true correspondence with high probability. Drawing from
independent, uniform random distributions for the viewpoint
change variables over a fixed range, we can estimate the
true-correspondence error distribution. To compute the false-
correspondence distribution, we can compare all sampled
descriptors from one class, or image patch, to those sampled
from all other classes.

Figure 3 shows these sample distributions for a typical
BRIEF descriptor and the proposed method. A small library
of seven input patches was used, computing descriptors for
each patch under 200 simulated viewpoint changes. All true
and false correspondences were then compared to estimate
the sample probability distributions. Without learning which
tests are robust, the true and false probability distributions
overlap. For some combination of patches and viewpoint
changes, selecting the minimum Hamming Distance pair
will result in a false correspondence. Further, the true cor-
respondence mode is clearly non-zero, between 10% and
20% of the 128 bits used. In contrast, by applying the per-
feature learned weights (proposed), the distribution overlap
is decreased substantially and the true correspondence mode
shifts to an error of zero bits. This suggests that feature
matching precision will increase as a result.

V. METHOD: TAILORING BRIEF

Through online learning, we desire to improve the accu-
racy of descriptor-based feature matching. We achieve this
primarily by considering the effect of appearance changes
on the consistency of an individual feature descriptor. Like
Lepetit et al, we simulate the outcome of these appearance
changes to generate training data [3], which is in turn used
to generate a Boolean-weighting vector that we refer to as a
descriptor mask. This mask is used repeatedly in the inner
loop of the matching process, when the matching error is
computed for a specific pair of features.



Key to leveraging this technique is an efficient implemen-
tation. The design and efficiency of the BRIEF descriptor
make it especially well-suited to this task. This is in part
because certain intermediate results can be reused during
training. It is also because the Boolean nature of the image
tests lend themselves to efficient descriptor mask training, as
well as application during feature matching.

The remainder of this section discusses the specific ap-
proach to learning a descriptor mask, and the application of
these masks during matching.

A. Formulation

In the context of feature matching, not all intensity com-
parisons are equally reliable. While it is possible to learn a
better set of test points, as shown by Rublee et al to reduce
average test correlation [2], for any specific test, some image
patch exists which will produce different results under a
small perturbation. If tests were learned for individual image
patch instances, this effect could be minimized.

One can imagine utilizing a different set of BRIEF test
points for each of n features in a reference image. During
matching, n descriptors would be extracted for each of m
image patches in the query image, for a total of n × m
unique descriptors and n×m matching errors. For n = m,
which is common, the number of descriptors extracted grows
quadratically in the number of features, instead of linearly
as with a single, fixed set of test points. This presents an
obvious challenge for real-time systems which target 30-
60 Hz operation.

We propose instead to extract a single descriptor for each
image feature and learn a vector of weights for each test.
If we assume that the tests are independent and produce
errors according to a Bernoulli distribution, we can estimate
pi for each test i by sampling viewpoint change parameters
and warping the image patch or test points appropriately.
We would then compute the probability of a true match
as a function of the test errors and Bernoulli probabilities.
However, this would negate a key property of BRIEF, as the
extra mathematical operations would significantly increase
the number of operations required to compute the error
between two descriptors. Instead, we propose to learn a
Boolean weighting vector and apply it with AND to the error
vector, suppressing noisy tests. In this way, we can select the
subset of tests that are reliable for a particular image patch.
Despite discarding a potentially large number of tests, we
show that the matching performance actually increases.

This Boolean weighting vector can be applied efficiently
during matching. The Boolean weights are stored bit-packed
as in the BRIEF descriptor. Algorithm 2 illustrates the

Algorithm 2 MASKED DISTANCE (blocks, mask, a, b)

dist = 0
for all bi ∈ range(0, blocks) do

dist += POPCNT(mask[bi] and (a[bi] xor b[bi]))
end for
return dist

matching error function with descriptors for two features, and
one descriptor’s learned mask. Here ‘blocks’ is the number
of 64-bit blocks of bits in descriptors a and b, and the mask.
For example, blocks is 4 for a 256-bit descriptor.

In practice, masks could be learned for both sets of fea-
tures, instead of one as shown. However, for many systems,
this is unnecessary. For systems like Visual Odometry and
Visual SLAM, reference features are added only periodically.
We can take advantage of this asymmetry by performing
extra processing on the reference features without affecting
descriptor extraction time for the query features. Addition-
ally, an important property of this formulation is that memory
usage increases only for reference features, which require
twice the memory, while the memory for query features is
unchanged.

B. Mask learning via viewpoint simulation

Training data from which to compute a descriptor mask
is gathered by sampling viewpoint changes from uniform
distributions in scale and 3-axis rotation. The full trans-
formation is shown in Equation 1, where R represents a
3D rotation matrix generated from in-plane and out-of-plane
rotation terms sampled from zero-mean distributions. The
original test point coordinates x and y in the range [−0.5, 0.5]
are rotated. The result is then projected as if at unit distance
by a camera with focal length s, where s is sampled from a
distribution with mean 1.

xp =

xp

yp
w

 =

s 0 0
0 s 0
0 0 1

 ·
R ·

xy
0

+

00
1

 (1)

Note that while we sample only over a small number of
viewpoint change parameters, other terms such as additive
noise could be readily integrated.

The transformed test point coordinates xp are computed
once and stored. To learn the descriptor masks, we do the
following for each feature:

1) Compute all transformed descriptors using Algorithm 1
2) Comparing the original descriptor to each of the trans-

formed descriptors, compute the number of errors for
each test i

3) Estimate the sample probability pi(error) for each test
4) If pi(error) is greater than a small threshold, reject

test i by setting its weight to zero
This is described further in Algorithm 3.

VI. EVALUATION

Matching performance for BRIEF and TailoredBRIEF was
evaluated using sets of still images related by ground truth
homography matrices. We use a portion of the standard affine
region detector datasets from Mikolajczyk et al [13], as in the
evaluation of BRIEF [1]. These datasets include the Bikes,
Graffiti, Leuven, Trees, UBC, and Wall datasets, which
possess varying degrees of viewpoint change (Graffiti, Wall),
blur (Bikes, Trees), lighting change (Leuven), and image



Algorithm 3 LEARN MASK (tests, im, x, y, scale, thresh)

desc = brief extract(tests, im, x, y, scale)
mask = ones(length(tests))
for all test ∈ tests do

transformed = transform test(test)
error = 0
for all sample test ∈ transformed do

bit = compare(im, x, y, scale, sample test)
if bit 6= desc[test.index] then

error++
end if

end for
if error > thresh then

mask[test.index] = 0
end if

end for
return mask
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Fig. 4: Percentage of TailoredBRIEF test results that are
masked-out as a function of the sample accuracy threshold.

compression (UBC). Omitted datasets possessed rotation to
the degree that an orientation estimator is required, which is
not considered in the scope of this work.

A. Evaluation of masks

Figure 4 shows the percentage of intensity tests that are
rejected as a function of the sample accuracy threshold.
These results were computed using 800 difference-of-box
Center Surround Extrema (CenSurE) features detected on
the first (reference) image from each dataset [14]. CenSurE
features were used following from Calonder et al’s report of
improved recognition over SURF [1]. We used 50 randomly-
sampled viewpoint changes in the ranges specified by Table I.

Blurring before learning the descriptor mask makes a
notable difference on the repeatability of tests, decreasing the
number of masked tests for the Wall dataset by 30% when
the mask accuracy threshold is set to 1. Despite suppressing
a substantial number of tests, approximately half of the tests
are 100% repeatable over the range of simulated viewpoints,
and 76.7% of tests are repeatable at least 75% of the time.

B. Computation time

Runtimes for various stages of BRIEF and TailoredBRIEF
were computed using an Intel i7-4900MQ 2.8GHz processor
and are shown in Table II. The total times are reported
averaged over 100 trials using 812 image features detected

Parameter Min Max

Scale 0.8 1.25
Roll -12◦ 12◦
Pitch -12◦ 12◦
Yaw -6◦ 6◦

TABLE I: Ranges for randomly-sampled viewpoint change
parameters. Roll and pitch in this case are out-of-plane
rotations, and yaw an in-plane rotation

on the first image in Wall. Box filtering is optional but, if
enabled, is needed for both the descriptor extraction and
mask learning steps.

BRIEF and TailoredBRIEF require the same amount of
time for descriptor extraction, which is negligible in com-
parison to the box filter. Matching takes 0.97 ms longer for
TailoredBRIEF due to the inclusion of a descriptor mask. The
amount of time required to learn a descriptor mask depends
on the number of viewpoint samples used: 16.07 ms for
10 samples, 37.94 ms for 25, and 149.28 ms for 100. If
learning masks on keyframes using 25 viewpoint samples,
masks are ready for use with just over a one-frame delay
at 30 FPS, which should be sufficient for most applications.
With a small number of samples, masks could be learned for
every frame, if desired.

Computations times for BGM and BinBoost are also in-
cluded. Compared to BRIEF and TailoredBRIEF, descriptor
computation times are over two orders of magnitude larger
when using the reference implementations for BGM and
BinBoost. Feature matching recall does improve as a result,
as shown in Section VI-C. However, for a 30-FPS vision
system, these runtimes exceed the available time per update.

C. Precision-Recall Evaluation

Due to the prevalence of detection and matching pa-
rameters, we use precision-recall plots in our evaluation.
The homography ground truth is used to classify feature
matches with a radial data association threshold of 5 pixels,
irrespective of feature scale. Care is taken to estimate the
recall denominator by computing the number of features with
geometric neighbors when mapped through the homography.
This is done to avoid underestimating recall when detector

Step Time (ms)

BRIEF TailoredBRIEF BGM BinBoost

Box filter 4.24 4.24 4.24 4.24
Compute descriptor 0.26 0.26 367.5 205.8
Match features 1.89 2.86 3.21 2.14

Total 6.39 7.36 374.9 212.2

TABLE II: Runtimes for stages of description and matching.
BRIEF and TailoredBRIEF have identical runtimes for fil-
tering and descriptor extraction, but the matching runtime is
higher by 0.97 ms for TailoredBRIEF due to the integration
of descriptor masks. Both methods are well under the time
constraint for a typical 30 FPS or 60 FPS runtime budget.
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Fig. 5: Precision-recall curves for the Wall dataset, image
1 vs 3. Approximately 800 features were extracted from
each image using the CenSurE detector and descriptor spec-
ified, matched with nearest neighbor and a sweep over the
matching error threshold. BRIEF and TailoredBRIEF were
evaluated with and without a 7-pixel box filter to reduce
high frequency content.

repeatability is poor. This is important to put the magnitude
of repeatability improvements in perspective. Calonder et al
refer to this as the recognition rate [1].

Parameters were sampled in the ranges specified by Ta-
ble I, again detecting 800 CenSurE features. We used 256
intensity tests and a box filter width of 7, where applicable.
The number of viewpoint change samples was set to 25. This
was chosen to balance the runtime/performance trade off
shown in Section VI-B. The threshold used in Algorithm 3
was set to 0.1 (up to 10% test errors permitted).

Figure 5 shows the precision-recall curves for Wall, image
1 vs 3. The matching error for TailoredBRIEF was computed
as discussed in Section V-A, and features were matched by
computing the nearest neighbor descriptor in the query image
for each feature in the reference image.

Results for two versions of the BRIEF and TailoredBRIEF
(proposed) descriptors are shown. Calonder et al reported
use of a box filter to blur an image before extracting
descriptors. This was justified due BRIEF’s sensitivity to
high frequency content, and we see that the version without
the box filter, denoted ‘CenSurE-BRIEF-NoBlur’, does yield
a lower precision and recall. The results are similar for
TailoredBRIEF; however, it is clear that the blur does not
suppress all sensitivity to viewpoint change and that the
benefits of blurring and descriptor mask learning are not
exclusive.

TailoredBRIEF shows a large increase in performance over
BRIEF, including a 10.3% increase in recall from 65.3% at
90% precision. At the same precision level, TailoredBRIEF
captured 29.6% of the remaining true matches between

the two frames. Without image blurs, we see a 5.8-18.2%
increase in recall between 90% and 98% precision, respec-
tively. Systems targeting high framerates could reduce the to-
tal CPU load by replacing the every-frame blurring operation
needed for the ‘Censure-BRIEF’ level of performance with
per-feature descriptor learning on the occasional keyframe.

Results are also shown for the gradient-based boosted im-
age descriptors BGM [15] and BinBoost [9]. Unlike Tailored-
BRIEF, BGM and BinBoost are trained offline to improve
matching accuracy and employ gradient-based weak learn-
ers. Like BRIEF and TailoredBRIEF, the Precision-Recall
performance is improved through modest image blurring,
as shown in Figure 5. In this example, the Precision-Recall
curves for TailoredBRIEF, BGM, and BinBoost correspond
until a recall of approximately 75%, after which the recall
of BGM and BinBoost exceeds TailoredBRIEF.

The full set of Precision-Recall curves are shown in
Figure 6, using all datasets and query images. The largest
increase in recall occur for the Wall, Bikes, and Trees
datasets, which is expected due to the out-of-plane rotation
(Wall) and blur (Bikes, Trees) effects captured in train-
ing TailoredBRIEF. Similar performance results for datasets
whose effects aren’t simulated in training TailoredBRIEF,
including lighting change (Leuven) and image compression
(UBC). The Graffiti dataset, as well as Bark and Boat (not
included), involve large in-plane image rotations that require
an orientation-aware descriptor to improve performance.

For datasets whose effects are captured in training (Wall,
Bikes, Trees), we consider the increases in recall by column.
For query image 2, where the magnitude of out-of-plane
rotation or blur is small, recall is already in the 60-80%
range and we see improvements of about 5%, more in the
case of Wall. For query images 3 and 4, the recall often
improves by 10%.

The boosting-based BGM and BinBoost descriptors show
greater recall in many instances, such as on Wall, Bikes,
Trees, and UBC, particularly for precision values below 80%.
Precision is reduced on Leuven as compared to BRIEF and
TailoredBRIEF, and increased on Graffiti, which involves
large viewpoint change.

The difference in Precision and Recall performance is
summarized in Table III. Due to the focus on low-runtime
methods, areas are not included for BGM and BinBoost.
The area under the Precision-Recall curve was computed for
both BRIEF and TailoredBRIEF, which used the 7-pixel box
filter. By this metric, TailoredBRIEF’s performance exceeds
BRIEF’s for most tests, and exceeds or matches BRIEF in
all but one case.

VII. SUMMARY

TailoredBRIEF is a method to improve feature matching
performance for intensity test feature descriptors, which are
sensitive to viewpoint change even after filtering. Through
viewpoint simulation, a descriptor mask is learned on a
per-feature basis by characterizing the robustness of each
intensity test. This descriptor mask is easy to integrate during
feature matching, results in only a slight increase to runtime,
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Fig. 6: Precision-recall curves for all datasets and images. Plots are organized by dataset (row) and query image number
(column). Increasing query image number (left to right) typically denotes greater change in the image content relative to
the reference image. Performance improvements over BRIEF is greatest for the Wall, Bikes, and Trees datasets, which
primarily involve out-of-plane rotation (Wall) and blur (Bikes, Trees). Performance is generally the same for the Leuven
and UBC datasets, which involve effects not simulated in training for TailoredBRIEF, including lighting change (Leuven)
and significant image compression (UBC). Performance for all methods is weakest on the Graffiti dataset (similar for Bark,
Boat), whose in-plane rotation requires an orientation-aware descriptor.



Dataset Method Area Under the Precision-Recall Curve
1 vs 2 1 vs 3 1 vs 4 1 vs 5 1 vs 6

Wall BRIEF 0.873 0.771 0.529 0.227 0.037
Proposed 0.884 0.793 0.555 0.238 0.030

Bikes BRIEF 0.808 0.735 0.627 0.506 0.279
Proposed 0.830 0.764 0.645 0.576 0.347

Trees BRIEF 0.693 0.572 0.407 0.227 0.082
Proposed 0.696 0.597 0.460 0.319 0.188

Leuven BRIEF 0.796 0.741 0.736 0.708 0.685
Proposed 0.801 0.767 0.745 0.721 0.689

UBC BRIEF 0.895 0.880 0.840 0.751 0.607
Proposed 0.897 0.890 0.844 0.769 0.653

Graffiti BRIEF 0.066 0.085 0.000 0.017 0.000
Proposed 0.056 0.141 0.000 0.016 0.000

TABLE III: Area under the Precision-Recall curves for all
image pairs in Figure 6. Results shown correspond to BRIEF
and the proposed method, TailoredBRIEF, with a 7-pixel box
filter. The areas have a maximum achievable value of 1 and
are arranged in columns sorted by image pair (e.g. 1 vs
2). The greater of the two areas is shown in bold for each
combination of dataset and image pair for differences of 1%
or more. TailoredBRIEF yields the greater area measure in
19 of 30 trials, while BRIEF yields the greater area measure
in only 1 of 30 trials. See Figure 6 for additional discussion
of the performance on these datasets.

and increases the overall feature matching accuracy as shown
on a standard dataset.
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